1
|
Pandey S, Patel K, Gupta A, Joshi S, Yadav JS, Tripathi P. Pluronics® F68 and D-α-tocopheryl polyethylene glycol succinate 1000 tailored self-assembled mixed micelles to improve oral bioavailability of oleanolic acid: in vitro and in vivo characterization. Drug Deliv Transl Res 2025:10.1007/s13346-025-01834-8. [PMID: 40082366 DOI: 10.1007/s13346-025-01834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Oleanolic acid (OA) ischaracterized by its low water solubility, poor permeability and majorly metabolized by cytochrome P450 (CYP) isozymes in the intestinal tract, particularly CYP3A, which contribute to the low oral bioavailability. OA has multiple pharmacological actions including hepatoprotective, anti-inflammatory, antidiabetic and antiviral effects. OA classified as a BCS IV drug which have restricted its potential clinical application. In this study D-α-Tocopheryl polyethylene glycol succinate (TPGS) and Pluronics F68 based stabilized OA loaded mixed micellar system (OA-MMs) developed to improve the solubility and permeability. Mixed micelles were characterized by dynamic light scattering studies as a function of temperature, salt addition, and OA solubilisation followed byXRD, FE-SEM and IR analysis confirmed the formation of stabilized OA-MMs with the least size and PDI (10.041 ± 1.35 nm, 0.313 ± 0.012). Scattering studies results demonstrates the formation of stable micelles with no significant alterations insize upon salt addition (up to 150mM NaCl), OA incorporation (up to 150 mM) and temperature rise till 40 °C.Solubility of the pure OA and OA-MMs was found to be 0.042 mg/ml and 1.98 mg/ml. The % cumulative release of drug from alone OA, OA + TPGS and OA-MMs was found to be 4.363 ± 0.025%, 57.18 ± 0.034% and 92.269 ± 0.017% respectively up to 24 h. Single-pass intestinal perfusion studies (SPIP) showed that Ka and Peffective of OA-MMs was improved30 fold as compared with that of pure OA and this was mainly due to the improved permeability and inhibitory effect of Pluronic F68 on CYP3A. The in vivo Pharmacokinetic study showed that Cmax increased markedly from 12.76 to 20.49 and 39.17 µg/ml in case of OA alone, OA + TPGS and OA-MMs. Parallel to the Cmax there was an increase in the AUC0-24133.68 to 164.56 and 296.50 respectively. All of the produced OA-MMs formulation's results demonstrated a notable increase in OA's bioavailability through increased permeability and solubility along with metabolic inhibition OA.
Collapse
Affiliation(s)
- Sonia Pandey
- Department of Pharmacy, Yashraj College of Professional Studies, Kanpur, Uttar Pradesh, 209217, India.
| | - Komal Patel
- Maliba Pharmacy College, Uka Tarsadia University, Surat, 394350, India
| | - Arti Gupta
- Shri Ram Murti Smarak College of Engineering and Technology (Pharmacy), Bareilly, Uttar Pradesh, 243202, India
| | - Shrikant Joshi
- Maliba Pharmacy College, Uka Tarsadia University, Surat, 394350, India
| | - Jitendra Singh Yadav
- Shri Ram Murti Smarak College of Engineering and Technology (Pharmacy), Bareilly, Uttar Pradesh, 243202, India
| | - Purnima Tripathi
- Anangpuria Institute of Pharmaceutical Sciences, Alampur, Ballabgarh, Faridabad, Haryana, 121004, India
| |
Collapse
|
2
|
Li X, Zhang Y, Chen L, Xu X, Ma X, Lou S, Zou Z, Wang C, Jiang B, Cai Y, Qi Y, Xi Y, Zhao M, Yan P. Actichinone, a new ursane triterpenoid from Actinidia chinensis roots, ameliorates NAFLD via the AMPK and NF-κB pathways. Eur J Pharmacol 2025; 990:177276. [PMID: 39828019 DOI: 10.1016/j.ejphar.2025.177276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
A new ursane triterpenoid, actichinone (3-oxo-2α,24-dihydroxyurs-12-en-28-oic acid, 1), was isolated from the roots of a kiwi plant Actinidia chinensis Planch, together with 18 known triterpenoids (2-19). The structure of actichinone (1) was established by extensive spectroscopic analysis. Actichinone (1) showed the most potent lipid-lowering activity in the oleic acid (OA)-induced primary mouse hepatocytes and the structure-activity relationships (SARs) were analyzed. Chemical semi-synthesis of actichinone (1) was achieved by selective oxidation of the major compound 2. Actichinone (1) exhibited significant alleviation of non-alcoholic fatty liver disease (NAFLD) in a high-fat with methionine and choline deficiency diet (HFMCD)-fed mice model, by regulating lipid accumulation and inflammatory response probably via the AMPK/SREBP-1c/PPAR-α and IKK/IκB/NF-κB signaling pathways. This study provides a promising lead compound and a new insight into the development of novel anti-NAFLD agents based on the pentacyclic triterpenoid family, and is expected to promote the high value-added comprehensive application of the A. chinensis plants.
Collapse
Affiliation(s)
- Xinhua Li
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuanlong Zhang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Leiqing Chen
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiao Xu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohong Ma
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuying Lou
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ziqiang Zou
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenjing Wang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bing Jiang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunrui Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Qi
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yiyuan Xi
- Clinical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Pengcheng Yan
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
3
|
Rehman NU, Rafiq K, Avula SK, Gibbons S, Csuk R, Al-Harrasi A. Triterpenoids from Frankincense and Boswellia: A focus on their pharmacology and 13C-NMR assignments. PHYTOCHEMISTRY 2025; 229:114297. [PMID: 39401649 DOI: 10.1016/j.phytochem.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Here we report for the first time the entire 13C-NMR spectral assignments of 119 (out of 127) triterpenoids from the oleo-gum resins of the medicinally important genus Boswellia, which includes the culturally highly valuable Frankincense species. The complete 13C-NMR resonances of these triterpenoids isolated between 1998 and 2024 and their biological activities are presented. 13C-NMR spectroscopy is a highly powerful tool for the characterization of these bioactive natural products. The compounds are arranged according to their skeletons, i.e., ursane, oleanane, lupane, dammarane, and tirucallane triterpenes. This review will be a future reference for the identification of these compounds, which have key medicinal properties in the areas of cytotoxicity and inflammation.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Kashif Rafiq
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Satya K Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
4
|
Lugiņina J, Kroškins V, Lācis R, Fedorovska E, Demir Ö, Dubnika A, Loca D, Turks M. Synthesis and preliminary cytotoxicity evaluation of water soluble pentacyclic triterpenoid phosphonates. Sci Rep 2024; 14:28031. [PMID: 39543237 PMCID: PMC11564732 DOI: 10.1038/s41598-024-76816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Synthesis, solubility and cytotoxicity evaluation of anionic phosphonates derived from betulin, betulinic acid, oleanolic acid and ursolic acid is reported. Phosphonate moieties were successfully installed at terpenoid C28 by carboxylic acid deprotonation/alkylation sequence using (dimethoxyphosphoryl)methyl trifluoromethanesulfonate as alkylation reagent. Also, betulin-derived and ether-linked bis-phosphonate is obtained and characterized. After demethylation in the presence of TMSI the resulting phosphonic acids were transformed into their disodium salts. All target compounds display excellent water solubility, which was determined by qNMR in D2O. Cytotoxicity tests were performed in different concentrations of each compound (10-50 µM) against human osteosarcoma cell line MG-63 and osteoblast precursor cell line MC3T3-E1. Improved aqueous solubility and low cytotoxicity profile of the newly designed triterpenoid phosphonates reveal high potential for various medicinal chemistry and pharmacological applications in the future.
Collapse
Affiliation(s)
- Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 3 P.Valdena Street, Riga, LV-1048, Latvia
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 3 P.Valdena Street, Riga, LV-1048, Latvia
| | - Rihards Lācis
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 3 P.Valdena Street, Riga, LV-1048, Latvia
| | - Elza Fedorovska
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 3 P.Valdena Street, Riga, LV-1048, Latvia
| | - Öznur Demir
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, 3 Pulka Street, Riga, LV-1048, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubnika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, 3 Pulka Street, Riga, LV-1048, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, 3 Pulka Street, Riga, LV-1048, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 3 P.Valdena Street, Riga, LV-1048, Latvia.
| |
Collapse
|
5
|
Verma N, Raghuvanshi DS, Singh RV. Recent advances in the chemistry and biology of oleanolic acid and its derivatives. Eur J Med Chem 2024; 276:116619. [PMID: 38981335 DOI: 10.1016/j.ejmech.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024]
Abstract
The pentacyclic triterpenes represent a significant class of plant bioactives with a variety of structures and a wide array of biological activities. These are biosynthetically produced via the mevalonate pathway although occasionally mixed pathways may also occur to introduce structural divergence. Oleanolic acid is one of the most explored bioactive from this class of compounds and possesses a broad spectrum of pharmacological and biological activities including liver protection, anti-cancer, atherosclerosis, anti-inflammation, antibacterial, anti-HIV, anti-oxidative, anti-diabetic etc. This review provides an overview of the latest research findings, highlighting the versatile medicinal and biological potential of oleanolic and its future prospects.
