1
|
Xu C, Li Y, Li D, Zhang Y, Liu B, Akhon MDH, Huo P. Electrospinning-derived transition metal/carbon nanofiber composites as electrocatalysts for Zn-air batteries. NANOSCALE 2024; 16:8286-8306. [PMID: 38602047 DOI: 10.1039/d4nr00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) significantly impede the broader implementation of Zn-air batteries (ZABs), underscoring the necessity for advanced high-efficiency materials to catalyze these electrochemical processes. Recent advancements have highlighted the potential of transition metal/carbon nanofiber (TM/CNF) composite materials, synthesized via electrospinning technology, due to their expansive surface area, profusion of active sites, and elevated catalytic efficacy. This review comprehensively examines the structural characteristics of TM/CNFs, with a particular emphasis on the pivotal role of electrospinning technology in fabricating diverse structural configurations. Additionally, it delves into the mechanistic underpinnings of various strategies aimed at augmenting the catalytic activity of TM/CNFs. A meticulous discourse is also presented on the application scope of TM/CNFs in the realm of electrocatalysis, with a special focus on their impact on the performance of assembled ZABs. Lastly, this review encapsulates the challenges and future prospects in the development of TM/CNF composite materials via electrospinning, aiming to provide an exhaustive understanding of the current state of research in this domain and to foster further advancements in the commercialization of ZABs.
Collapse
Affiliation(s)
- Chengxiao Xu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yuzheng Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Daming Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yingjie Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - M D Hasan Akhon
- School of mechanical engineering, Shandong University of Technology, Zibo 255000, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
2
|
Lei X, Yang B, Chen J, Yang F, Tang J, Li J, Zhao Q, Zhang J, Li J, Li Y, Zuo Y. Biodegradable Polyurethane Scaffolds in Regeneration Therapy: Characterization and In Vivo Real-Time Degradation Monitoring by Grafted Fluorescent Tracer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:111-126. [PMID: 38112686 DOI: 10.1021/acsami.3c13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
There is an urgent need to assess material degradation in situ and in real time for their promising application in regeneration therapy. However, traditional monitoring methods in vitro cannot always profile the complicated behavior in vivo. This study designed and synthesized a new biodegradable polyurethane (PU-P) scaffold with polycaprolactone glycol, isophorone diisocyanate, and l-lysine ethyl ester dihydrochloride. To monitor the degradation process of PU-P, calcein was introduced into the backbone (PU-5) as a chromophore tracing in different sites of the body and undegradable fluorescent scaffold (CPU-5) as the control group. Both PU-P and PU-5 can be enzymatically degraded, and the degradation products are molecularly small and biosafe. Meanwhile, by virtue of calcein anchoring with urethane, polymer chains of PU-5 have maintained the conformational stability and extended the system conjugation, raising a structure-induced emission effect that successfully achieved a significant enhancement in the fluorescence intensity better than pristine calcein. Evidently, unlike the weak fluorescent response of CPU-5, PU-5 and its degradation can be clearly imaged and monitored in real time after implantation in the subcutaneous tissue of nude mice. Meanwhile, the in situ osteogeneration has also been promoted after the two degradable scaffolds have been implanted in the rabbit femoral condyles and degraded with time. To sum up, the strategy of underpinning tracers into degradable polymer chains provides a possible and effective way for real-time monitoring of the degradation process of implants in vivo.
Collapse
Affiliation(s)
- Xiaoyu Lei
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Boyuan Yang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jie Chen
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Fang Yang
- Radboud Institute for Molecular Life Sciences, Department of Dentistry-Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen 6525EX, The Netherlands
| | - Jiajing Tang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jihua Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qing Zhao
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jinzheng Zhang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jidong Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
3
|
Berraquero-García C, Pérez-Gálvez R, Espejo-Carpio FJ, Guadix A, Guadix EM, García-Moreno PJ. Encapsulation of Bioactive Peptides by Spray-Drying and Electrospraying. Foods 2023; 12:foods12102005. [PMID: 37238822 DOI: 10.3390/foods12102005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used to stabilize functional ingredients, helping to maintain their activity after processing, storage, and digestion, thus improving their bioaccessibility. Monoaxial spray-drying and electrospraying are common and economical techniques used for the encapsulation of nutrients and bioactive compounds in both the pharmaceutical and food industries. Although less studied, the coaxial configuration of both techniques could potentially improve the stabilization of protein-based bioactives via the formation of shell-core structures. This article reviews the application of these techniques, both monoaxial and coaxial configurations, for the encapsulation of bioactive peptides and protein hydrolysates, focusing on the factors affecting the properties of the encapsulates, such as the formulation of the feed solution, selection of carrier and solvent, as well as the processing conditions used. Furthermore, this review covers the release, retention of bioactivity, and stability of peptide-loaded encapsulates after processing and digestion.
