1
|
Liu H, Peng B, Zhou B, Zhang Y, Liu Y, Liu Y, Sun R, Li Z, Zhu Q, Yu L, Fu R, Wang Q, Liu J, Pang C. Pharmacodynamics, pharmacokinetics, and toxicology of Fc-growth hormone fusion protein in macaques. Growth Horm IGF Res 2025; 81:101648. [PMID: 40120208 DOI: 10.1016/j.ghir.2025.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/16/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
PURPOSE Growth hormone (GH) therapy for GH deficiency is used to treat multiple conditions. However, the short half-life of GH necessitates frequent dosing, which limits patient adherence. Fc fusion proteins, created by binding an active peptide to the Fc portion of IgG, are known to prolong the plasma half-life of the peptide. Pharmacodynamics and pharmacokinetics of Fc-GH in rats have been reported; however, studies in primate models are lacking. Therefore, in this study, we aimed to investigate the pharmacodynamics, pharmacokinetics, and toxicology of Fc-GH in rhesus and crab-eating macaques. METHODS In rhesus macaques, Fc-GH was injected subcutaneously at 0.8, 1.6, and 3.2 mg/kg and intravenously at 1.6 mg/kg. The 1.6 mg/kg subcutaneous dose was administered five times, once every 7 days; other doses were administered as single injections for pharmacodynamic and pharmacokinetic assessments. In crab-eating macaques, potential toxicity was evaluated after single subcutaneous injections at 30, 45, and 62.5 mg/kg and repeated injections at 3, 10, and 30 mg/kg once every 7 days, followed by an 8-week recovery. RESULTS No adverse events were observed following Fc-GH administrations. Fc-GH achieved Cmax slowly after subcutaneous administration and rapidly after intravenous administration, with plasma levels being maintained over time. In rhesus macaques, the half-life increased dose-dependently: 23.72 ± 2.17 h (0.8 mg/kg), 49.44 ± 14.77 h (1.6 mg/kg), and 76.07 ± 13.19 h (3.2 mg/kg). After five injections of 1.6 mg/kg, the half-life of Fc-GH was 60.42 ± 18.29 h. Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP-3) levels significantly increased and remained elevated for 28-42 days after Fc-GH injections. In crab-eating macaques, no Fc-GH accumulation was observed. The maximum tolerated single subcutaneous dose was 62.5 mg/kg; no adverse effects were observed at 30 mg/kg during repeated administration over 29 injections with an 8-week recovery. CONCLUSIONS Fc-GH demonstrated favorable pharmacokinetics and pharmacodynamics in macaques, significantly extending the half-life and enhancing IGF-1 and IGFBP-3 levels without adverse effects. These findings suggest Fc-GH as a promising long-acting GH therapy that could improve patient adherence.
Collapse
Affiliation(s)
- Han Liu
- Changchun University of Science and Technology, Changchun, China
| | - Binghuai Peng
- Changchun University of Science and Technology, Changchun, China
| | - Baisong Zhou
- Changchun University of Science and Technology, Changchun, China
| | - Yu Zhang
- Changchun University of Science and Technology, Changchun, China
| | - Yunnan Liu
- Changchun University of Science and Technology, Changchun, China
| | - Yulin Liu
- Changchun University of Science and Technology, Changchun, China
| | - Ruixin Sun
- Changchun University of Science and Technology, Changchun, China
| | - Zhuonan Li
- Changchun University of Science and Technology, Changchun, China
| | - Qiumei Zhu
- Changchun University of Science and Technology, Changchun, China
| | - Lu Yu
- Changchun University of Science and Technology, Changchun, China
| | - Ruili Fu
- Changchun University of Science and Technology, Changchun, China
| | - Qiong Wang
- Changchun University of Science and Technology, Changchun, China
| | - Jinghui Liu
- Changchun University of Science and Technology, Changchun, China.
| | - Chunying Pang
- Changchun University of Science and Technology, Changchun, China.