Collapse
Affiliation(s)
- Narsingh Verma
- R&D, Technology, and Innovation, Merck-Life Science, Jigani, Bangalore, 560100, India
| | | | - Ravindra Vikram Singh
- R&D, Technology, and Innovation, Merck-Life Science, Jigani, Bangalore, 560100, India.
| |
Collapse
|
6
|
Li Y, Bao Y, Guo S, Li Y, Fang W, Zhang N, He H. Farnesoid X receptor modulator 12β-( m-methyl-benzoyl)-11,12-dihydro oleanolic acid represses liver fibrosis by inhibiting ERK/p38 signaling pathways. Toxicol Mech Methods 2024; 34:795-802. [PMID: 38685856 DOI: 10.1080/15376516.2024.2349551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Liver fibrosis is a common pathological process in the progression of several chronic liver diseases to cirrhosis and hepatocellular carcinoma. Therefore, the development of medications that can repress the progress of liver fibrosis is essential. We discovered that initially, 12β-(m-methyl-benzoyl)-11,12-dihydro oleanolic acid (12d-OA), a farnesoid X receptor (FXR) modulator, possessed potential anti-fibrotic properties. Through an in-depth study, we revealed that 12d-OA not only inhibited the expression of fibrogenic markers in the LX-2 cells and HSC-T6 cells but also exhibited significant protective effects against liver injury and liver fibrosis in bile duct ligation (BDL) rats. Further exploration of its molecular mechanism indicated that 12d-OA exerted antifibrotic activity by inhibiting the extracellular signal-regulated kinase (ERK)/stress-activated protein kinase (p38) signaling pathways. Consequently, the great effects of 12d-OA in vitro and in vivo suggest that it may be a good candidate for liver fibrosis.
Collapse
Affiliation(s)
- Yiming Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunyang Bao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Simin Guo
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weishuo Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwei He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Similie D, Minda D, Bora L, Kroškins V, Lugiņina J, Turks M, Dehelean CA, Danciu C. An Update on Pentacyclic Triterpenoids Ursolic and Oleanolic Acids and Related Derivatives as Anticancer Candidates. Antioxidants (Basel) 2024; 13:952. [PMID: 39199198 PMCID: PMC11351203 DOI: 10.3390/antiox13080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer is a global health problem, with the incidence rate estimated to reach 40% of the population by 2030. Although there are currently several therapeutic methods, none of them guarantee complete healing. Plant-derived natural products show high therapeutic potential in the management of various types of cancer, with some of them already being used in current practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA), represent compounds intensively studied and tested in vitro and in vivo for their anticancer and chemopreventive properties. Since natural compounds can rarely be used in practice as such due to their characteristic physico-chemical properties, to tackle this problem, their derivatization has been attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and reduced toxicity. This review presents various UA and OA derivatives that have been synthesized and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide, or transforming OH groups into esters or amides increases anticancer efficacy.
Collapse
Affiliation(s)
- Diana Similie
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Cristina Adriana Dehelean
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
8
|
Jannus F, Sainz J, Reyes-Zurita FJ. Principal Bioactive Properties of Oleanolic Acid, Its Derivatives, and Analogues. Molecules 2024; 29:3291. [PMID: 39064870 PMCID: PMC11279785 DOI: 10.3390/molecules29143291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Natural products have always played an important role in pharmacotherapy, helping to control pathophysiological processes associated with human disease. Thus, natural products such as oleanolic acid (OA), a pentacyclic triterpene that has demonstrated important activities in several disease models, are in high demand. The relevant properties of this compound have motivated re-searchers to search for new analogues and derivatives using the OA as a scaffold to which new functional groups have been added or modifications have been realized. OA and its derivatives have been shown to be effective in the treatment of inflammatory processes, triggered by chronic diseases or bacterial and viral infections. OA and its derivatives have also been found to be effective in diabetic disorders, a group of common endocrine diseases characterized by hyperglycemia that can affect several organs, including the liver and brain. This group of compounds has been reported to exhibit significant bioactivity against cancer processes in vitro and in vivo. In this review, we summarize the bioactive properties of OA and its derivatives as anti-inflammatory, anti-bacterial, antiviral, anti-diabetic, hepatoprotective, neuroprotective, and anticancer agents.
Collapse
Affiliation(s)
- Fatin Jannus
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av. de la Ilustración, 114, PTS, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Barcelona, 08908 Barcelona, Spain
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria IBs.Granada, 18010 Granada, Spain
| |
Collapse
|
9
|
Triaa N, Znati M, Ben Jannet H, Bouajila J. Biological Activities of Novel Oleanolic Acid Derivatives from Bioconversion and Semi-Synthesis. Molecules 2024; 29:3091. [PMID: 38999041 PMCID: PMC11243203 DOI: 10.3390/molecules29133091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Oleanolic acid (OA) is a vegetable chemical that is present naturally in a number of edible and medicinal botanicals. It has been extensively studied by medicinal chemists and scientific researchers due to its biological activity against a wide range of diseases. A significant number of researchers have synthesized a variety of analogues of OA by modifying its structure with the intention of creating more potent biological agents and improving its pharmaceutical properties. In recent years, chemical and enzymatic techniques have been employed extensively to investigate and modify the chemical structure of OA. This review presents recent advancements in medical chemistry for the structural modification of OA, with a special focus on the biotransformation, semi-synthesis and relationship between the modified structures and their biopharmaceutical properties.
Collapse
Affiliation(s)
- Nahla Triaa
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Mansour Znati
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Hichem Ben Jannet
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| |
Collapse
|
10
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
11
|
Yang H, Deng M, Jia H, Zhang K, Liu Y, Cheng M, Xiao W. A review of structural modification and biological activities of oleanolic acid. Chin J Nat Med 2024; 22:15-30. [PMID: 38278556 DOI: 10.1016/s1875-5364(24)60559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 01/28/2024]
Abstract
Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.
Collapse
Affiliation(s)
- Huali Yang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Minghui Deng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongwei Jia
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaicheng Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China.
| |
Collapse
|
12
|
Wang AH, Ma HY, Yi YL, Zhu SJ, Yu ZW, Zhu J, Mei S, Bahetibike S, Lu YQ, Huang LT, Yang RY, Rui-Wang, Xiao SL, Qi R. Oleanolic acid derivative alleviates cardiac fibrosis through inhibiting PTP1B activity and regulating AMPK/TGF-β/Smads pathway. Eur J Pharmacol 2023; 960:176116. [PMID: 38059443 DOI: 10.1016/j.ejphar.2023.176116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
Cardiac fibrosis (CF) in response to persistent exogenous stimuli or myocardial injury results in cardiovascular diseases (CVDs). Protein tyrosine phosphatase 1B (PTP1B) can promote collagen deposition through regulating AMPK/TGF-β/Smads signaling pathway, and PTP1B knockout improves cardiac dysfunction against overload-induced heart failure. Oleanolic acid (OA) has been proven to be an inhibitor of PTP1B, and its anti-cardiac remodeling effects have been validated in different mouse models. To improve the bioactivity of OA and to clarify whether OA derivatives with stronger inhibition of PTP1B activity have greater prevention of cardiac remodeling than OA, four new OA derivatives were synthesized and among them, we found that compound B had better effects than OA in inhibiting cardiac fibrosis both in vivo in the isoproterenol (ISO)-induced mouse cardiac fibrosis and in vitro in the TGF-β/ISO-induced 3T3 cells. Combining with the results of molecular docking, surface plasmon resonance and PTP1B activity assay, we reported that OA and compound B directly bound to PTP1B and inhibited its activity, and that compound B showed comparable binding capability but stronger inhibitory effect on PTP1B activity than OA. Moreover, compound B presented much greater effects on AMPK activation and TGF-β/Smads inhibition than OA. Taken together, OA derivative compound B more significantly alleviated cardiac fibrosis than OA through much greater inhibition of PTP1B activity and thus much stronger regulation of AMPK/TGF-β/Smads signaling pathway.
