1
|
Alfandari D, Cadury S, Morandi MI, Regev-Rudzki N. Transforming parasites into their own foes: parasitic extracellular vesicles as a vaccine platform. Trends Parasitol 2023; 39:913-928. [PMID: 37758631 DOI: 10.1016/j.pt.2023.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Parasitic diseases continue to afflict millions of people globally. However, traditional vaccine development strategies are often difficult to apply to parasites, leaving an immense unmet need for new effective vaccines for the prevention and control of parasitic infections. As parasites commonly use extracellular vesicles (EVs) to interact with, interfere with, or modulate the host immune response from a distance, parasite-derived EVs may provide promising vaccine agents that induce immunity against parasitic infections. We here present achievements to date and the challenges and limitations associated with using parasitic EVs in a clinical context. Despite the many difficulties that need to be overcome, we believe this direction could offer a new and reliable source of therapeutics for various neglected parasitic diseases.
Collapse
Affiliation(s)
- Daniel Alfandari
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Cadury
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mattia I Morandi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague, Czech Republic.
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Liang Z, Wang X, Yu G, Li M, Shi S, Bao H, Chen C, Fu D, Ma W, Xue C, Sun B. Mechanistic understanding of the aspect ratio-dependent adjuvanticity of engineered aluminum oxyhydroxide nanorods in prophylactic vaccines. NANO TODAY 2022; 43:101445. [PMID: 35261619 PMCID: PMC8896059 DOI: 10.1016/j.nantod.2022.101445] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 02/20/2022] [Indexed: 05/06/2023]
Abstract
Aluminum oxyhydroxide (AlOOH) adjuvants are widely used in human vaccines. However, the interaction mechanisms at the material-bio interface, and further understandings on physicochemical property-dependent modulation of the immune responses still remain uncertain. Herein, a library of AlOOH nanorods with well-defined aspect ratios is designed to explore the mechanisms of adjuvanticity. The aspect ratios of AlOOH nanorods were demonstrated to be intrinsically modulated by the hydroxide supersaturation level during crystal growth, leading to the differences in surface free energy (SFE). As a result, higher aspect ratio AlOOH nanoadjuvants with lower SFE exhibited more hydrophobic surface, resulting in more membrane depolarization, cellular uptake and dendritic cell (DC) activation. By using hepatitis B surface antigen (HBsAg) virus-like particles (VLPs) or SARS-CoV-2 spike protein receptor-binding domain (RBD) as model antigens, AlOOH nanorods with higher aspect ratio were determined to elicit more potent humoral immune responses, which could be attributed to the enhanced DC activation and the efficient antigen trafficking to the draining lymph nodes. Our findings highlight the critical role of aspect ratio of AlOOH nanorods in modulating adjuvanticity, and further provide a design strategy for engineered nanoadjuvants for prophylactic vaccines.
Collapse
Affiliation(s)
- Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Shuting Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Hang Bao
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Duo Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
3
|
Liang Z, Yang Y, Yu G, Zhu H, Xia X, Chen C, Fu D, Li M, Cheng G, Xue C, Shi L, Zeng H, Sun B. Engineering aluminum hydroxyphosphate nanoparticles with well-controlled surface property to enhance humoral immune responses as vaccine adjuvants. Biomaterials 2021; 275:120960. [PMID: 34147722 DOI: 10.1016/j.biomaterials.2021.120960] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022]
Abstract
Aluminum phosphate adjuvants play a critical role in human inactivated and subunit prophylactic vaccines. However, a major challenge is that the underlying mechanism of immune stimulation remains poorly understood, which impedes the further optimal design and application of more effective adjuvants in vaccine formulations. To address this, a library of amorphous aluminum hydroxyphosphate nanoparticles (AAHPs) is engineered with defined surface properties to explore the specific mechanism of adjuvanticity at the nano-bio interface. The results demonstrate that AAHPs could induce cell membrane perturbation and downstream inflammatory responses, with positively-charged particles showing the most significantly enhanced immunostimulation potentials compared to the neutral or negatively-charged particles. In a vaccine using Staphylococcus aureus (S. aureus) recombinant protein as antigens, the positively-charged particles elicit long-lasting and enhanced humoral immunity, and provide protection in S. aureus sepsis mice models. In addition, when formulated with human papillomavirus type 18 virus-like particles, it is demonstrated that particles with positive charges outperform in promoting serum antigen-specific antibody productions. This study shows that engineering AAHPs with well-controlled physicochemical properties enable the establishment of a structure-activity relationship that is critical to instruct the design of suitable engineered nanomaterial-based adjuvants within vaccine formulations for the benefits of human health.
Collapse
Affiliation(s)
- Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, 400038, Chongqing, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Haoru Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Xinyu Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Duo Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Li Shi
- Immune Path Biotechnology (Su Zhou) Co., Ltd., Building A, 8 Chang Ting Road, DaXin Industry Park, 215151, Su Zhou, Jiang Su, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, 400038, Chongqing, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, 400038, Chongqing, China.