| |
Collapse
|
2
|
Yang Z, Yao Q, Gong L, Zhang F, Sun J, Sun Y, Gao W. A Superlong-Acting Growth Hormone-Polypeptide Fusion for Growth Hormone Deficiency Treatment. Adv Healthc Mater 2024; 13:e2302507. [PMID: 38030143 DOI: 10.1002/adhm.202302507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Recombinant human growth hormone (rhGH) is clinically used to treat growth hormone deficiency (GHD). However, daily administration of rhGH is required due to its poor stability and short blood circulation, which causes pains and burdens as well as inconvenience to patients. In this study, a method for genetically fusing rhGH to a thermosensitive polymer of elastin-like polypeptide (ELP) is reported, using which the rhGH-ELP thermosensitive fusion protein can be purified by the thermosensitivity of ELP instead of chromatography. The ELP fusion not only drastically improves the stability of rhGH, but also enables the in situ formation of a sustained-release depot of rhGH-ELP upon subcutaneous (SC) injection, which exhibits gentle release with a platform-to-trough fluctuation in blood and a very long circulatory half-life of 594.6 h. In contrast, rhGH exhibits a peak-to-trough fluctuation in blood with a very short circulatory half-life of 0.7 h. As a result, a single subcutaneous injection of rhGH-ELP can consecutively promote the linear growth of rats and the development of major tissues and organs over 3 weeks without obvious side effects, whereas rhGH is required to be injected daily to achieve similar therapeutic results.
Collapse
Affiliation(s)
- Zhaoying Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Qiongqiong Yao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Like Gong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Fan Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Jiawei Sun
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Yuanzi Sun
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Weiping Gao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| |
Collapse
|
3
|
Ruan S, Yang G, Dong Y, Shangguan W, Lu W. Discovery of a Long-Acting Parathyroid Hormone 1-34 Analogue to Treat Hypoparathyroidism. Mol Pharm 2021; 18:3260-3271. [PMID: 34482698 DOI: 10.1021/acs.molpharmaceut.1c00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypoparathyroidism (HP) is a rare disease with clinical manifestations of hypocalcemia and hyperphosphatemia, resulting from deficient or absent parathyroid hormone (PTH) secretion. Conventional treatment for patients with HP involves extensive calcium and vitamin D supplementation. In 2015, PTH1-84 was approved by the United States Food and Drug Administration as an adjunct for HP patients who cannot be well-controlled on conventional treatment. However, PTH1-84 therapy requires a daily injection, leading to poor patient compliance. The purpose of this study was to develop a long-acting PTH1-34 analogue by increasing its affinity to albumin. Three PTH1-34 variants were generated by substituting two of the three lysine (Lys) residues with arginine, reserving a single Lys as the modification site in each sequence. A series of side chains, containing fatty acid, deoxycholic acid, or biotin groups, were synthesized to modify these PTH1-34 variants by using a solid-liquid phase synthesis approach. In vitro bioactivity and albumin affinity tests were used to screen these new PTH1-34 analogues. Finally, Lys27-AAPC was selected from 69 synthesized analogues as a candidate therapeutic compound because it retained potency and exhibited a high albumin-binding capacity. In pharmacodynamic experiments, Lys27-AAPC demonstrated enhanced and prolonged efficacy in serum calcium elevating relative to PTH1-84. Moreover, a lyophilized powder for injection containing Lys27-AAPC was developed for further testing and represented a potential long-acting HP treatment.
Collapse
Affiliation(s)
- Sida Ruan
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Guiying Yang
- Shanghai Duomirui Biotechnology Ltd., Shanghai 201203, China
| | - Yuanzhen Dong
- Shanghai Duomirui Biotechnology Ltd., Shanghai 201203, China
| | - Wenwen Shangguan
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Weigen Lu
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
4
|
The role of ligand-binding assay and LC-MS in the bioanalysis of complex protein and oligonucleotide therapeutics. Bioanalysis 2021; 13:931-954. [PMID: 33998268 DOI: 10.4155/bio-2021-0009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-binding assay (LBA) and LC-MS have been the preferred bioanalytical techniques for the quantitation and biotransformation assessment of various therapeutic modalities. This review provides an overview of the applications of LBA, LC-MS/MS and LC-HRMS for the bioanalysis of complex protein therapeutics including antibody-drug conjugates, fusion proteins and PEGylated proteins as well as oligonucleotide therapeutics. The strengths and limitations of LBA and LC-MS, along with some guidelines on the choice of appropriate bioanalytical technique(s) for the bioanalysis of these therapeutic modalities are presented. With the discovery of novel and more complex therapeutic modalities, there is an increased need for the biopharmaceutical industry to develop a comprehensive bioanalytical strategy integrating both LBA and LC-MS.