Collapse
Affiliation(s)
- An-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Hao-Yue Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Yan-Liang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Su-Jie Zhu
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Zhe-Wei Yu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jie Zhu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Si Mei
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Shamuha Bahetibike
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - You-Qun Lu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Li-Ting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ruo-Yao Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Rui-Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Su-Long Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| |
Collapse
|
13
|
Hong W, Fu W, Zhao Q, Xue C, Cai W, Dong N, Shan A. Effects of oleanolic acid on acute liver injury triggered by lipopolysaccharide in broiler chickens. Br Poult Sci 2023; 64:697-709. [PMID: 37697900 DOI: 10.1080/00071668.2023.2251119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 09/13/2023]
Abstract
1. Infectious injury caused by lipopolysaccharide (LPS), a metabolite of gram-negative bacteria, can induce stress responses in animals and is a significant cause of morbidity and mortality in young birds. The purpose of this study was to investigate the effects of dietary supplementation with oleanolic acid (OA) on acute liver injury in broiler chickens challenged with LPS.2. In total, 120 broiler chickens were randomly divided into six groups and fed a basal diet containing 0, 50, 100, or 200 mg/kg OA or 100 mg/kg aureomycin. On d 15, broiler chickens were injected with either LPS or an equivalent volume of normal saline. Six hours after LPS injection, two broiler chicks were randomly selected for sampling in each replicate.3. The results indicated that dietary aureomycin was ineffective in alleviating LSP-associated liver injury, but protected broiler chickens from LPS-induced liver damage. This promoted a significant reduction in the levels of malondialdehyde and an increase in the levels of superoxide dismutase in liver. In addition, OA was found to cause significant reductions in the relative expression of IL-1β, IL-6, and TNF-α in broiler liver tissues, whereas the relative expression of IL-10 was significantly increased.4. In conclusion, oleanolic acid can alleviate oxidative stress and injury in the livers of broiler chickens induced by lipopolysaccharide. Consequently, oleanolic acid has potential utility as a novel anti-inflammatory and antioxidant feed additive.
Collapse
Affiliation(s)
- W Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - W Fu
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Q Zhao
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - C Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - W Cai
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - N Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - A Shan
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
14
|
Zhang H, Zhou L, Wang H, Gu W, Li Z, Sun J, Wei X, Zheng Y. Tenascin-C-EGFR activation induces functional human satellite cell proliferation and promotes wound-healing of skeletal muscles via oleanic acid. Dev Biol 2023; 504:86-97. [PMID: 37758009 DOI: 10.1016/j.ydbio.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/26/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Human satellite cells (HuSCs) have been deemed to be the potential cure to treat muscular atrophy diseases such as Duchenne muscular dystrophy. However, the clinical trials of HuSCs were restricted to the inadequacy of donors because of that freshly isolated HuSCs quickly lost the Pax7 expression and myogenesis capacity in vivo after a few days of culture. Here we found that oleanic acid, a kind of triterpenoid endowed with diverse biological functions with treatment potential, could efficiently promote HuSCs proliferation. The HuSCs cultured in the medium supplement with oleanic acid could maintain a high expression level of Pax7 and retain the ability to differentiate into myotubes as well as facilitate muscle regeneration in injured muscles of recipient mice. We further revealed that Tenascin-C acts as the core mechanism to activate the EGFR signaling pathway followed by HuSCs proliferation. Taken together, our data provide an efficient method to expand functional HuSCs and a novel mechanism that controls HuSCs proliferation, which sheds light on the HuSCs-based therapy to treat muscle diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Lin Zhou
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Huihao Wang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Zhiqiang Li
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China
| | - Xiaoen Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China.
| | - Yuxin Zheng
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Bhardwaj M, Gour A, Ahmed A, Dhiman S, Manhas D, Khajuria P, Wazir P, Mukherjee D, Nandi U. Impact of Disease States on the Oral Pharmacokinetics of EIDD-1931 (an Active Form of Molnupiravir) in Rats for Implication in the Dose Adjustment. Mol Pharm 2023; 20:4597-4610. [PMID: 37527414 DOI: 10.1021/acs.molpharmaceut.3c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The pharmacokinetic alteration of an antimicrobial medication leading to sub-therapeutic plasma level can aid in the emergence of resistance, a global threat nowadays. In this context, molnupiravir (prodrug of EIDD-1931) is the most efficacious orally against corona virus disease (COVID-19). In addition to drug-drug interaction, the pharmacokinetics of a drug can significantly vary during any disease state, leading to disease-drug interaction. However, no information is available for such a recently approved drug. Therefore, we aimed to explore the oral pharmacokinetics of EIDD-1931 in seven chemically induced disease states individually compared to the normal state using various rat models. Induction of any disease situation was confirmed by the disease specific study(s) prior to pharmacokinetic investigations. Compared to the normal state, substantially lowered plasma exposure (0.47- and 0.63-fold) with notably enhanced clearance (2.00- and 1.56-fold) of EIDD-1931 was observed in rats of ethanol-induced gastric injury and carbon tetrachloride-induced liver injury states. Conversely, paclitaxel-induced neuropathic pain and cisplatin-induced kidney injury states exhibited opposite outcomes on oral exposure (1.43- and 1.50-fold) and clearance (0.69- and 0.65-fold) of EIDD-1931. Although the highest plasma concentration (2.26-fold) markedly augmented in the doxorubicin-induced cardiac injury state, streptozocin-induced diabetes and lipopolysaccharide-induced lung injury state did not substantially influence the pharmacokinetics of EIDD-1931. Exploring the possible phenomenon behind the reduced or boosted plasma exposure of EIDD-1931, results suggest the need for dose adjustment in respective diseased conditions in order to achieve desired efficacy during oral therapy of EIDD-1931.
Collapse
Affiliation(s)
- Mahir Bhardwaj
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Gour
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajaz Ahmed
- Natural Product and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Khajuria
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Wazir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Debaraj Mukherjee
- Natural Product and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Iskender H, Dokumacioglu E, Terim Kapakin KA, Bolat I, Mokhtare B, Hayirli A, Yenice G. Effect of Oleanolic acid administration on hepatic AMPK, SIRT-1, IL-6 and NF-κB levels in experimental diabetes. J Diabetes Metab Disord 2023; 22:581-590. [PMID: 37255809 PMCID: PMC10225422 DOI: 10.1007/s40200-022-01178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/25/2022] [Indexed: 06/01/2023]
Abstract
OBJECTIVES Diabetes mellitus (DM) is an important public health problem all over the world, considering its complications and increasing prevalence. Oleanolic acid (OA) has anti-diabetic property via modulating glucose metabolism and acting as 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) / Sirtuin-1 (SIRT-1) activator and Interleukin 6 (IL-6) / Nuclear factor kappa B (NF-κB) inhibitor. This research questioned if the OA treatment amliorates the hepatic inflammatory profile in the diabetic rats. METHODS Twenty-eight male Sprague Dawley rats were first subjected to either no diabetes induction (healthy) or diabetes induction by i.p. injection of 50 mg/kg streptozotocin. Then rats in both groups were treated with either tap water or OA (5 mg/kg) within 1 ml tap water by oral gavage for 21 days. RESULTS The diabetic rats had higher hepatic MDA (2.88x) and serum AST (2.01x), ALP (2.22x), and ALT (4.27x) levels and 50% lower hepatic SOD level than the healthy rats. The OA treatment significantly reversed these antioxidant parameters in the diabetic rats. The diabetic rats had lower AMPK (85%) and hepatic SIRT-1 (47%) levels and higher hepatic NF-κB (53%) and IL-6 (34%) levels than the healthy rats. Comparing with the health rats, the OA treatment increased hepatic SIRT-1 level, but tended to increase hepatic AMPK level and decrease hepatic NF-κB and IL-6 levels in the diabetic rats. It was also partially effective to ameliorate degenerative changes and necrosis in the diabetic rats. CONCLUSION The OA treatment can be considered to alleviate oxidative stress and reduce severity of inflammation in hepatocytes in the diabetic subjects.