Collapse
Affiliation(s)
| | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | | |
Collapse
|
4
|
Walther M, Vestweber PK, Kühn S, Rieger U, Schäfer J, Münch C, Vogel-Kindgen S, Planz V, Windbergs M. Bioactive Insulin-Loaded Electrospun Wound Dressings for Localized Drug Delivery and Stimulation of Protein Expression Associated with Wound Healing. Mol Pharm 2023; 20:241-254. [PMID: 36538353 DOI: 10.1021/acs.molpharmaceut.2c00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Effective therapy of wounds is difficult, especially for chronic, non-healing wounds, and novel therapeutics are urgently needed. This challenge can be addressed with bioactive wound dressings providing a microenvironment and facilitating cell proliferation and migration, ideally incorporating actives, which initiate and/or progress effective healing upon release. In this context, electrospun scaffolds loaded with growth factors emerged as promising wound dressings due to their biocompatibility, similarity to the extracellular matrix, and potential for controlled drug release. In this study, electrospun core-shell fibers were designed composed of a combination of polycaprolactone and polyethylene oxide. Insulin, a proteohormone with growth factor characteristics, was successfully incorporated into the core and was released in a controlled manner. The fibers exhibited favorable mechanical properties and a surface guiding cell migration for wound closure in combination with a high uptake capacity for wound exudate. Biocompatibility and significant wound healing effects were shown in interaction studies with human skin cells. As a new approach, analysis of the wound proteome in treated ex vivo human skin wounds clearly demonstrated a remarkable increase in wound healing biomarkers. Based on these findings, insulin-loaded electrospun wound dressings bear a high potential as effective wound healing therapeutics overcoming current challenges in the clinics.
Collapse
Affiliation(s)
- Marcel Walther
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Pia Katharina Vestweber
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Shafreena Kühn
- Clinic for Plastic and Aesthetic Surgery, Reconstructive and Hand Surgery, Agaplesion Markus Clinic, Wilhelm-Epstein-Straße 4, 60431Frankfurt am Main, Germany
| | - Ulrich Rieger
- Clinic for Plastic and Aesthetic Surgery, Reconstructive and Hand Surgery, Agaplesion Markus Clinic, Wilhelm-Epstein-Straße 4, 60431Frankfurt am Main, Germany
| | - Jasmin Schäfer
- Institute of Biochemistry II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7 / Building 75, 60590Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7 / Building 75, 60590Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| |
Collapse
|
5
|
Bazgir M, Zhang W, Zhang X, Elies J, Saeinasab M, Coates P, Youseffi M, Sefat F. Fabrication and Characterization of PCL/PLGA Coaxial and Bilayer Fibrous Scaffolds for Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6295. [PMID: 34771821 PMCID: PMC8584973 DOI: 10.3390/ma14216295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Electrospinning is an innovative new fibre technology that aims to design and fabricate membranes suitable for a wide range of tissue engineering (TE) applications including vascular grafts, which is the main objective of this research work. This study dealt with fabricating and characterising bilayer structures comprised of an electrospun sheet made of polycaprolactone (PCL, inner layer) and an outer layer made of poly lactic-co-glycolic acid (PLGA) and a coaxial porous scaffold with a micrometre fibre structure was successfully produced. The membranes' propriety for intended biomedical applications was assessed by evaluating their morphological structure/physical properties and structural integrity when they underwent the degradation process. A scanning electron microscope (SEM) was used to assess changes in the electrospun scaffolds' structural morphology such as in their fibre diameter, pore size (μm) and the porosity of the scaffold surface which was measured with Image J software. During the 12-week degradation process at room temperature, most of the scaffolds showed a similar trend in their degradation rate except the 60 min scaffolds. The coaxial scaffold had significantly less mass loss than the bilayer PCL/PLGA scaffold with 1.348% and 18.3%, respectively. The mechanical properties of the fibrous membranes were measured and the coaxial scaffolds showed greater tensile strength and elongation at break (%) compared to the bilayer scaffolds. According to the results obtained in this study, it can be concluded that a scaffold made with a coaxial needle is more suitable for tissue engineering applications due to the improved quality and functionality of the resulting polymeric membrane compared to the basic electrospinning process. However, whilst fabricating a vascular graft is the main aim of this research work, the biological data will not present in this paper.
