1
|
Mahmoudi N, Sharifi S, Leshchiner D, Horibata S, Lin Z, Ghazali N, Shahbazi MA, Priyam A, Williams RJ, Pastar I, Gould L, Matoori S, Nisbet DR, Mahmoudi M. Tailored bioengineering and nanomedicine strategies for sex-specific healing of chronic wounds. Br J Dermatol 2025; 192:390-401. [PMID: 39565404 DOI: 10.1093/bjd/ljae457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Chronic wounds, defined by their prolonged healing process, significantly impair patients' quality of life and impose a hefty financial burden on healthcare systems worldwide. Sex- and gender-specific mechanisms regulate inflammation and infection, angiogenesis, matrix synthesis and cell recruitment. All of these processes contribute to cutaneous wound healing but remain largely understudied. This review aims to spotlight the innovative realm of bioengineering and nanomedicine, which is at the helm of revolutionizing complex chronic wound care. It underscores the significance of integrating patient sex into the development and (pre)clinical testing of these avant-garde treatment modalities, in order to enhance healing prospects for all patients regardless of sex. Moreover, we explore the representation of male and female patients in clinical trials of bioengineered and nanomedicine products. Finally, we examine the primary reasons for the historical neglect in translating sex-specific wound healing research into clinical practice and propose strategic solutions. By tackling these issues, the article advocates advanced treatment frameworks that could significantly improve healing outcomes for individuals of all sexes, thereby optimizing both efficacy and inclusivity in chronic wound management.
Collapse
Affiliation(s)
- Negar Mahmoudi
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Dmitry Leshchiner
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Sachi Horibata
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Noor Ghazali
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ayushi Priyam
- IMPACT, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- IMPACT, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Irena Pastar
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lisa Gould
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- South Shore Health Center for Wound Healing, Weymouth, MA, USA
| | - Simon Matoori
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Cisneros EP, Morse BA, Savk A, Malik K, Peppas NA, Lanier OL. The role of patient-specific variables in protein corona formation and therapeutic efficacy in nanomedicine. J Nanobiotechnology 2024; 22:714. [PMID: 39548452 PMCID: PMC11566257 DOI: 10.1186/s12951-024-02954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Despite their potential, the adoption of nanotechnology in therapeutics remains limited, with only around eighty nanomedicines approved in the past 30 years. This disparity is partly due to the "one-size-fits-all" approach in medical design, which often overlooks patient-specific variables such as biological sex, genetic ancestry, disease state, environment, and age that influence nanoparticle behavior. Nanoparticles (NPs) must be transported through systemic, microenvironmental, and cellular barriers that vary across heterogeneous patient populations. Key patient-dependent properties impacting NP delivery include blood flow rates, body fat distribution, reproductive organ vascularization, hormone and protein levels, immune responses, and chromosomal differences. Understanding these variables is crucial for developing effective, patient-specific nanotechnologies. The formation of a protein corona around NPs upon exposure to biological fluids significantly alters NP properties, affecting biodistribution, pharmacokinetics, cytotoxicity, and organ targeting. The dynamics of the protein corona, such as time-dependent composition and formation of soft and hard coronas, depend on NP characteristics and patient-specific serum components. This review highlights the importance of understanding protein corona formation across different patient backgrounds and its implications for NP design, including sex, ancestry, age, environment, and disease state. By exploring these variables, we aim to advance the development of personalized nanomedicine, improving therapeutic efficacy and patient outcomes.
Collapse
Affiliation(s)
- Ethan P Cisneros
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Brinkley A Morse
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas, Austin, USA
| | - Ani Savk
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Khyati Malik
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Olivia L Lanier
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.
- Department of Biomedical Engineering, University of New Mexico, Albuquerque, NM, USA.
- Cancer Therapeutics Program, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
3
|
Renzi S, Digiacomo L, Pozzi D, Quagliarini E, Vulpis E, Giuli MV, Mancusi A, Natiello B, Pignataro MG, Canettieri G, Di Magno L, Pesce L, De Lorenzi V, Ghignoli S, Loconte L, Montone CM, Laura Capriotti A, Laganà A, Nicoletti C, Amenitsch H, Rossi M, Mura F, Parisi G, Cardarelli F, Zingoni A, Checquolo S, Caracciolo G. Structuring lipid nanoparticles, DNA, and protein corona into stealth bionanoarchitectures for in vivo gene delivery. Nat Commun 2024; 15:9119. [PMID: 39438484 PMCID: PMC11496629 DOI: 10.1038/s41467-024-53569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Lipid nanoparticles (LNPs) play a crucial role in addressing genetic disorders, and cancer, and combating pandemics such as COVID-19 and its variants. Yet, the ability of LNPs to effectively encapsulate large-size DNA molecules remains elusive. This is a significant limitation, as the successful delivery of large-size DNA holds immense potential for gene therapy. To address this gap, the present study focuses on the design of PEGylated LNPs, incorporating large-sized DNA, departing from traditional RNA and ionizable lipids. The resultant LNPs demonstrate a unique particle morphology. These particles were further engineered with a DNA coating and plasma proteins. This multicomponent bionanoconstruct exhibits enhanced transfection efficiency and safety in controlled laboratory settings and improved immune system evasion in in vivo tests. These findings provide valuable insights for the design and development of bionanoarchitectures for large-size DNA delivery, opening new avenues for transformative gene therapies.