Collapse
Affiliation(s)
- Hatice Iskender
- Faculty of Healthy Sciences, Department of Nutrition and Dietetics, Artvin Coruh University, 08000 Artvin, Turkey
| | - Eda Dokumacioglu
- Faculty of Healthy Sciences, Department of Nutrition and Dietetics, Artvin Coruh University, 08000 Artvin, Turkey
| | | | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Behzat Mokhtare
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Armagan Hayirli
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Guler Yenice
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
17
|
Tsai TH, Tsai CY, Moi SH, Wu CH, Lee KT, Hsu YC, Su YF. A Novel Synthetic Oleanolic Acid Derivative Inhibits Glioma Cell Proliferation by Regulating Cell Cycle G2/M Arrest. Pharmaceuticals (Basel) 2023; 16:ph16050642. [PMID: 37242425 DOI: 10.3390/ph16050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023] Open
Abstract
2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-9,11-dihydro-trifluoroethyl amide (CDDO-dhTFEA) has antioxidant and anti-inflammatory activities; however, whether CDDO-dhTFEA has anticancer effects is unclear. The objective of this research was to investigate the possibility of CDDO-dhTFEA as a potential cancer-fighting treatment in glioblastoma cells. Our experiments were performed on U87MG and GBM8401 cells, and we found that CDDO-dhTFEA was effective in reducing cell proliferation in both cell lines, in a manner that was dependent on both time and concentration. Additionally, we observed that CDDO-dhTFEA had a significant impact on the regulation of cell proliferation, which was evident in the increase in DNA synthesis that was observed in both cell types. CDDO-dhTFEA induced G2/M cell cycle arrest and mitotic delay, which may be associated with the inhibition of proliferation. Treatment with CDDO-dhTFEA led to cell cycle G2/M arrest and inhibited proliferation of U87MG and GBM8401 cells by regulating G2/M cell cycle proteins and gene expression in GBM cells in vitro.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Cheng-Yu Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Sin-Hua Moi
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Kuan-Ting Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| |
Collapse
|
18
|
RTA dh404 Induces Cell Cycle Arrest, Apoptosis, and Autophagy in Glioblastoma Cells. Int J Mol Sci 2023; 24:ijms24044006. [PMID: 36835414 PMCID: PMC9962315 DOI: 10.3390/ijms24044006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
RTA dh404 is a novel synthetic oleanolic acid derivative that has been reported to possess anti-allergic, neuroprotective, antioxidative, and anti-inflammatory properties, and exerts therapeutic effects on various cancers. Although CDDO and its derivatives have anticancer effects, the actual anticancer mechanism has not been fully explored. Therefore, in this study, glioblastoma cell lines were exposed to different concentrations of RTA dh404 (0, 2, 4, and 8 µM). Cell viability was evaluated using the PrestoBlue™ reagent assay. The role of RTA dh404 in cell cycle progression, apoptosis, and autophagy was analyzed using flow cytometry and Western blotting. The expression of cell cycle-, apoptosis-, and autophagy-related genes was detected by next-generation sequencing. RTA dh404 reduces GBM8401 and U87MG glioma cell viability. RTA dh404 treated cells had a significant increase in the percentage of apoptotic cells and caspase-3 activity. In addition, the results of the cell cycle analysis showed that RTA dh404 arrested GBM8401 and U87MG glioma cells at the G2/M phase. Autophagy was observed in RTA dh404-treated cells. Subsequently, we found that RTA dh404-induced cell cycle arrest, apoptosis, and autophagy were related to the regulation of associated genes using next-generation sequencing. Our data indicated that RTA dh404 causes G2/M cell cycle arrest and induces apoptosis and autophagy by regulating the expression of cell cycle-, apoptosis-, and autophagy-related genes in human glioblastoma cells, suggesting that RTA dh404 is a potential drug candidate for the treatment of glioblastoma.
Collapse
|
19
|
Synthesis, Anti-Influenza H1N1 and Anti-Dengue Activity of A-Ring Modified Oleanonic Acid Polyamine Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238499. [PMID: 36500593 PMCID: PMC9738632 DOI: 10.3390/molecules27238499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022]
Abstract
A series of sixteen A-ring modified (2,3-indolo-, 2-benzylidene) oleanonic acid derivatives, holding some cyclic amines, linear polyamines and benzylaminocarboxamides at C28, has been synthesized and screened for antiviral activity against influenza A/PuertoRico/8/34 (H1N1) and Dengue virus serotypes of DENV-1, -2, -3, -4. It was found that 28-homopiperazine 2 and 3-N-phthalyl 22 amides of oleanonic acid demonstrated high potency with selectivity index SI 27 (IC50 21 μM) and 42 (IC50 12 μM). Oleanonic acid aminoethylpiperazine amide 6 and C-azepano-erythrodiol 23 appeared to be the most effective compounds against DENV-1 (IC50's 67 and 107 μM) and -2 (IC50's 86 and 68 μM correspondingly) serotypes.
Collapse
|
20
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
21
|
Hong X, Cai Z, Zhou F, Jin X, Wang G, Ouyang B, Zhang J. Improved pharmacokinetics of tenofovir ester prodrugs strengthened the inhibition of HBV replication and the rebalance of hepatocellular metabolism in preclinical models. Front Pharmacol 2022; 13:932934. [PMID: 36105197 PMCID: PMC9465247 DOI: 10.3389/fphar.2022.932934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Tenofovir (TFV) ester prodrugs, a class of nucleotide analogs (NAs), are the first-line clinical anti-hepatitis B virus (HBV) drugs with potent antiviral efficacy, low resistance rate and high safety. In this work, three marketed TFV ester drugs, tenofovir disoproxil fumarate (TDF), tenofovir alafenamide fumarate (TAF) and tenofovir amibufenamide fumarate (TMF), were used as probes to investigate the relationships among prodrug structures, pharmacokinetic characteristics, metabolic activations, pharmacological responses and to reveal the key factors of TFV ester prodrug design. The results indicated that TMF and TAF exhibited significantly stronger inhibition of HBV DNA replication than did TDF in HBV-positive HepG2.2.15 cells. The anti-HBV activity of TMF was slightly stronger than TAF after 9 days of treatment (EC50 7.29 ± 0.71 nM vs. 12.17 ± 0.56 nM). Similar results were observed in the HBV decline period post drug administration to the HBV transgenic mouse model, although these three TFV prodrugs finally achieved the same anti-HBV effect after 42 days treatments. Furthermore, TFV ester prodrugs showed a correcting effect on disordered host hepatic biochemical metabolism, including TCA cycle, glycolysis, pentose phosphate pathway, purine/pyrimidine metabolism, amino acid metabolism, ketone body metabolism and phospholipid metabolism. The callback effects of the three TFV ester prodrugs were ranked as TMF > TAF > TDF. These advantages of TMF were believed to be attributed to its greater bioavailability in preclinical animals (SD rats, C57BL/6 mice and beagle dogs) and better target loading, especially in terms of the higher hepatic level of the pharmacologically active metabolite TFV-DP, which was tightly related to anti-HBV efficacy. Further analysis indicated that stability in intestinal fluid determined the actual amount of TFV prodrug at the absorption site, and hepatic/intestinal stability determined the maintenance amount of prodrug in circulation, both of which influenced the oral bioavailability of TFV prodrugs. In conclusion, our research revealed that improved pharmacokinetics of TFV ester prodrugs (especially intestinal stability) strengthened the inhibition of HBV replication and the rebalance of hepatocellular metabolism, which provides new insights and a basis for the design, modification and evaluation of new TFV prodrugs in the future.
Collapse
Affiliation(s)
- Xiaodan Hong
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zuhuan Cai
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoliang Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| | - Bingchen Ouyang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| | - Jingwei Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| |
Collapse
|
22
|
Iskender H, Dokumacioglu E, Terim Kapakin KA, Yenice G, Mohtare B, Bolat I, Hayirli A. Effects of oleanolic acid on inflammation and metabolism in diabetic rats. Biotech Histochem 2022; 97:269-276. [PMID: 34261397 DOI: 10.1080/10520295.2021.1954691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease that threatens the health of the world population. We investigated the effects of oleanolic acid (OA) administration on inflammation status and metabolic profile in streptozotocin (STZ) induced diabetic rats. Four experimental groups were established: healthy rats not administered OA, healthy rats administered OA, diabetic rats not administered OA, diabetic rats administered OA. OA, 5 mg/kg, was administered by oral gavage for 21 days. Serum samples collected at the end of the experiment and analyzed for toll-like receptor-9, interleukin-18, nuclear factor kappa B, malondialdehyde MDA, glucose, total cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein, calcium, phosphorus, magnesium and potassium. Pancreas tissue was examined for pathology. Induction of DM caused increased serum concentrations of inflammation and oxidative damage markers. DM also caused hyperglycemia-hyperlipidemia and decreased serum concentration of minerals. The islets of Langerhans were degenerated and necrotic. Administration of OA reversed the adverse effects of DM. OA treatment can ameliorate inflammation and oxidative damage due to DM by normalizing hyperglycemia and decreasing TLR-9, IL-18, NF-κB and MDA levels.