Collapse
Affiliation(s)
- Morteza Bazgir
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China;
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering, Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing 401174, China;
| | - Jacobo Elies
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91779-4897, Iran;
| | - Phil Coates
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| | - Mansour Youseffi
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
6
|
Onyekuru LC, Moreira A, Zhang J, Angkawinitwong U, Costa PF, Brocchini S, Williams GR. An investigation of alkaline phosphatase enzymatic activity after electrospinning and electrospraying. J Drug Deliv Sci Technol 2021; 64:None. [PMID: 34345260 PMCID: PMC8312041 DOI: 10.1016/j.jddst.2021.102592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
The high target specificity and multifunctionality of proteins has led to great interest in their clinical use. To this end, the development of delivery systems capable of preserving their bioactivity and improving bioavailability is pivotal to achieve high effectiveness and satisfactory therapeutic outcomes. Electrohydrodynamic (EHD) techniques, namely electrospinning and electrospraying, have been widely explored for protein encapsulation and delivery. In this work, monoaxial and coaxial electrospinning and electrospraying were used to encapsulate alkaline phosphatase (ALP) into poly(ethylene oxide) fibres and particles, respectively, and the effects of the processing techniques on the integrity and bioactivity of the enzyme were assessed. A full morphological and physicochemical characterisation of the blend and core-shell products was performed. ALP was successfully encapsulated within monolithic and core-shell electrospun fibres and electrosprayed particles, with drug loadings and encapsulation efficiencies of up to 21% and 99%, respectively. Monoaxial and coaxial electrospinning were equally effective in preserving ALP function, leading to no activity loss compared to fresh aqueous solutions of the enzyme. While the same result was observed for monoaxial electrospraying, coaxial electrospraying of ALP caused a 40% reduction in its bioactivity, which was attributed to the high voltage (22.5 kV) used during processing. This demonstrates that choosing between blend and coaxial EHD processing for protein encapsulation is not always straightforward, being highly dependent on the chosen therapeutic agent and the effects of the processing conditions on its bioactivity.
Collapse
Affiliation(s)
- Lesley C. Onyekuru
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Anabela Moreira
- Biofabics Lda., Rua Alfredo Allen 455, 4200-135, Porto, Portugal
| | - Jiazhe Zhang
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Pedro F. Costa
- Biofabics Lda., Rua Alfredo Allen 455, 4200-135, Porto, Portugal
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
7
|
Tawfik EA, Craig DQM, Barker SA. Dual drug-loaded coaxial nanofibers for the treatment of corneal abrasion. Int J Pharm 2020; 581:119296. [PMID: 32247813 DOI: 10.1016/j.ijpharm.2020.119296] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Corneal abrasion is a scratch wound on the surface of the anterior segment of the eye, which can predispose a patient to corneal infection and scarring, particularly if the cut penetrates to the deep corneal layers. Here we investigate a novel approach to co-administer an anti-scarring agent and an antibiotic, both being incorporated into one dosage form so as to accelerate wound closure and to treat any associated infection. More specifically, we have used electrospun fibers as a means of incorporating the two drugs into distinct compartments via coaxial electrospinning. Samples were characterised using a range of imaging, spectroscopic and thermal methods, while an HPLC assay has been developed to allow measurement of the concentration of both drug components in both the initial fibers and on release. Fibers loaded with pirfenidone in the hydrophobic polymer, PLGA, as the outer layer and moxifloxacin in the hydrophilic polymer PVP as the inner layer were successfully prepared, with smooth and non-porous surfaces and a mean diameter of circa 630 nm. TEM image demonstrated clear distinctive layers (a core and a shell), suggesting the successful preparation of the drug-loaded coaxial fibers, supported by HPLC entrapment studies, while fluorescence microscopy confirmed the presence of the moxifloxacin within the fibers. The fibers were capable of extending the release of both drugs, hence raising the possibility of a single daily dose of the drug-loaded coaxial fibers for the treatment of corneal abrasion.