Collapse
Affiliation(s)
- Serena Renzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Erica Quagliarini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Vulpis
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Valeria Giuli
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Latina, Italy
| | - Angelica Mancusi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Bianca Natiello
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Pesce
- NEST, Scuola Normale Superiore, Pisa, Italy
| | | | | | - Luisa Loconte
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Carmine Nicoletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering and Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, Rome, Italy
| | - Francesco Mura
- Department of Basic and Applied Sciences for Engineering and Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, Rome, Italy
| | - Giacomo Parisi
- Department of Basic and Applied Sciences for Engineering and Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, Rome, Italy
| | | | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Latina, Italy.
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Raheem MA, Rahim MA, Gul I, Reyad-Ul-Ferdous M, Zhang CY, Yu D, Pandey V, Du K, Wang R, Han S, Han Y, Qin P. COVID-19: Post infection implications in different age groups, mechanism, diagnosis, effective prevention, treatment, and recommendations. Life Sci 2024:122861. [PMID: 38925222 DOI: 10.1016/j.lfs.2024.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
SARS-CoV-2 is a highly contagious pathogen that predominantly caused the COVID-19 pandemic. The persistent effects of COVID-19 are defined as an inflammatory or host response to the virus that begins four weeks after initial infection and persists for an undetermined length of time. Chronic effects are more harmful than acute ones thus, this review explored the long-term effects of the virus on various human organs, including the pulmonary, cardiovascular, and neurological, reproductive, gastrointestinal, musculoskeletal, endocrine, and lymphoid systems and found that SARS-CoV-2 adversely affects these organs of older adults. Regarding diagnosis, the RT-PCR is a gold standard method of diagnosing COVID-19; however, it requires specialized equipment and personnel for performing assays and a long time for results production. Therefore, to overcome these limitations, artificial intelligence employed in imaging and microfluidics technologies is the most promising in diagnosing COVID-19. Pharmacological and non-pharmacological strategies are the most effective treatment for reducing the persistent impacts of COVID-19 by providing immunity to post-COVID-19 patients by reducing cytokine release syndrome, improving the T cell response, and increasing the circulation of activated natural killer and CD8 T cells in blood and tissues, which ultimately reduces fever, nausea, fatigue, and muscle weakness and pain. Vaccines such as inactivated viral, live attenuated viral, protein subunit, viral vectored, mRNA, DNA, or nanoparticle vaccines significantly reduce the adverse long-term virus effects in post-COVID-19 patients; however, no vaccine was reported to provide lifetime protection against COVID-19; consequently, protective measures such as physical separation, mask use, and hand cleansing are promising strategies. This review provides a comprehensive knowledge of the persistent effects of COVID-19 on people of varying ages, as well as diagnosis, treatment, vaccination, and future preventative measures against the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Muhammad Ajwad Rahim
- College of Animal Science and Technology, Ahnui Agricultural University, Hefei, PR China
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Md Reyad-Ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Runming Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Yuxing Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China.
| |
Collapse
|
5
|
Binici B, Rattray Z, Schroeder A, Perrie Y. The Role of Biological Sex in Pre-Clinical (Mouse) mRNA Vaccine Studies. Vaccines (Basel) 2024; 12:282. [PMID: 38543916 PMCID: PMC10975141 DOI: 10.3390/vaccines12030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
In this study, we consider the influence of biological sex-specific immune responses on the assessment of mRNA vaccines in pre-clinical murine studies. Recognising the established disparities in immune function attributed to genetic and hormonal differences between individuals of different biological sexes, we compared the mRNA expression and immune responses in mice of both biological sexes after intramuscular injection with mRNA incorporated within lipid nanoparticles. Regarding mRNA expression, no significant difference in protein (luciferase) expression at the injection site was observed between female and male mice following intramuscular administration; however, we found that female BALB/c mice exhibit significantly greater total IgG responses across the concentration range of mRNA lipid nanoparticles (LNPs) in comparison to their male counterparts. This study not only contributes to the scientific understanding of mRNA vaccine evaluation but also emphasizes the importance of considering biological sex in vaccine study designs during pre-clinical evaluation in murine studies.