Collapse
Affiliation(s)
- Hatice Iskender
- Department of Nutrition and Dietetics, Faculty of Healthy Sciences, Artvin Coruh University, Artvin, Turkey
| | - Eda Dokumacioglu
- Department of Nutrition and Dietetics, Faculty of Healthy Sciences, Artvin Coruh University, Artvin, Turkey
| | | | - Guler Yenice
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Behzat Mohtare
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Armagan Hayirli
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
23
|
Ji L, Li Q, He Y, Zhang X, Zhou Z, Gao Y, Fang M, Yu Z, Rodrigues RM, Gao Y, Li M. Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: a promising drug Potentilla discolor Bunge. Acta Pharm Sin B 2022; 12:3529-3547. [PMID: 36176915 PMCID: PMC9513494 DOI: 10.1016/j.apsb.2022.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic lipids and metabolic stress-induced liver injury. There are currently no approved effective pharmacological treatments for NAFLD. Traditional Chinese medicine (TCM) has been used for centuries to treat patients with chronic liver diseases without clear disease types and mechanisms. More recently, TCM has been shown to have unique advantages in the treatment of NAFLD. We performed a systematic review of the medical literature published over the last two decades and found that many TCM formulas have been reported to be beneficial for the treatment of metabolic dysfunctions, including Potentilla discolor Bunge (PDB). PDB has a variety of active compounds, including flavonoids, terpenoids, organic acids, steroids and tannins. Many compounds have been shown to exhibit a series of beneficial effects for the treatment of NAFLD, including anti-oxidative and anti-inflammatory functions, improvement of lipid metabolism and reversal of insulin resistance. In this review, we summarize potential therapeutic effects of TCM formulas for the treatment of NAFLD, focusing on the medicinal properties of natural active compounds from PDB and their underlying mechanisms. We point out that PDB can be classified as a novel candidate for the treatment and prevention of NAFLD.
Collapse
Affiliation(s)
- Longshan Ji
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Qian Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Yong He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Zhenhua Zhou
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Robim M. Rodrigues
- Department of in Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels 1000, Belgium
- Corresponding authors.
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| | - Man Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| |
Collapse
|
24
|
Jiang X, Shen P, Zhou J, Ge H, Raj R, Wang W, Yu B, Zhang J. Microbial transformation and inhibitory effect assessment of uvaol derivates against LPS and HMGB1 induced NO production in RAW264.7 macrophages. Bioorg Med Chem Lett 2021; 58:128523. [PMID: 34973341 DOI: 10.1016/j.bmcl.2021.128523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
For the discovery of new pentacyclic triterpenes as a potential anti-inflammatory agent, microbial transformation of uvaol by Penicilium griseofulvum CICC 40293 and Streptomyces griseus ATCC 13273 was investigated. Stereoselective hydroxylation and epoxidation reactions were observed in the biotransformation. Moreover, six new metabolites were isolated and structurally elucidated by HR-ESI-MS and NMR spectrum. All the compounds were evaluated upon the inhibitory effects of nitric oxide (NO) release in RAW 264.7 cells induced by lipopolysaccharide (LPS) and high-mobility group box 1 (HMGB1). Among them, compound 3 (13, 28-epoxy-3β, 7β, 21β-trihydroxy-urs-11-ene) with the unique epoxy structure and compound 5 (3β, 21β, 24, 28-tetrahydroxy-urs-12-en-30-oic acid), exhibited a considerable inhibitory effect on both models while compound 2 (urs-12-ene-3β, 7β, 21β, 28-tetraol) showed a significant bias in the LPS-induced inflammatory response with IC50 value of 2.22 μM. Therefore, this study could provide some insights on the discovery of the pentacyclic triterpene leads for the treatment of either DAMPs or PAMPs triggered inflammation.
Collapse
Affiliation(s)
- Xuewa Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Pingping Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Jing Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Richa Raj
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Weiwei Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China; ZhenPing Expert Workstation for Zhang Jian, Zhenping, Ankang, Shaanxi, 725699, PR China.
| |
Collapse
|
25
|
Schioppa L, Fall F, Ortiz S, Poupaert JH, Quetin-Leclercq J. A Validated HPLC-PDA-HRMS Method to Investigate the Biological Stability and Metabolism of Antiparasitic Triterpenic Esters. Molecules 2021; 26:molecules26237154. [PMID: 34885738 PMCID: PMC8659078 DOI: 10.3390/molecules26237154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Pentacyclic triterpenes (PTs) are commonly found in medicinal plants with well-known antiparasitic effects. Previous research on C-3 and C-27 triterpenic esters showed effective and selective in vitro antiparasitic activities and in vivo effectiveness by parenteral routes. The aim of this study was to determine triterpenic esters' stability in different biological-like media and the main microsomal degradation products. An HPLC-PDA method was developed and validated to simultaneously analyze and quantify bioactive triterpenic esters in methanol (LOQ: 2.5 and 1.25-100 µg/mL) and plasma (LOQ: 5-125 µg/mL). Overall, both triterpenic esters showed a stable profile in aqueous and buffered solutions as well as in entire plasma, suggesting gaining access to the ester function is difficult for plasma enzymes. Conversely, after 1 h, 30% esters degradation in acidic media was observed with potential different hydrolysis mechanisms. C-3 (15 and 150 µM) and C-27 esters (150 µM) showed a relatively low hepatic microsomal metabolism (<23%) after 1 h, which was significantly higher in the lowest concentration of C-27 esters (15 µM) (>40% degradation). Metabolic HPLC-PDA-HRMS studies suggested hydrolysis, hydroxylation, dehydration, O-methylation, hydroxylation and/or the reduction of hydrolyzed derivatives, depending on the concentration and the position of the ester link. Further permeability and absorption studies are required to better define triterpenic esters pharmacokinetic and specific formulations designed to increase their oral bioavailability.
Collapse
Affiliation(s)
- Laura Schioppa
- Pharmacognosy Laboratory, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium; (F.F.); (S.O.); (J.Q.-L.)
- Correspondence:
| | - Fanta Fall
- Pharmacognosy Laboratory, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium; (F.F.); (S.O.); (J.Q.-L.)
| | - Sergio Ortiz
- Pharmacognosy Laboratory, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium; (F.F.); (S.O.); (J.Q.-L.)
| | - Jacques H. Poupaert
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, B1 72.04, B-1200 Brussels, Belgium;
| | - Joelle Quetin-Leclercq
- Pharmacognosy Laboratory, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium; (F.F.); (S.O.); (J.Q.-L.)
| |
Collapse
|
26
|
Liu HR, Ahmad N, Lv B, Li C. Advances in production and structural derivatization of the promising molecule ursolic acid. Biotechnol J 2021; 16:e2000657. [PMID: 34096160 DOI: 10.1002/biot.202000657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Ursolic acid (UA) is a ursane-type pentacyclic triterpenoid compound, naturally produced in plants via specialized metabolism and exhibits vast range of remarkable physiological activities and pharmacological manifestations. Owing to significant safety and efficacy in different medical conditions, UA may serve as a backbone to produce its derivatives with novel therapeutic functions. This review aims to provide ideas for exploring more diverse structures to improve UA pharmacological activity and increasing its biological yield to meet the industrial requirements by systematically reviewing the current research progress of UA. We first provides an overview of the pharmacological activities, acquisition methods and structural modifications of UA. Among them, we focused on the synthetic modifications of UA to yield valuable derivatives with enhanced therapeutic potential. Furthermore, harnessing the essential advances for green synthesis of UA and its derivatives by advent of metabolic engineering and synthetic biology are of great concern. In this regard, all pivotal advances for enhancing the production of UA have been discussed. In combination with the advantages of UA biosynthesis and transformation strategy, large-scale microbial production of UA is a promising platform for further exploration.
Collapse
Affiliation(s)
- Hao-Ran Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Nadeem Ahmad
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Novel Synthesized N-Ethyl-Piperazinyl-Amides of C2-Substituted Oleanonic and Ursonic Acids Exhibit Cytotoxic Effects through Apoptotic Cell Death Regulation. Int J Mol Sci 2021; 22:ijms222010967. [PMID: 34681629 PMCID: PMC8536124 DOI: 10.3390/ijms222010967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
A series of novel hybrid chalcone N-ethyl-piperazinyl amide derivatives of oleanonic and ursonic acids were synthesized, and their cytotoxic potential was evaluated in vitro against the NCI-60 cancer cell line panel. Compounds 4 and 6 exhibited the highest overall anticancer activity, with GI50 values in some cases reaching nanomolar values. Thus, the two compounds were further assessed in detail in order to identify a possible apoptosis- and antiangiogenic-based mechanism of action induced by the assessed compounds. DAPI staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that up-regulation of pro-apoptotic Bak gene combined with the down-regulation of the pro-survival Bcl-XL and Bcl-2 genes caused altered ratios between the pro-apoptotic and anti-apoptotic proteins’ levels, leading to overall induced apoptosis. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, suggesting that compounds may induce apoptotic cell death through targeted anti-apoptotic protein inhibition, as well. Ex vivo determinations showed that both compounds did not significantly alter the angiogenesis process on the tested cell lines.