Collapse
|
5
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Pei D, Hu J, Rao C, Yu P, Xu H, Wang J. Anti-Tumor Activity and Pharmacokinetics of AP25-Fc Fusion Protein. Int J Med Sci 2019; 16:1032-1041. [PMID: 31341417 PMCID: PMC6643120 DOI: 10.7150/ijms.34365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
AP25 is an anti-tumor peptide with a high affinity for integrins. It exerts its anti-tumor activity by inhibiting angiogenesis and by directly inhibiting the growth of tumor cells. Its half-life time in vivo is only about 50 minutes, which limits its clinical application. In order to prolong the half-life time of AP25 while preserving its anti-tumor activity, several fusion proteins of AP25 and IgG4 Fc were designed and expressed; their anti-tumor activity and pharmacokinetics properties were evaluated. Firstly, four AP25-Fc fusion protein sequences were designed, and the corresponding proteins were expressed and purified. Based on the results of HUVEC migration inhibition assay, HUVEC and tumor cell proliferation inhibition assay and yields of expression by HEK293 cells, the fusion protein designated PSG4R was selected for further evaluation. The anti-tumor effect of PSG4R was then evaluated in vivo on HCT-116 nude mice xenograft model. And the pharmacokinetics properties of PSG4R were investigated in rats. The results showed that PSG4R could inhibit the growth of xenografts of human colon cancer cell line HCT-116 in nude mice by intravenous administration of 40 mg/kg once every two days. The half-life time of PSG4R was 56.270 ± 15.398 h. This study showed that the construction of AP25-Fc fusion protein could significantly prolong the half-life of AP25 while retaining its anti-tumor activity, which provides a new direction for new drug development of AP25.
Collapse
Affiliation(s)
- Dening Pei
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an 710032, China
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jialiang Hu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chunming Rao
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Pengcheng Yu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Junzhi Wang
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an 710032, China
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
7
|
Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed Pharmacother 2019; 113:108750. [DOI: 10.1016/j.biopha.2019.108750] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 11/21/2022] Open
|
8
|
A Cell-Based Strategy for Bioactivity Determination of Long-Acting Fc-Fusion Recombinant Human Growth Hormone. Molecules 2019; 24:molecules24071389. [PMID: 30970583 PMCID: PMC6479951 DOI: 10.3390/molecules24071389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
The long-acting growth hormone (LAGH) is a promising alternative biopharmaceutical to treat growth hormone (GH) deficiency in children, and it was developed using a variety of technologies by several pharmaceutical companies. Most LAGH preparations, such as Fc fusion protein, are currently undergoing preclinical study and clinical trials. Accurate determination of bioactivity is critical for the efficacy of quality control systems of LAGH. The current in vivo rat weight gain assays used to determine the bioactivity of recombinant human GH (rhGH) in pharmacopoeias are time-consuming, expensive, and imprecise, and there are no recommended bioassays for LAGH bioactivity in pharmacopoeias. Therefore, we developed a cell-based bioassay for bioactivity determination of therapeutic long-acting Fc-fusion recombinant human growth hormone (rhGH-Fc) based on the luciferase reporter gene system, which is involved in the full-length human GH receptor (hGHR) and the SG (SIE and GAS) response element. The established bioassay was comprehensively validated according to the International Council for Harmonization (ICH) Q2 (R1) guidelines and the Chinese Pharmacopoeia, and is highly precise, time-saving, simple, and robust. The validated bioassay could be qualified for bioactivity determination during the research, development, and manufacture of rhGH-Fc, and other LAGH formulations.