Collapse
Affiliation(s)
- Burcu Binici
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (B.B.); (Z.R.)
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (B.B.); (Z.R.)
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel;
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (B.B.); (Z.R.)
| |
Collapse
|
6
|
Amici A, Pozzi D, Marchini C, Caracciolo G. The Transformative Potential of Lipid Nanoparticle-Protein Corona for Next-Generation Vaccines and Therapeutics. Mol Pharm 2023; 20:5247-5253. [PMID: 37782816 PMCID: PMC10630956 DOI: 10.1021/acs.molpharmaceut.3c00479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
The integration of the lipid nanoparticle (LNP)-protein corona as a pioneering approach for the development of vaccines against the present and future SARS-CoV-2 variants of concern marks a significant shift in the field. This concept holds great promise, offering a universal platform that can be adaptable to combat future pandemics caused by unknown viruses. Understanding the complex interactions among the protein corona, LNPs, and receptors is crucial for harnessing its potential. This knowledge will allow optimal vaccine formulations and improve their effectiveness. Safety assessments are essential to ensure suitability for human use, compliance with regulatory standards, and rigorous quality control in manufacturing. This transformative workflow requires collaborative efforts, expanding our foundational knowledge and translating advancements from the laboratory to clinical reality. The LNP-protein corona approach represents a paradigmatic shift with far-reaching implications. Its principles and insights can be leveraged beyond specific applications against SARS-CoV-2, enabling a universal platform for addressing viral threats, cancer, and genetic diseases.
Collapse
Affiliation(s)
- Augusto Amici
- School
of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Daniela Pozzi
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, 00161 Rome, Italy
| | - Cristina Marchini
- School
of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Giulio Caracciolo
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
7
|
Kugler S, Vári DK, Veres DS, Király Á, Teszák T, Parázs N, Tarjányi Z, Drobni Z, Szakál‐Tóth Z, Prinz G, Miheller P, Merkely B, Sax B. Seroconversion after SARS-CoV-2 vaccination is protective against severe COVID-19 disease in heart transplant recipients. Immun Inflamm Dis 2023; 11:e1086. [PMID: 38018598 PMCID: PMC10652352 DOI: 10.1002/iid3.1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Heart transplant (HTX) recipients are prone to develop complications after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Vaccination is often ineffective due to weaker immunogenicity. In this high-volume single-center study, we aimed to determine factors influencing seroconversion after vaccination and predictors of severe SARS-CoV-2 infection. METHODS Two hundred twenty-nine HTX recipients were enrolled. Type of the first two vaccine doses included messenger RNA (mRNA), vector, and inactivated vaccines. We carried out analyses on seroconversion after the second and third doses of vaccination and on severity of infection. Antispike protein SARS-CoV-2 immunoglobulin G (IgG) was measured after the second and third vaccines and serostatus was defined. Effect of the first two vaccine doses was studied on patients who did not suffer SARS-CoV-2 infection before antibody measurement (n = 175). The effectivity of the third vaccine was evaluated among seronegative recipients after the second vaccine (n = 53). Predictors for severe infection defined as pneumonia, hospitalization or death were assessed in all patients who contracted SARS-CoV-2 infection (n = 92). RESULTS 62% of the recipients became seropositive after the second vaccination. Longer time between HTX and vaccination (odds ratio [OR]: 2.35) and mRNA vaccine (OR: 4.83) were predictors of seroconversion. 58% of the nonresponsive patients became seropositive after receiving the third vaccine. Male sex increased the chance of IgG production after the third dose (OR: 5.65). Clinical course of SARS-CoV-2 infection was severe in 32%. Of all parameters assessed, only seropositivity before infection was proven to have a protective effect against severe infection (OR: 0.11). CONCLUSIONS We found that longer time since HTX, mRNA vaccine type, and male sex promoted seroconversion after SARS-CoV-2 vaccination in HTX recipients. Seropositivity-but not the number of vaccine doses-seemed to be protective against severe SARS-CoV-2 infection. Screening of HTX patients for anti-SARS-COV-2 antibodies may help to identify patients at risk for severe infection.