Collapse
|
28
|
Xu Y, Li Y, Lu Y, Feng X, Tian G, Liu Q. Antioxidative and hepatoprotective activities of a novel polysaccharide (LSAP) from Lepista sordida mycelia. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
29
|
Development and Evaluation of Oleanolic Acid Dosage Forms and Its Derivatives. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1308749. [PMID: 33299854 PMCID: PMC7710427 DOI: 10.1155/2020/1308749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Oleanolic acid is a pentacyclic triterpenoid compound that exists widely in medicinal herbs and other plants. Because of the extensive pharmacological activity, oleanolic acid has attracted more and more attention. However, the structural characteristics of oleanolic acid prevent it from being directly made into new drugs, which limits the application of oleanolic acid. Through the application of modern preparation techniques and methods, different oleanolic acid dosage forms and derivatives have been designed and synthesized. These techniques can improve the water solubility and bioavailability of oleanolic acid and lay a foundation for the new drug development. In this review, the recent progress in understanding the oleanolic acid dosage forms and its derivatives are discussed. Furthermore, these products were evaluated comprehensively from the perspective of characterization and pharmacokinetics, and this work may provide ideas and references for the development of oleanolic acid preparations.
Collapse
|
30
|
Wang YS, Li GL, Zhu SB, Jing FC, Liu RD, Li SS, He J, Lei JD. A Self-assembled Nanoparticle Platform Based on Amphiphilic Oleanolic Acid Polyprodrug for Cancer Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2401-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Li D, Wu Y, Wei P, Gao X, Li M, Zhang C, Zhou Z, Lu W. Metabolic engineering of Yarrowia lipolytica for heterologous oleanolic acid production. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 05/01/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
33
|
Zhou Y, Guo Y, Sun X, Ding R, Wang Y, Niu X, Wang J, Deng X. Application of Oleanolic Acid and Its Analogues in Combating Pathogenic Bacteria In Vitro/ Vivo by a Two-Pronged Strategy of β-Lactamases and Hemolysins. ACS OMEGA 2020; 5:11424-11438. [PMID: 32478231 PMCID: PMC7254530 DOI: 10.1021/acsomega.0c00460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/30/2020] [Indexed: 05/06/2023]
Abstract
The rapid spread of β-lactamase-producing bacteria in clinical practice has increasingly deteriorated the performance of β-lactam antibiotics against such resistant strains. Thus, novel agents or strategies for the war against β-lactamase-producing bacteria, especially hypervirulent resistant bacteria (such as toxin-secreting Staphylococcus aureus) carrying complex β-lactamases, are urgently needed. In this study, we found that the natural compound oleanolic acid (OA) and its analogues (especially corosolic acid (CA)) significantly inhibited the activity of important β-lactamases (NDM-1, KPC-2, and VIM-1) in Enterobacteriaceae and β-lactamases (β-lactamase N1) in S. aureus. The results showed significant synergy with β-lactams against β-lactamase-positive bacteria (fractional inhibitory concentration (FIC) index <0.5). Additionally, OA treatment significantly inhibited the activity of hemolysin from various bacteria. In the mouse infection models, the combined therapy with OA and β-lactams exhibited a significant synergistic effect in the treatment of β-lactamase-producing bacteria, as evidenced by the survival rate of S. aureus- or Escherichia coli-infected mice, which increased from 25.0 to 75.0% or from 44.4 to 61.1% (CA increased to 77.8%), respectively, compared to treatment with individual β-lactams. Although OA treatment alone led to systemic protection against S. aureus-infected mice by directly targeting α-hemolysin (Hla), a relatively better therapeutic effect was observed for the combined therapy. To the best of our knowledge, this study is the first to find effective inhibitors against resistant bacterial infections with a two-pronged strategy by simultaneously targeting resistance enzymes and toxins, which may provide a promising therapeutic strategy for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yonglin Zhou
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| | - Yan Guo
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| | - Xiaodi Sun
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Ding
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanling Wang
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Qingdao
Vland Biological Limited Co., LTD, Qingdao 266102, Shandong, China
| | - Xiaodi Niu
- Department
of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Jianfeng Wang
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| | - Xuming Deng
- Key
Laboratory of Zoonosis Research, Ministry of Education, Institute
of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Department
of Respiratory Medicine, The First Hospital
of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
34
|
Khan MW, Zhao P, Khan A, Raza F, Raza SM, Sarfraz M, Chen Y, Li M, Yang T, Ma X, Xiang G. Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int J Nanomedicine 2019; 14:3753-3771. [PMID: 31239661 PMCID: PMC6554709 DOI: 10.2147/ijn.s196651] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Cisplatin (CDDP), a widely used chemotherapeutic agent against hepatocellular carcinoma (HCC), faces severe resistance and hepatotoxicity problems which can be alleviated through combination therapy. Purpose: The objective of this study was to develop a pH-dependent calcium carbonate nano-delivery system for the combination therapy of CDDP with oleanolic acid (OA). Methods: A microemulsion method was employed to generate lipid coated cisplatin/oleanolic acid calcium carbonate nanoparticles (CDDP/OA-LCC NPs), and the loading concentration of CDDP and OA was measured by atomic absorption spectroscopy and HPLC respectively.Transmission electron microscopy (TEM) was used to examine the nanoparticles morphology while its pH dependent release characteristics were investigated through in vitro release study. Cellular uptake was examined through a fluorescence microscopy. Apoptotic assays and western blot analysis were conducted to explore the synergistic apoptotic effect of OA on CDDP against HCC cells. The hepatoprotective of OA for CDDP was evaluated through H&E staining. Results: TEM analysis revealed nanoparticles spherical shape with an average particle size of 206±15 nm, and the overall entrapment efficiency was 63.70%±3.9%. In vitro drug release study confirmed the pH-dependent property of the formulation, with the maximum CDDP release of 70%±4.6% at pH 5.5, in contrast to 28%±4.1% CDDP release at pH 7.4. Annexin V-FITC/PI assay and cell cycle analysis confirmed that CDDP and OA synergistically promoted greater HepG2 cells apoptosis for the CDDP/OA-LCC NPs as compared to their individual free drug solutions and NPs-treated groups. Western blot analysis also proved that CDDP/OA-LCC NPs induced the apoptosis by enhancing the proapoptotic protein expressions through downregulating P13K/AKT/mTOR pathway and upregulating p53 proapoptotic pathway. OA helped CDDP to overcome the resistance by downregulating the expression of proteins like XIAP, Bcl-2 via NF-κB pathway. OA also significantly alleviated CDDP-induced hepatotoxicity as evident from the decreased alanine transaminase, aspartate transaminase levels and histochemical evaluation. The possible mechanism may be related to the Nrf-2 induction via its antioxidant mechanism to maintain the redox balance and reduction in CYP2E1 activity which can lead to ROS-mediated oxidative stress. Conclusion: These results suggest that CDDP/OA-LCC NPs have promising applications for co-delivering CDDP and OA to synergize their anti-tumor activity against HCC and to utilize OA’s protective effect against CDDP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Muhammad Waseem Khan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Pengxuan Zhao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Asifullah Khan
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Faisal Raza
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shahid Masood Raza
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Muhammad Sarfraz
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475001/475004, People's Republic of China
| | - Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Minsi Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Tan Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
35
|
Cotreatment with sorafenib and oleanolic acid induces reactive oxygen species-dependent and mitochondrial-mediated apoptotic cell death in hepatocellular carcinoma cells. Anticancer Drugs 2019; 30:209-217. [DOI: 10.1097/cad.0000000000000750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Beaufay C, Henry G, Streel C, Bony E, Hérent MF, Bero J, Quetin-Leclercq J. Optimization and validation of extraction and quantification methods of antimalarial triterpenic esters in Keetia leucantha plant and plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:109-118. [PMID: 30448629 DOI: 10.1016/j.jchromb.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 01/16/2023]
Abstract
The aim of this study is to develop validated methods for the extraction and quantification of antimalarial triterpene esters from Keetia leucantha and from plasma samples. These compounds, showing in vitro and in vivo antiplasmodial activities, were optimally extracted from Keetia leucantha twigs using ultrasounds with dichloromethane and from plasma using protein precipitation with acetonitrile. We then developed and validated HPLC-UV quantification methods, which proved to be selective, accurate, linear, true and precise, both in plant and plasma samples for the eight triterpenic esters in mixture. Based on the total error concept as decision criteria, the validated dosage ranges of the triterpene esters mixture were set between 14.68 and 73.37 μg/mL in plants and 15.90 and 106.01 μg/mL in plasma injected solutions, corresponding to 7.95 and 53.01 μg/mL in plasma. These reliable methods were used to determine effectively triterpene esters content in collected samples, that seems highly variable in plant extracts, and will be helpful to further investigate pharmacokinetics parameters of these interesting bioactive compounds.