Collapse
|
9
|
Herron LR, Pridans C, Turnbull ML, Smith N, Lillico S, Sherman A, Gilhooley HJ, Wear M, Kurian D, Papadakos G, Digard P, Hume DA, Gill AC, Sang HM. A chicken bioreactor for efficient production of functional cytokines. BMC Biotechnol 2018; 18:82. [PMID: 30594166 PMCID: PMC6311007 DOI: 10.1186/s12896-018-0495-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The global market for protein drugs has the highest compound annual growth rate of any pharmaceutical class but their availability, especially outside of the US market, is compromised by the high cost of manufacture and validation compared to traditional chemical drugs. Improvements in transgenic technologies allow valuable proteins to be produced by genetically-modified animals; several therapeutic proteins from such animal bioreactors are already on the market after successful clinical trials and regulatory approval. Chickens have lagged behind mammals in bioreactor development, despite a number of potential advantages, due to the historic difficulty in producing transgenic birds, but the production of therapeutic proteins in egg white of transgenic chickens would substantially lower costs across the entire production cycle compared to traditional cell culture-based production systems. This could lead to more affordable treatments and wider markets, including in developing countries and for animal health applications. RESULTS Here we report the efficient generation of new transgenic chicken lines to optimize protein production in eggs. As proof-of-concept, we describe the expression, purification and functional characterization of three pharmaceutical proteins, the human cytokine interferon α2a and two species-specific Fc fusions of the cytokine CSF1. CONCLUSION Our work optimizes and validates a transgenic chicken system for the cost-effective production of pure, high quality, biologically active protein for therapeutics and other applications.
Collapse
Affiliation(s)
- Lissa R. Herron
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Roslin Technologies Limited, Roslin Innovation Centre, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Clare Pridans
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Centre for Inflammation Research at the University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH16 4TJ UK
| | - Matthew L. Turnbull
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Medical Research Council University of Glasgow Centre for Virus Research (CVR), University of Glasgow, Glasgow, G61 1QH UK
| | - Nikki Smith
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Simon Lillico
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Adrian Sherman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Hazel J. Gilhooley
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Martin Wear
- Edinburgh Protein Production Facility, Wellcome Trust Centre for Cell Biology (WTCCB), University of Edinburgh, Edinburgh, EH9 3JR UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - Grigorios Papadakos
- Roslin Technologies Limited, Roslin Innovation Centre, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | - David A. Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- Centre for Inflammation Research at the University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, EH16 4TJ UK
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102 Australia
| | - Andrew C. Gill
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, Lincolnshire LN6 7DL UK
| | - Helen M. Sang
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| |
Collapse
|
10
|
Ramírez-Andersen HS, Behrens C, Buchardt J, Fels JJ, Folkesson CG, Jianhe C, Nørskov-Lauritsen L, Nielsen PF, Reslow M, Rischel C, Su J, Thygesen P, Wiberg C, Zhao X, Wenjuan X, Johansen NL. Long-Acting Human Growth Hormone Analogue by Noncovalent Albumin Binding. Bioconjug Chem 2018; 29:3129-3143. [DOI: 10.1021/acs.bioconjchem.8b00463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Jens Buchardt
- Novo Nordisk A/S Global Research, DK-2760 Maaloev, Denmark
| | | | | | - Chen Jianhe
- Novo Nordisk Research Center China, 20 Life Science Park Road, Changping District, Beijing 102206, China
| | | | - Per F. Nielsen
- Novo Nordisk A/S Global Research, DK-2760 Maaloev, Denmark
| | - Mats Reslow
- Novo Nordisk A/S Global Research, DK-2760 Maaloev, Denmark
| | | | - Jing Su
- Novo Nordisk Research Center China, 20 Life Science Park Road, Changping District, Beijing 102206, China
| | - Peter Thygesen