Collapse
Affiliation(s)
- Szilvia Kugler
- Department of Cardiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | | | - Dániel Sándor Veres
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Ákos Király
- Department of Cardiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | - Tímea Teszák
- Department of Cardiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | - Nóra Parázs
- Department of Cardiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | - Zoltán Tarjányi
- Department of Cardiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | - Zsófia Drobni
- Department of Cardiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | - Zsófia Szakál‐Tóth
- Department of Cardiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | - Gyula Prinz
- Department of Cardiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | - Pál Miheller
- Department of Surgery, Transplantation and GastroenterologySemmelweis UniversityBudapestHungary
| | - Béla Merkely
- Department of Cardiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | - Balázs Sax
- Department of Cardiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| |
Collapse
|
8
|
Ashkarran AA, Gharibi H, Grunberger JW, Saei AA, Khurana N, Mohammadpour R, Ghandehari H, Mahmoudi M. Sex-Specific Silica Nanoparticle Protein Corona Compositions Exposed to Male and Female BALB/c Mice Plasmas. ACS BIO & MED CHEM AU 2023; 3:62-73. [PMID: 36820312 PMCID: PMC9936498 DOI: 10.1021/acsbiomedchemau.2c00040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
As various nanoparticles (NPs) are increasingly being used in nanomedicine products for more effective and less toxic therapy and diagnosis of diseases, there is a growing need to understand their biological fate in different sexes. Herein, we report a proof-of-concept result of sex-specific protein corona compositions on the surface of silica NPs as a function of their size and porosity upon incubation with plasma proteins of female and male BALB/c mice. Our results demonstrate substantial differences between male and female protein corona profiles on the surface of silica nanoparticles. By comparing protein abundances between male and female protein coronas of mesoporous silica nanoparticles and Stöber silica nanoparticles of ∼100, 50, and 100 nm in diameter, respectively, we detected 17, 4, and 4 distinct proteins, respectively, that were found at significantly different concentrations for these constructs. These initial findings demonstrate that animal sex can influence protein corona formation on silica NPs as a function of the physicochemical properties. A more thorough consideration of the role of plasma sex would enable nanomedicine community to design and develop safer and more efficient diagnostic and therapeutic nanomedicine products for both sexes.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hassan Gharibi
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institute, SE-17 165 Stockholm, Sweden
| | - Jason W. Grunberger
- Utah
Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Amir Ata Saei
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institute, SE-17 165 Stockholm, Sweden
| | - Nitish Khurana
- Utah
Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Raziye Mohammadpour
- Utah
Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hamidreza Ghandehari
- Utah
Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
- Department
of Biomedical Engineering, University of
Utah, Salt Lake City, Utah 84112, United
States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
- Mary
Horrigan Connors Center for Women’s Health and Gender Biology,
Brigham and Women’s Hospital, Harvard
Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
SARS-CoV-2 Specific Humoral Immune Responses after BNT162b2 Vaccination in Hospital Healthcare Workers. Vaccines (Basel) 2022; 10:vaccines10122038. [PMID: 36560450 PMCID: PMC9782529 DOI: 10.3390/vaccines10122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND COVID-19 pandemic has led to a loss of human life in millions and devastating socio-economic consequences worldwide. So far, vaccination is the most effective long-term strategy to control and prevent severe COVID-19 disease. The aim of the current study was to evaluate the humoral immune responses raised against the BNT162b2 vaccine in hospital healthcare workers. METHODS Total number of 173 healthcare workers enrolled in the study. Their blood samples were collected in three different time intervals after the second SARS-CoV-2 vaccination and evaluated by the ELISA method to detect anti-spike protein IgM and IgG antibodies. The baseline characteristics of all participants were collected using questionnaires and were evaluated for finding any significant data. RESULTS Our results demonstrated that the levels of antibodies were higher in the young group (21-30 years old) and also among male participants. Moreover, the highest levels of antibodies were detected from the group that received the third shot vaccination. CONCLUSIONS Our results indicate that age, gender and third-dose vaccination can affect the levels of humoral immune responses against the BNT162b2 vaccine in healthcare workers.