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
| |
Collapse
|
4
|
Adjuvant Effects of Platycodin D on Immune Responses to Infectious Bronchitis Vaccine in Chickens. J Poult Sci 2020; 57:160-167. [PMID: 32461731 PMCID: PMC7248007 DOI: 10.2141/jpsa.0180089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adjuvants are common vaccine components. Novel adjuvants may improve the protective immunity conferred by vaccines against poultry diseases. Here, a less-hemolytic saponin, platycodin D (PD), isolated from the root of Platycodon grandiflorum was investigated as a potential alternative adjuvant. PD was tested as an adjuvant in the infectious bronchitis (IB) vaccine, because the existing IB vaccine has often failed to induce effective immune responses. The adjuvant activity of PD in conjunction with IB vaccine was evaluated in this study. Compared to control treatment, PD treatment significantly increased the proliferation of chicken peripheral blood mononuclear cells, concentration of interferon-γ in culture supernatants, and anti-IB antibody titer. In chickens pre-challenged with the Mass 41 infectious bronchitis virus (IBV), PD administration resulted in fewer and less severe clinical signs, lower mortality rate, and higher protection compared to control treatment. Histopathological examination showed that the lungs and kidneys of PD-treated chickens displayed fewer pathological lesions than those of control chickens. Our results also demonstrated that this new vaccine adjuvant improved chicken humoral and cellular immune responses without any side effects. Hence, our findings suggest that PD might serve as an effective adjuvant in IBV vaccines.
Collapse
|
5
|
Adjuvants as Delivery Systems in Antigen-Specific Immunotherapies. J Pharm Sci 2019; 108:3831-3841. [PMID: 31526814 DOI: 10.1016/j.xphs.2019.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/23/2019] [Accepted: 09/11/2019] [Indexed: 11/24/2022]
Abstract
Combining autoantigens with immune-modulating drugs has emerged as an attractive approach to selectively reinstate tolerance in autoimmune diseases. The disparate properties of autoantigens and small-molecule immunosuppressants commonly used to treat autoimmune diseases can confound efforts to co-deliver these therapies. However, both components may be co-delivered with adjuvants which have been successful in delivering antigens to immune cells. We evaluated several common adjuvants as vehicles to co-deliver a model antigen and immunosuppressant, ovalbumin (OVA) and dexamethasone (DEX), respectively. Formulations were developed, and the release of DEX from adjuvants was investigated. Next, the effect of adjuvant, DEX, and OVA was tested in vitro using a DC line. A MF59-analog (MF59a) formulation was advanced to more sophisticated co-culture studies using OVA-primed bone marrow-derived dendritic cells and splenocytes or T-cells from OT-II mice. Most of these studies indicated MF59a-based antigen-specific immunotherapies could diminish the markers of inflammation associated with OVA recognition. We rationalized MF59a co-delivery of antigen and drug could reduce the risk of side effects typically associated with these drugs and reinstate immune tolerance, thus prompting continued investigation of emulsion adjuvants as delivery vehicles for antigen-specific immunotherapy of autoimmune diseases.
Collapse
|
6
|
Rosilio V. How Can Artificial Lipid Models Mimic the Complexity of Molecule–Membrane Interactions? ACTA ACUST UNITED AC 2018. [DOI: 10.1016/bs.abl.2017.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Eleftheriadis T, Pissas G, Sounidaki M, Antoniadi G, Tsialtas I, Liakopoulos V, Stefanidis I. Urate crystals directly activate the T-cell receptor complex and induce T-cell proliferation. Biomed Rep 2017; 7:365-369. [PMID: 29085633 PMCID: PMC5649536 DOI: 10.3892/br.2017.960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
Uric acid is a known danger associated molecular pattern molecule able to induce inflammation following internalization of its crystals by cells of the innate immune system. By activating antigen-presenting cells, urate boosts adaptive immunity as well. Furthermore, urate crystals can induce proliferation of isolated T-cells, which are unable to phagocytose crystal particles. In light of the evidence that urate crystals can also activate dendritic cells and macrophages without prior internalization but through sequestration of lipid rafts (and consequently receptors clustering in a non specific manner), the authors evaluated whether such a mechanism is involved in the direct activation of T-cells by urate crystals. In the present study, isolated human T-cells were cultured with or without urate at a concentration above its crystallization level. The expression and phosphorylation state of the T-cell receptor (TCR) complex zeta chain and the expression of the master regulator of cell proliferation c-Myc were assessed by western blotting. T-cell proliferation was measured by bromodeoxyuridine assay. Collectively, the results indicated that urate increased zeta chain phosphorylation indicating that it induces activation of TCR complex directly, since zeta chain phosphorylation takes place at the cell membrane and is a very proximal event in TCR complex-mediated signal transduction. In parallel, urate increased the expression of the transcription factor c-Myc and induced T-cell proliferation. In conclusion, urate crystals directly activate the TCR complex and induce T-cell proliferation.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Maria Sounidaki
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Ioannis Tsialtas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| |
Collapse
|