- Novo Nordisk A/S Global Research, DK-2760 Maaloev, Denmark
| | | | - Xin Zhao
- Novo Nordisk Research Center China, 20 Life Science Park Road, Changping District, Beijing 102206, China
| | - Xia Wenjuan
- Novo Nordisk Research Center China, 20 Life Science Park Road, Changping District, Beijing 102206, China
| | | |
Collapse
|
11
|
Thygesen P, Andersen HS, Behrens C, Fels JJ, Nørskov-Lauritsen L, Rischel C, Johansen NL. Nonclinical pharmacokinetic and pharmacodynamic characterisation of somapacitan: A reversible non-covalent albumin-binding growth hormone. Growth Horm IGF Res 2017; 35:8-16. [PMID: 28595133 DOI: 10.1016/j.ghir.2017.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Somapacitan is an albumin-binding growth hormone derivative intended for once weekly administration, currently in clinical development for treatment of adult as well as juvenile GH deficiency. Nonclinical in vivo pharmacological characterisation of somapacitan was performed to support the clinical trials. Here we present the pharmacokinetic and pharmacodynamic effects of somapacitan in rats, minipigs, and cynomolgus monkeys. METHODS Pharmacokinetic studies investigating exposure, absorption, clearance, and bioavailability after single intravenous (i.v.) and subcutaneous (s.c.) administration were performed in all species. A dose-response study with five dose levels and a multiple dose pharmacodynamic study with four once weekly doses was performed in hypophysectomised rats to evaluate the effect of somapacitan on growth and IGF-I production. RESULTS Pharmacokinetic profiles indicated first order absorption from the subcutaneous tissue after s.c. injections for somapacitan in all three species. Apparent terminal half-lives were 5-6h in rats, 10-12h in minipigs, and 17-20h in monkeys. Somapacitan induced a dose-dependent growth in hypophysectomised rats (p<0.001) and an increase in plasma IGF-I levels in rats (p<0.01), minipigs (p<0.01), and cynomolgus monkeys (p<0.05) after single dose administration. Multiple once weekly dosing of somapacitan in hypophysectomised rats induced a step-wise increase in body weight with an initial linear phase the first 3-4days in each dosing interval (p<0.001). CONCLUSION The nonclinical pharmacokinetic and pharmacodynamic studies of somapacitan showed similar pharmacokinetic properties, with no absorption-limited elimination, increased clearance and increased and sustained levels of IGF-I in plasma for up to 10days after a single dose administration in all three species. Somapacitan induced a dose-dependent increase in body weight and IGF-I levels in hypophysectomised rats. Multiple dosing of somapacitan in hypophysectomised rats suggested a linear growth for the first 3-4days in each weekly dosing interval, whereas daily hGH dosing showed linear growth for approximately two weeks before reaching a plateau level.
Collapse
Affiliation(s)
- Peter Thygesen
- Novo Nordisk A/S, Haemophilia Pharmacology, DK-2760, Maaloev, Denmark.
| | | | - Carsten Behrens
- Novo Nordisk A/S, Protein & Peptide Chemistry, DK-2760, Maaloev, Denmark
| | | | | | - Christian Rischel
- Novo Nordisk A/S, Large Protein Biophysics & Formulation, DK-2760, Maaloev, Denmark
| | | |
Collapse
|
12
|
Zelinska N, Iotova V, Skorodok J, Malievsky O, Peterkova V, Samsonova L, Rosenfeld RG, Zadik Z, Jaron-Mendelson M, Koren R, Amitzi L, Raduk D, Hershkovitz O, Hart G. Long-Acting C-Terminal Peptide-Modified hGH (MOD-4023): Results of a Safety and Dose-Finding Study in GHD Children. J Clin Endocrinol Metab 2017; 102:1578-1587. [PMID: 28323965 DOI: 10.1210/jc.2016-3547] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Daily injections are required for growth hormone (GH) replacement therapy, which may cause low compliance as a result of inconvenience and distress in patients. OBJECTIVE C-terminal peptide-modified human GH (MOD-4023) is developed for once-a-week dosing regimen in GH-deficient (GHD) adults and children. The present trial was a safety and dose-finding study for weekly MOD-4023 in GHD children. DESIGN A multicenter, open-label, randomized, controlled phase 2 study in children with GHD, evaluating the safety, tolerability, pharmacokinetics/pharmacodynamics, and efficacy of three different weekly MOD-4023 doses, compared with daily recombinant human GH (r-hGH). SETTING The trial was conducted in 14 endocrinology centers in Europe. PATIENTS Fifty-three prepubertal children with GHD completed 12 months of treatment with