Collapse
Affiliation(s)
- Claire Beaufay
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy Research Group, Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium.
| | - Guillaume Henry
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy Research Group, Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium
| | - Camille Streel
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy Research Group, Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium
| | - Emilie Bony
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy Research Group, Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium
| | - Marie-France Hérent
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy Research Group, Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium.
| | - Joanne Bero
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy Research Group, Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy Research Group, Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium.
| |
Collapse
|
37
|
Lu C, Zhang C, Zhao F, Li D, Lu W. Biosynthesis of ursolic acid and oleanolic acid inSaccharomyces cerevisiae. AIChE J 2018. [DOI: 10.1002/aic.16370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunzhe Lu
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Chuanbo Zhang
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Fanglong Zhao
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Dashuai Li
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Wenyu Lu
- Dept. of Biological Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Key Laboratory of system bioengineering (Tianjin University), Ministry of Education; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
38
|
Tao R, Gao M, Liu F, Guo X, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Alleviating the Liver Toxicity of Chemotherapy via pH-Responsive Hepatoprotective Prodrug Micelles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21836-21846. [PMID: 29897226 DOI: 10.1021/acsami.8b04192] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocarriers have been extensively utilized to enhance the anti-tumor performance of chemotherapy, but it is very challenging to eliminate the associated hepatotoxicity. This was due to the significant liver accumulation of cytotoxic drug-loaded nanocarriers as a consequence of systemic biodistribution. To address this, we report a novel type of nanocarrier that was made of hepatoprotective compound (oleanolic acid/OA) with a model drug (methotrexate/MTX) being physically encapsulated. OA was covalently connected with methoxy poly(ethylene glycol) (mPEG) via a hydrazone linker, generating amphiphilic mPEG-OA prodrug conjugate that could self-assemble into pH-responsive micelles (ca. 100 nm), wherein the MTX loading was ca. 5.1% (w/w). The micelles were stable at pH 7.4 with a critical micelle concentration of 10.5 μM. At the acidic endosome/lysosome microenvironment, the breakdown of hydrazone induced the micelle collapse and fast release of payloads (OA and MTX). OA also showed adjunctive anti-tumor effect with a low potency, which was proved in 4T1 cells. In the mouse 4T1 breasttumor model, MTX-loaded mPEG-OA micelles demonstrated superior capability regarding in vivo tumorgrowth inhibition because of the passive tumor targeting of nanocarriers. Unsurprisingly, MTX induced significant liver toxicity, which was evidenced by the increased liver mass and increased levels of alanine transaminase, aspartate transaminase, and lactate dehydrogenase in serum as well as in liver homogenate. MTX-induced hepatotoxicity was also accompanied with augmented oxidative stress, for example, the increase of the malondialdehyde level and the reduction of glutathione peroxidase and superoxide dismutase concentration in the liver. As expected, mPEG-OA micelles significantly reduced the liver toxicity induced by MTX because of the hepatoprotective action of OA, which was supported by the reversal of all the above biomarkers and qualitative histological analysis of liver tissue. This work offers an efficient approach for reducing the liver toxicity associated with chemotherapy, which can be applied to various antitumor drugs and hepatoprotective materials.
Collapse
Affiliation(s)
- Ran Tao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Min Gao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Fang Liu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xuliang Guo
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Aiping Fan
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | | | | | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
39
|
Wang W, Chen K, Xia Y, Mo W, Wang F, Dai W, Niu P. The Hepatoprotection by Oleanolic Acid Preconditioning: Focusing on PPAR α Activation. PPAR Res 2018; 2018:3180396. [PMID: 29805439 PMCID: PMC5901823 DOI: 10.1155/2018/3180396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Previous studies have characterized the hepatoprotective and anti-inflammatory properties of oleanolic acid (OA). This study aimed to investigate the molecular mechanisms of OA hepatoprotection in concanavalin A- (ConA-) induced acute liver injury. MATERIALS AND METHODS ConA (20 mg/kg) was intravenously injected to induce acute liver injury in Balb/C mice. OA pretreatment (20, 40, and 80 mg/kg) was administered subcutaneously once daily for 3 consecutive days prior to treatment with ConA; 2, 8, and 24 h after ConA injection, the levels of serum liver enzymes and the histopathology of major factors and inflammatory cytokines were determined. RESULTS OA reduced the release of serum liver enzymes and inflammatory factors and prevented ConA mediated damage to the liver. OA elevated the expression levels of peroxisome proliferator-activated receptor alpha (PPARα) and decreased the phosphorylation of c-Jun NH2-terminal kinase (JNK). CONCLUSION OA exhibits anti-inflammatory properties during ConA-induced acute liver injury by attenuating apoptosis and autophagy through activation of PPARα and downregulation of JNK signaling.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenhui Mo
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201100, China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Weiqi Dai
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Peiqin Niu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Shanghai Tenth People's Hospital Chongming Branch, Tongji University School of Medicine, Shanghai 202157, China
| |
Collapse
|
40
|
Chu F, Zhang W, Guo W, Wang Z, Yang Y, Zhang X, Fang K, Yan M, Wang P, Lei H. Oleanolic Acid-amino Acids Derivatives: Design, Synthesis, and Hepatoprotective Evaluation In Vitro and In Vivo. Molecules 2018; 23:E322. [PMID: 29393898 PMCID: PMC6017290 DOI: 10.3390/molecules23020322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Activated hepatic stellate cells (HSCs) are the main extracellular matrix (ECM)-producing cells in the injured liver and the key mediators of liver fibrosis; they also promote the progression of hepatocellular carcinoma (HCC). In the acidic extracellular microenvironment of HCC, HSCs are activated to promote the migration of HCC cells. It is worth attempting to alter the weak acidic microenvironment to promote activated HSC apoptosis to treat liver fibrosis and liver cancer. In the present study, a series of novel OA-amino acids analogues were designed and synthesized to introduce different amino acids in the 3-hydroxyl of OA using the ester condensation reaction to enhance hydrophilicity, alkalinity, and biological activity. We found that OA-lysine derivative (3g) could improve the hydrophilic of OA and induce HSCs apoptosis via inducing MMP depolarization and increasing intracellular Ca2+ levels. Additionally, 3g displayed a better hepatoprotective effect than OA (20 mg/kg, intragastric administration) against the acute liver injury induced by carbon tetrachloride (CCl₄) in mice. The results suggested that basic amino acids (lysine) could effectively enhance OA's hydrophilicity, alkalinity, and hepatoprotective activity in vitro and in vivo, which might be likely associated with increasing bioavailability and altering an extracellular weak acidic microenvironment with further verification. Therefore, the OA-lysine derivative (3g) has the potential to be developed as an agent with hepatoprotective activity.
Collapse
Affiliation(s)
- Fuhao Chu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wenxi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wenbo Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Zhaoyi Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yuqin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinyu Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Kang Fang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Mengmeng Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
41
|
Ayeleso TB, Matumba MG, Mukwevho E. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases. Molecules 2017; 22:molecules22111915. [PMID: 29137205 PMCID: PMC6150249 DOI: 10.3390/molecules22111915] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for natural products as an alternative therapy for chronic diseases has encouraged research into the pharmacological importance of bioactive compounds from plants. Recently, there has been a surge of interest in the therapeutic potential of oleanolic acid (OA) in the prevention and management of chronic diseases. Oleanolic acid is a pentacyclic triterpenoid widely found in plants, including fruits and vegetables with different techniques and chromatography platforms being employed in its extraction and isolation. Several studies have demonstrated the potential therapeutic effects of OA on different diseases and their symptoms. Furthermore, oleanolic acid also serves as a framework for the development of novel semi-synthetic triterpenoids that could prove vital in finding therapeutic modalities for various ailments. There are recent advances in the design and synthesis of chemical derivatives of OA to enhance its solubility, bioavailability and potency. Some of these derivatives have also been therapeutic candidates in a number of clinical trials. This review consolidates and expands on recent reports on the biological effects of oleanolic acid from different plant sources and its synthetic derivatives as well as their mechanisms of action in in vitro and in vivo study models. This review suggests that oleanolic acid and its derivatives are important candidates in the search for alternative therapy in the treatment and management of chronic diseases.