Collapse
Affiliation(s)
- Essam A Tawfik
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, 6086, Riyadh 11442, Saudi Arabia
| | - Duncan Q M Craig
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| | - Susan A Barker
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
8
|
Balusamy B, Sarioglu OF, Senthamizhan A, Uyar T. Rational Design and Development of Electrospun Nanofibrous Biohybrid Composites. ACS APPLIED BIO MATERIALS 2019; 2:3128-3143. [DOI: 10.1021/acsabm.9b00308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Brabu Balusamy
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Omer Faruk Sarioglu
- E-Kalite Software, METU Technopolis Twin Blocks, Middle East Technical University, 06800 Ankara, Turkey
| | | | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Su Y, Wang H, Mishra B, Lakshmaiah Narayana J, Jiang J, Reilly DA, Hollins RR, Carlson MA, Wang G, Xie J. Nanofiber Dressings Topically Delivering Molecularly Engineered Human Cathelicidin Peptides for the Treatment of Biofilms in Chronic Wounds. Mol Pharm 2019; 16:2011-2020. [PMID: 30916573 DOI: 10.1021/acs.molpharmaceut.8b01345] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biofilms of multidrug-resistant bacteria in chronic wounds pose a great challenge in wound care. Herein, we report the topical delivery of molecularly engineered antimicrobial peptides using electrospun nanofiber dressings as a carrier for the treatment of biofilms of multidrug-resistant bacteria in diabetic wounds. Molecularly engineered human cathelicidin peptide 17BIPHE2 was successfully encapsulated in the core of pluronic F127/17BIPHE2-PCL core-shell nanofibers. The in vitro release profiles of 17BIPHE2 showed an in initial burst followed by a sustained release over 4 weeks. The peptide nanofiber formulations effectively killed methicillin-resistant Staphylococcus aureus (MRSA) USA300. Similarly, the 17BIPHE2 peptide containing nanofibers could also effectively kill other bacteria including Klebsiella pneumoniae (104 to 106 CFU) and Acinetobacter baumannii (104 to 107 CFU) clinical strains in vitro without showing evident cytotoxicity to skin cells and monocytes. Importantly, 17BIPHE2-containing nanofiber dressings without debridement caused five-magnitude decreases of the MRSA USA300 CFU in a biofilm-containing chronic wound model based on type II diabetic mice. In combination with debridement, 17BIPHE2-containing nanofiber dressings could completely eliminate the biofilms, providing one possible solution to chronic wound treatment. Taken together, the biodegradable nanofiber-based wound dressings developed in this study can be utilized to effectively deliver molecularly engineered peptides to treat biofilm-containing chronic wounds.
Collapse
|
10
|
Biomedical application and controlled drug release of electrospun fibrous materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:750-763. [DOI: 10.1016/j.msec.2018.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 03/24/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
|
11
|
Wang J, Windbergs M. Influence of polymer composition and drug loading procedure on dual drug release from PLGA:PEG electrospun fibers. Eur J Pharm Sci 2018; 124:71-79. [PMID: 30145339 DOI: 10.1016/j.ejps.2018.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) has been widely investigated for fabricating electrospun fibers due to their biocompatibility, paired with the capacity for encapsulating different drugs. However, such scaffolds shrink and distort upon contact with biological media, which is undesired for local drug application. To address this issue, we fabricated composite fiber scaffolds with the combination of PLGA and poly(ethylene glycol) (PEG). Scaffold shrinkage could successfully be overcome, however, the release kinetics of the encapsulated drug was strongly dependent on the amount of PEG. The addition of 5% PEG resulted in slower drug release due to a significant increase in fiber diameters. In contrast, the drug release rate was accelerated for fibers containing 10% PEG due to the water-soluble nature of the polymer. Furthermore, co-delivery of two different drugs, the small molecule acyclovir and the model protein bovine serum albumin was realized by two different approaches, coaxial electrospinning and immobilization of the drugs on the surface of the fibers, and drug release was found to be strongly dependent on the loading procedure. Based on our findings, key factors for understanding and controlling physicochemical properties of PLGA/PEG composite fibers as well as tuning drug release could be identified, providing an essential basis for rational design of electrospun fiber-based drug carriers.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbruecken, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbruecken, Germany.
| |
Collapse
|
12
|
Jing H, Gao B, Gao M, Yin H, Mo X, Zhang X, Luo K, Feng B, Fu W, Wang J, Zhang W, Yin M, Zhu Z, He X, Zheng J. Restoring tracheal defects in a rabbit model with tissue engineered patches based on TGF-β3-encapsulating electrospun poly(l-lactic acid-co-ε-caprolactone)/collagen scaffolds. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:985-995. [PMID: 29448837 DOI: 10.1080/21691401.2018.1439844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Long segment tracheal stenosis often has a poor prognosis due to the limited availability of materials for tracheal reconstruction. Tissue engineered tracheal patches based on electrospun scaffolds and stem cells present ideal solutions to this medical challenge. However, the established engineering process is inefficient and time-consuming. In our research, to optimize the engineering process, core-shell nanofilms encapsulating TGF-β3 were fabricated as scaffolds for tracheal patches. The morphological and mechanical characteristics, degradation and biocompatibility of poly(l-lactic acid-co-ε-caprolactone)/collagen (PLCL/collagen) scaffolds with different compositions (PLCL:collagen 75:25, 50:50 and 25:75, respectively) were comparatively evaluated to determine the preferable compositional ratio. Then the chondrogenesis-inducing potential is investigated, and tracheal patches based on electrospun scaffolds and bone marrow mesenchymal stem cells (BMSCs) were constructed to restore tracheal defects in rabbit models. The results indicated that core-shell scaffolds with a PLCL/collagen proportion of 75:25 were eligible for tracheal patches. The stable and sustained release of TGF-β3 from scaffolds could efficiently promote the chondrogenic differentiation of BMSCs and shorten the incubation time. Tracheal integrity was well maintained for 2 months after restoration; meanwhile, re-epithelialization also achieved. In conclusion, TGF-β3-encapsulating core-shell electrospun scaffolds with a PLCL/collagen proportion of 75:25 could be used to optimize engineering process of tracheal patches.