either MOD-4023 (N = 42) or r-hGH (N = 11). INTERVENTIONS C-terminal peptide-modified hGH (MOD-4023) was administered weekly at a dose of either 0.25, 0.48, or 0.66 mg/kg/wk and compared with daily hGH at a dose of 0.24 mg/kg/wk. RESULTS MOD-4023 showed an estimated half-life approximately fivefold to 10-fold longer when compared with daily r-hGH. Insulin-like growth factor (IGF)-I and IGF-binding peptide 3 showed a dose-dependent increase during MOD-4023 treatment. IGF-I standard deviation score for MOD-4023 did not exceed +2. All MOD-4023 cohorts demonstrated adequate catch-up growth. The 0.66 mg/kg/wk dose demonstrated efficacy closest to daily r-hGH. No serious adverse events were observed during MOD-4023 treatment, and its tolerability was consistent with known properties of r-hGH. CONCLUSIONS This study confirms the long-acting properties of MOD-4023 and shows a promising safety and tolerability profile. This provides support for initiation of a phase 3 study in GHD children using a single weekly injection of MOD-4023.
Collapse
Affiliation(s)
- Nataliya Zelinska
- National Children's Specialized Clinical Hospital, Kiev 04021, Ukraine
| | | | - Julia Skorodok
- St. Petersburg State Pediatric Medical Academy, St. Petersburg 194100, Russia
| | | | | | - Lubov Samsonova
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | - Ron G Rosenfeld
- Oregon Health and Science University, Portland, Oregon 97239
| | - Zvi Zadik
- Kaplan Medical Center, Rehovot 7661041, Israel
| | | | | | | | | | | | - Gili Hart
- OPKO Biologics, Kiryat Gat 8211804, Israel
| |
Collapse
|
13
|
Zhou L, Wang HY, Tong S, Okamoto CT, Shen WC, Zaro JL. Single chain Fc-dimer-human growth hormone fusion protein for improved drug delivery. Biomaterials 2017; 117:24-31. [DOI: 10.1016/j.biomaterials.2016.11.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 01/09/2023]
|
14
|
Lu L, Su X, Wang Y, Luo Y, Yang J, Xie L, Gao X, Ma Y, Tian Y, Yuan F, He G, Zhou B, Fan Y, Zhang X, Huang R, Lam YK, Jiang L, Dai H, Zhao Q, Liao X, Yang L. In vitro and in vivo characterization of a novel long-acting GLP-1 receptor agonist, exendin-4–Fc fusion protein. RSC Adv 2017. [DOI: 10.1039/c7ra10822b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Exendin-4 (Ex-4), one of the important glucagon-like peptide-1 receptor (GLP-1R) agonists, has proven to be an effective antidiabetic agent for type 2 diabetes (T2D).
Collapse
|
15
|
Zhang X, Wang X, Sun X, Sun X, Zhang Y, Zhang H. Differences in Cognitive Function of Rats with Traumatic Brain Injuries Following Hyperbaric Oxygen Therapy. Med Sci Monit 2016; 22:2608-15. [PMID: 27450528 PMCID: PMC4968614 DOI: 10.12659/msm.899548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Hyperbaric oxygen (HBO) is a historical therapeutic option in the treatment of various types of brain damage. At present, clinical treatment of hypoxic-ischemic injury is giving priority to cognitive training. The effects of HBO on cognitive dysfunction were observed in a controlled cortical impact (CCI) rat model. Material/Methods Seventy male SD rats were randomly divided into control (n=10) and intervention (n=60) groups. All rats underwent baseline water maze testing 1 day before modeling, and were retested 8 weeks after modeling. The percentage of residence time during escape latency in the target quadrant and the total time were recorded. Data were analyzed by SPSS 16.0 software. P<0.05 was considered statistically significant. Results After 8 weeks, no statistical difference (P>0.05) existed in spatial learning ability in the 3-day and 5-day groups when compared with baseline. The other groups were statistically different by auto-comparison (P<0.05). No statistical difference (P>0.05) in spatial memory existed in the 5-day and 1-week groups when compared with baseline, while a significant difference was noted in the other groups by self-comparison (P<0.05). No statistical difference (P>0.05) was noted in the level of expression of growth-associated protein-43 (GAP-43) and synaptophysin (Syn) in the 1-day group compared with the control group. The remaining groups and the control group were statistically different (P<0.05), while the level of expression of GAP-43 and Syn in the 5-day, 1-week, and 2-week groups was significantly different compared with that in the control group (P<0.01). Conclusions If HBO therapy was provided 5–7 days after craniocerebral trauma, there was apparent improvement in cognitive function and neuroplasticity.