Collapse
Affiliation(s)
- Taiwo Betty Ayeleso
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Mashudu Given Matumba
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Emmanuel Mukwevho
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
42
|
Beaufay C, Hérent MF, Quetin-Leclercq J, Bero J. In vivo anti-malarial activity and toxicity studies of triterpenic esters isolated form Keetia leucantha and crude extracts. Malar J 2017; 16:406. [PMID: 29017554 PMCID: PMC5635585 DOI: 10.1186/s12936-017-2054-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/05/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Considering the need for new anti-malarial drugs, further investigations on Keetia leucantha (Rubiaceae), an in vitro antiplasmodial plant traditionally used to treat malaria, were carried out. This paper aimed to assess the in vivo anti-malarial efficacy of K. leucantha triterpenic esters previously identified as the most in vitro active components against Plasmodium falciparum and their potential toxicity as well as those of anti-malarial extracts. RESULTS These eight triterpenic esters and the major antiplasmodial triterpenic acids, ursolic and oleanolic acids, were quantified in the twigs dichloromethane extract by validated HPLC-UV methods. They account for about 19% of this extract (16.9% for acids and 1.8% for esters). These compounds were also identified in trace in the twigs decoction by HPLC-HRMS. Results also showed that extracts and esters did not produce any haemolysis, and were devoid of any acute toxicity at a total cumulative dose of 800 and 150 mg/kg respectively. Moreover, esters given intraperitoneally at 50 mg/kg/day to Plasmodium berghei-infected mice showed a very significant (p < 0.01) parasitaemia inhibition (27.8 ± 5.4%) on day 4 post-infection compared to vehicle-treated mice. CONCLUSIONS These results bring out new information on the safety of K. leucantha use and on the identification of anti-malarial compounds from its dichloromethane extract. Its activity can be explained by the presence of triterpenic acids and esters which in vivo activity and safety were demonstrated for the first time.
Collapse
Affiliation(s)
- Claire Beaufay
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Marie-France Hérent
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Joanne Bero
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 72, B1.72.03, 1200 Brussels, Belgium
| |
Collapse
|
43
|
An Q, Hu Q, Wang B, Cui W, Wu F, Ding Y. Oleanolic acid alleviates diabetic rat carotid artery injury through the inhibition of NLRP3 inflammasome signaling pathways. Mol Med Rep 2017; 16:8413-8419. [PMID: 28944913 DOI: 10.3892/mmr.2017.7594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
The overexpression of inflammasome components is correlated with diabetes‑associated complications. Oleanolic acid is a triterpenoid compound which is important in arterial injury. The present study evaluated whether oleanolic acid improved diabetic rat carotid artery injury through the inhibition of nucleotide‑binding domain, leucine‑rich‑containing family, pyrin domain‑containing‑3 (NLRP3) inflammasomes signaling pathways. A diabetic rat model was induced using streptozotocin (60 mg/kg) and underwent carotid artery injury. Morphometric analysis was performed using hematoxylin and eosin staining. The mRNA and protein levels were assayed by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. It was found that oleanolic acid (100 mg/kg/day) improved body weight, glucose metabolic disorders, neointimal hyperplasia and endothelial dysfunction in diabetic rats with carotid artery injury. In addition, oleanolic acid administration significantly downregulated the mRNA and protein expression levels of endothelin 1 in diabetic rats. Oleanolic acid decreased the intimal area and the ratio of neointima to media in diabetic rats. Serum levels of tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6 and IL‑18 in the oleanolic acid‑treated diabetic rats were downregulated. Consistent with the serum results, it was demonstrated that oleanolic acid administration caused a significant decrease in the levels of NLRP3, caspase‑1 and IL‑1β in the carotid arteries of diabetic rats. Taken together, these observations suggested that oleanolic acid attenuated carotid artery injury in diabetic rats and the underlying mechanism was mediated, at least partially, through the suppression of NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Qian An
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Qian Hu
- Staff Room of Surgery, Zhengzhou Railway Vocational Technical College, Zhengzhou, Henan 450052, P.R. China
| | - Bing Wang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Wenjun Cui
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Fei Wu
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Yu Ding
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| |
Collapse
|
44
|
Zhou M, Zhang RH, Wang M, Xu GB, Liao SG. Prodrugs of triterpenoids and their derivatives. Eur J Med Chem 2017; 131:222-236. [DOI: 10.1016/j.ejmech.2017.03.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
|
45
|
A New Oleanolic Acid Derivative against CCl₄-Induced Hepatic Fibrosis in Rats. Int J Mol Sci 2017; 18:ijms18030553. [PMID: 28272302 PMCID: PMC5372569 DOI: 10.3390/ijms18030553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/21/2017] [Accepted: 02/26/2017] [Indexed: 12/12/2022] Open
Abstract
A novel hepatoprotective oleanolic acid derivative, 3-oxours-oleana-9(11), 12-dien-28-oic acid (Oxy-Di-OA), has been reported. In previous studies, we found that Oxy-Di-OA presented the anti-HBV (Hepatitis B Virus) activity (IC50 = 3.13 µg/mL). Remarkably, it is superior to lamivudine in the inhibition of the rebound of the viral replication rate. Furthermore, Oxy-Di-OA showed good performance of anti-HBV activity in vivo. Some studies showed that liver fibrosis may affiliate with HBV gene mutations. In addition, the anti-hepatic fibrosis activity of Oxy-Di-OA has not been studied. Therefore, we evaluated the protective effect of Oxy-Di-OA against carbon tetrachloride (CCl4)-induced liver injury in rats. Daily intraperitoneally administration of Oxy-Di-OA prevented the development of CCl4-induced liver fibrosis, which was evidenced by histological study and immunohistochemical analysis. The entire experimental protocol lasted nine weeks. Oxy-Di-OA significantly suppressed the increases of plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels (p < 0.05). Furthermore, Oxy-Di-OA could prevent expression of transforming growth factor β1 (TGF-β1). It is worth noting that the high-dose group Oxy-Di-OA is superior to bifendate in elevating hepatic function. Compared to the model group, Oxy-Di-OA in the high-dose group and low-dose group can significantly reduce the liver and spleen indices (p < 0.05). The acute toxicity test showed that LD50 and a 95% confidence interval (CIs) value of Oxy-Di-OA were 714.83 mg/kg and 639.73–798.73 mg/kg via intraperitoneal injection in mice, respectively. The LD50 value of Oxy-Di-OA exceeded 2000 mg/kg via gavage in mice. In addition, a simple and rapid high performance liquid chromatography-ultraviolet (HPLC-UV) method was developed and validated to study the pharmacokinetic characteristics of the compound. After single-dose oral administration, time to reach peak concentration of Oxy-Di-OA (Cmax = 8.18 ± 0.66 μg/mL) was 10 ± 2.19 h; the elimination half-life and area under the concentration-time curve from t = 0 to the last time of Oxy-Di-OA was 2.19 h and 90.21 μg·h/mL, respectively.
Collapse
|
46
|
Identification of a novel oxidative stress induced cell death by Sorafenib and oleanolic acid in human hepatocellular carcinoma cells. Biochem Pharmacol 2016; 118:9-17. [PMID: 27544320 DOI: 10.1016/j.bcp.2016.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
The lack of effective chemotherapies in hepatocellular carcinoma (HCC) is still an unsolved problem and underlines the need for new strategies in liver cancer treatment. In this study, we present a novel approach to improve the efficacy of Sorafenib, today's only routinely used chemotherapeutic drug for HCC, in combination with triterpenoid oleanolic acid (OA). Our data show that cotreatment with subtoxic concentrations of Sorafenib and OA leads to highly synergistic induction of cell death. Importantly, Sorafenib/OA cotreatment triggers cell damage in a sustained manner and suppresses long-term clonogenic survival. Sorafenib/OA cotreatment induces DNA fragmentation and caspase-3/7 cleavage and the addition of the pan-caspase inhibitor zVAD.fmk shows the requirement of caspase activation for Sorafenib/OA-triggered cell death. Furthermore, Sorafenib/OA co-treatment stimulates a significant increase in reactive oxygen species (ROS) levels. Most importantly, the accumulation of intracellular ROS is required for cell death induction, since the addition of ROS scavengers (i.e. α-tocopherol, MnTBAP) that prevent the increase of intracellular ROS levels completely rescues cells from Sorafenib/OA-triggered cell death. In conclusion, OA represents a novel approach to increase the sensitivity of HCC cells to Sorafenib via oxidative stress.
Collapse
|