Collapse
|
10
|
Poley M, Chen G, Sharf-Pauker N, Avital A, Kaduri M, Sela M, Raimundo PM, Koren L, Arber S, Egorov E, Shainsky J, Shklover J, Schroeder A. Sex‐Based Differences in the Biodistribution of Nanoparticles and Their Effect on Hormonal, Immune, and Metabolic Function. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Gal Chen
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Noga Sharf-Pauker
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Aviram Avital
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Mor Sela
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Patricia Mora Raimundo
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Sivan Arber
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Egor Egorov
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Janna Shainsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
11
|
Ten simple rules in biomedical engineering to improve healthcare equity. PLoS Comput Biol 2022; 18:e1010525. [PMID: 36227840 PMCID: PMC9560067 DOI: 10.1371/journal.pcbi.1010525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Fender AC, Dobrev D. Geschlechtsspezifische Unterschiede in der Pharmakologie. AKTUELLE KARDIOLOGIE 2022. [DOI: 10.1055/a-1614-3497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungFrauen erfahren Krankheit und Pharmakotherapie oft anders als Männer. Neben
psychosozialen Aspekten bestehen geschlechtsspezifische Unterschiede auch bei Prozessen
der Pharmakokinetik (Aufnahme, Verteilung, Metabolisierung, Ausscheidung) sowie der
Pharmakodynamik (Bindung, biologische und molekulare Wirkung). Diese Variabilität kann die
Wirkdauer, Wirkstärke und Wirkqualität eines Arzneistoffs entscheidend beeinflussen und
sollte bei der individuellen Nutzen-Risiko-Abwägung unbedingt einbezogen werden.
Collapse
Affiliation(s)
- Anke C. Fender
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen,
Deutschland
| | - Dobromir Dobrev
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen,
Deutschland
| |
Collapse
|
13
|
Aksoyalp ZŞ, Nemutlu-Samur D. Sex-related susceptibility in coronavirus disease 2019 (COVID-19): Proposed mechanisms. Eur J Pharmacol 2021; 912:174548. [PMID: 34606834 PMCID: PMC8486578 DOI: 10.1016/j.ejphar.2021.174548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
The importance of sex differences is increasingly acknowledged in the incidence and treatment of disease. Accumulating clinical evidence demonstrates that sex differences are noticeable in COVID-19, and the prevalence, severity, and mortality rate of COVID-19 are higher among males than females. Sex-related genetic and hormonal factors and immunological responses may underlie the sex bias in COVID-19 patients. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease/serine subfamily member 2 (TMPRSS2) are essential proteins involved in the cell entry of SARS-CoV-2. Since ACE2 is encoded on the X-chromosome, a double copy of ACE2 in females may compensate for virus-mediated downregulation of ACE2, and thus ACE2-mediated cellular protection is greater in females. The X chromosome also contains the largest immune-related genes leading females to develop more robust immune responses than males. Toll-like receptor-7 (TLR-7), one of the key players in innate immunity, is linked to sex differences in autoimmunity and vaccine efficacy, and its expression is greater in females. Sex steroids also affect immune cell function. Estrogen contributes to higher CD4+ and CD8+ T cell activation levels, and females have more B cells than males. Sex differences not only affect the severity and progression of the disease, but also alter the efficacy of pharmacological treatment and adverse events related to the drugs/vaccines used against COVID-19. Administration of different drugs/vaccines in different doses or intervals may be useful to eliminate sex differences in efficacy and side/adverse effects. It should be noted that studies should include sex-specific analyses to develop further sex-specific treatments for COVID-19.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, 35620, Izmir, Turkey.
| | - Dilara Nemutlu-Samur
- Alanya Alaaddin Keykubat University, Faculty of Medicine, Department of Pharmacology, 07450, Antalya, Turkey.
| |
Collapse
|
14
|
Madla CM, Gavins FKH, Merchant HA, Orlu M, Murdan S, Basit AW. Let's talk about sex: Differences in drug therapy in males and females. Adv Drug Deliv Rev 2021; 175:113804. [PMID: 34015416 DOI: 10.1016/j.addr.2021.05.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
Professor Henry Higgins in My Fair Lady said, 'Why can't a woman be more like a man?' Perhaps unintended, such narration extends to the reality of current drug development. A clear sex-gap exists in pharmaceutical research spanning from preclinical studies, clinical trials to post-marketing surveillance with a bias towards males. Consequently, women experience adverse drug reactions from approved drug products more often than men. Distinct differences in pharmaceutical response across drug classes and the lack of understanding of disease pathophysiology also exists between the sexes, often leading to suboptimal drug therapy in women. This review explores the influence of sex as a biological variable in drug delivery, pharmacokinetic response and overall efficacy in the context of pharmaceutical research and practice in the clinic. Prospective recommendations are provided to guide researchers towards the consideration of sex differences in methodologies and analyses. The promotion of disaggregating data according to sex to strengthen scientific rigour, encouraging innovation through the personalisation of medicines and adopting machine learning algorithms is vital for optimised drug development in the sexes and population health equity.
Collapse
Affiliation(s)
- Christine M Madla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Francesca K H Gavins
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Hamid A Merchant
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
15
|
Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021; 18:2867-2888. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.
Collapse
Affiliation(s)
- Despo Chatzikleanthous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|