Collapse
Affiliation(s)
- Hui Jing
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Botao Gao
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Manchen Gao
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Haiyue Yin
- b State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai , China
| | - Xiumei Mo
- b State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai , China
| | - Xiaoyang Zhang
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Kai Luo
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Bei Feng
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Wei Fu
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jing Wang
- b State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai , China
| | - Wei Zhang
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Meng Yin
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Zhongqun Zhu
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiaomin He
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jinghao Zheng
- a Department of Cardiothoracic Surgery , Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
13
|
Seif S, Planz V, Windbergs M. Delivery of Therapeutic Proteins Using Electrospun Fibers-Recent Developments and Current Challenges. Arch Pharm (Weinheim) 2017; 350. [PMID: 28845905 DOI: 10.1002/ardp.201700077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/22/2022]
Abstract
Proteins play a vital role within the human body by regulating various functions and even serving as structural constituent of many body parts. In this context, protein-based therapeutics have attracted a lot of attention in the last few decades as potential treatment of different diseases. Due to the steadily increasing interest in protein-based therapeutics, different dosage forms were investigated for delivering such complex macromolecules to the human body. Here, electrospun fibers hold a great potential for embedding proteins without structural damage and for controlled release of the protein for therapeutic applications. This review provides a comprehensive overview of the current state of protein-based carrier systems using electrospun fibers, with special emphasis on discussing their potential and key challenges in developing such therapeutic strategies, along with a prospective view of anticipated future directions.
Collapse
Affiliation(s)
- Salem Seif
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbruecken, Germany
| | - Viktoria Planz
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbruecken, Germany
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Maike Windbergs
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbruecken, Germany
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Abstract
I have developed an alternative numerical approach to study mass transfer from a stationary core-shell reservoir under channel flow conditions. I use the lattice Boltzmann method to compute both the solvent fluid flow and the diffusion and advection of the solute. I have investigated the impact of the flow by reporting mass transfer quantities such as the instantaneous solute concentration and the local Sherwood number at the surface of the reservoir. The flow is found to enhance the release of the encapsulated material, but it prevents the released material from reaching the channel walls.
Collapse
Affiliation(s)
- Badr Kaoui
- Biomechanics and Bioengineering Laboratory UMR 7338, CNRS, Sorbonne University, University of Technology of Compiègne, 60200 Compiègne, France
| |
Collapse
|
15
|
Core/shell poly(ethylene oxide)/Eudragit fibers for site-specific release. Int J Pharm 2017; 523:376-385. [PMID: 28344174 DOI: 10.1016/j.ijpharm.2017.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 11/22/2022]
Abstract
Electrospinning was used to prepare core/shell fibers containing the active pharmaceutical ingredients indomethacin (IMC) or mebeverine hydrochloride (MB-HCl). The shell of the fibers was fabricated from the pH sensitive Eudragit S100 polymer, while the drug-loaded core was based on the mucoadhesive poly(ethylene oxide) (PEO). Three different drug loadings (from 9 to 23% (w/w) of the core mass) were prepared, and for MB-HCl two different molecular weights of PEO were explored. The resultant fibers generally comprise smooth cylinders, although in some cases defects such as surface particles or flattened or merged fibers were visible. Transmission electron microscopy showed all the systems to have clear core and shell compartments. The drugs are present in the amorphous physical form in the fibers. Dissolution tests found that the fibers can effectively prevent release in acidic conditions representative of the stomach, particularly for the acidic indomethacin. After transfer to a pH 7.4 medium, sustained release over between 6 and 22h is observed. Given the mucoadhesive nature of the PEO core, after dissolution of the shell the fibers will be able to adhere to the walls of the intestinal tract and give sustained local drug release. This renders them promising for the treatment of conditions such as irritable bowel disease and colon cancer.
Collapse
|