Collapse
Affiliation(s)
- Xiaonian Zhang
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| | - Xiaoyan Wang
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| | - Xinting Sun
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| | - Xiaojing Sun
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| | - Yue Zhang
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| | - Hao Zhang
- China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
16
|
Zheng Y, Wang Q, Wang X, Chen Y, Wang X, Zhang X, Bai Z, Han X, Zhang Z. Development and Application of Zirconia Coated Paper Substrate for High Sensitivity Analysis of Therapeutic Drugs in Dried Blood Spots. Anal Chem 2016; 88:7005-13. [DOI: 10.1021/acs.analchem.5b04732] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yajun Zheng
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Qian Wang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Xiaoting Wang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Ying Chen
- Clinical
Analysis Laboratory, Xi’an Mental Health Center, Xi’an 710061, China
| | - Xuan Wang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Xiaoling Zhang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zongquan Bai
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Xiaoxiao Han
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zhiping Zhang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| |
Collapse
|
17
|
Hershkovitz O, Bar-Ilan A, Guy R, Felikman Y, Moschcovich L, Hwa V, Rosenfeld RG, Fima E, Hart G. In Vitro and in Vivo Characterization of MOD-4023, a Long-Acting Carboxy-Terminal Peptide (CTP)-Modified Human Growth Hormone. Mol Pharm 2016; 13:631-9. [PMID: 26713839 DOI: 10.1021/acs.molpharmaceut.5b00868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MOD-4023 is a novel long-acting version of human growth hormone (hGH), containing the carboxy-terminal peptide (CTP) of human chorionic gonadotropin (hCG). MOD-4023 is being developed as a treatment for adults and children with growth hormone deficiency (GHD), which would require fewer injections than currently available GH formulations and thus reduce patient discomfort and increase compliance. This study characterizes MOD-4023's binding affinities for the growth hormone receptor, as well as the pharmacokinetic and pharmacodynamics, toxicology, and safety profiles of repeated dosing of MOD-4023 in Sprague-Dawley rats and Rhesus monkeys. Although MOD-4023 exhibited reduced in vitro potency and lower affinity to the GH receptor than recombinant hGH (rhGH), administration of MOD-4023 every 5 days in rats and monkeys resulted in exposure comparable to daily rhGH, and the serum half-life of MOD-4023 was significantly longer. Repeated administration of MOD-4023 led to elevated levels of insulin-like growth factor 1 (IGF-1), and twice-weekly injections of MOD-4023 resulted in larger increase in weight gain with fewer injections and a lower accumulative hGH dose. Thus, the increased half-life of MOD-4023 in comparison to hGH may increase the frequency of protein-receptor interactions and compensate for its decreased in vitro potency. MOD-4023 was found to be well-tolerated in rats and monkeys, with minimal adverse events, suggesting an acceptable safety profile. These results provide a basis for the continued clinical development of MOD-4023 as a novel treatment of GHD in children and adults.
Collapse
Affiliation(s)
| | | | - Rachel Guy
- OPKO Biologics , Nes Ziona 7414002, Israel
| | | | | | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio 45229, United States
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Eyal Fima
- OPKO Biologics , Nes Ziona 7414002, Israel
| | - Gili Hart
- OPKO Biologics , Nes Ziona 7414002, Israel
| |
Collapse
|