1
|
Preclinical Evaluation of 99mTc-Labeled GRPR Antagonists maSSS/SES-PEG 2-RM26 for Imaging of Prostate Cancer. Pharmaceutics 2021; 13:pharmaceutics13020182. [PMID: 33573232 PMCID: PMC7912279 DOI: 10.3390/pharmaceutics13020182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Gastrin-releasing peptide receptor (GRPR) is an important target for imaging of prostate cancer. The wide availability of single-photon emission computed tomography/computed tomography (SPECT/CT) and the generator-produced 99mTc can be utilized to facilitate the use of GRPR-targeting radiotracers for diagnostics of prostate cancers. METHODS Synthetically produced mercaptoacetyl-Ser-Ser-Ser (maSSS)-PEG2-RM26 and mercaptoacetyl-Ser-Glu-Ser (maSES)-PEG2-RM26 (RM26 = d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) were radiolabeled with 99mTc and characterized in vitro using PC-3 cells and in vivo, using NMRI or PC-3 tumor bearing mice. SPECT/CT imaging and dosimetry calculations were performed for [99mTc]Tc-maSSS-PEG2-RM26. RESULTS Peptides were radiolabeled with high yields (>98%), demonstrating GRPR specific binding and slow internalization in PC-3 cells. [99mTc]Tc-maSSS-PEG2-RM26 outperformed [99mTc]Tc-maSES-PEG2-RM26 in terms of GRPR affinity, with a lower dissociation constant (61 pM vs 849 pM) and demonstrating higher tumor uptake. [99mTc]Tc-maSSS-PEG2-RM26 had tumor-to-blood, tumor-to-muscle, and tumor-to-bone ratios of 97 ± 56, 188 ± 32, and 177 ± 79, respectively. SPECT/CT images of [99mTc]Tc-maSSS-PEG2-RM26 clearly visualized the GRPR-overexpressing tumors. The dosimetry estimated for [99mTc]Tc-maSSS-PEG2-RM26 showed the highest absorbed dose in the small intestine (1.65 × 10-3 mGy/MBq), and the effective dose is 3.49 × 10-3 mSv/MBq. CONCLUSION The GRPR antagonist maSSS-PEG2-RM26 is a promising GRPR-targeting agent that can be radiolabeled through a single-step with the generator-produced 99mTc and used for imaging of GRPR-expressing prostate cancer.
Collapse
|
2
|
Arifin DR, Bulte JWM. In Vivo Imaging of Pancreatic Islet Grafts in Diabetes Treatment. Front Endocrinol (Lausanne) 2021; 12:640117. [PMID: 33737913 PMCID: PMC7961081 DOI: 10.3389/fendo.2021.640117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Transplantation of pancreatic islets has potential to offer life-long blood glucose management in type I diabetes and severe type II diabetes without the need of exogenous insulin administration. However, islet cell therapy suffers from autoimmune and allogeneic rejection as well as non-immune related factors. Non-invasive techniques to monitor and evaluate the fate of cell implants in vivo are essential to understand the underlying causes of graft failure, and hence to improve the precision and efficacy of islet therapy. This review describes how imaging technology has been employed to interrogate the distribution, number or volume, viability, and function of islet implants in vivo. To date, fluorescence imaging, PET, SPECT, BLI, MRI, MPI, and ultrasonography are the many imaging modalities being developed to fulfill this endeavor. We outline here the advantages, limitations, and clinical utility of each particular imaging approach.
Collapse
Affiliation(s)
- Dian R. Arifin
- Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jeff W. M. Bulte
- Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Jeff W. M. Bulte,
| |
Collapse
|
3
|
Murakami T, Fujimoto H, Inagaki N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol (Lausanne) 2021; 12:714348. [PMID: 34248856 PMCID: PMC8270651 DOI: 10.3389/fendo.2021.714348] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
4
|
Clough TJ, Baxan N, Coakley EJ, Rivas C, Zhao L, Leclerc I, Martinez-Sanchez A, Rutter GA, Long NJ. Synthesis and in vivo behaviour of an exendin-4-based MRI probe capable of β-cell-dependent contrast enhancement in the pancreas. Dalton Trans 2020; 49:4732-4740. [PMID: 32207493 PMCID: PMC7116436 DOI: 10.1039/d0dt00332h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Global rates of diabetes mellitus are increasing, and treatment of the disease consumes a growing proportion of healthcare spending across the world. Pancreatic β-cells, responsible for insulin production, decline in mass in type 1 and, to a more limited degree, in type 2 diabetes. However, the extent and rate of loss in both diseases differs between patients resulting in the need for the development of novel diagnostic tools, which could quantitatively assess changes in mass of β-cells over time and potentially lead to earlier diagnosis and improved treatments. Exendin-4, a potent analogue of glucagon-like-peptide 1 (GLP-1), binds to the receptor GLP-1R, whose expression is enriched in β-cells. GLP-1R has thus been used in the past as a means of targeting probes for a wide variety of imaging modalities to the endocrine pancreas. However, exendin-4 conjugates designed specifically for MRI contrast agents are an under-explored area. In the present work, the synthesis and characterization of an exendin-4-dota(ga)-Gd(iii) complex, GdEx, is reported, along with its in vivo behaviour in healthy and in β-cell-depleted C57BL/6J mice. Compared to the ubiquitous probe, [Gd(dota)]-, GdEx shows selective uptake by the pancreas with a marked decrease in accumulation observed after the loss of β-cells elicited by deleting the microRNA processing enzyme, DICER. These results open up pathways towards the development of other targeted MRI contrast agents based on similar chemistry methodology.
Collapse
Affiliation(s)
- Thomas J Clough
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Nicoleta Baxan
- Biological Imaging Centre, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Emma J Coakley
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Charlotte Rivas
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Lan Zhao
- Biological Imaging Centre, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK and National Heart and Lung Institute, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK. and Lee Kong Chain School of Medicine, Nan Yang Technological University, 11 Mandalay Road, 308232 Singapore
| | - Nicholas J Long
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
5
|
Abstract
Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.
Collapse
|
6
|
Fujita N, Fujimoto H, Hamamatsu K, Murakami T, Kimura H, Toyoda K, Saji H, Inagaki N. Noninvasive longitudinal quantification of β-cell mass with [ 111In]-labeled exendin-4. FASEB J 2019; 33:11836-11844. [PMID: 31370679 PMCID: PMC6902711 DOI: 10.1096/fj.201900555rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023]
Abstract
Currently, quantifying β-cell mass (BCM) requires harvesting the pancreas. In this study, we investigated a potential noninvasive method to quantify BCM changes longitudinally using [Lys12(111In-BnDTPA-Ahx)]exendin-4 ([111In]-Ex4) and single-photon emission computed tomography (SPECT). We used autoradiography and transgenic mice expressing green fluorescent protein under the control of mouse insulin 1 gene promotor to evaluate the specificity of [111In]-Ex4 toward β cells. Using nonobese diabetic (NOD) mice, we injected [111In]-Ex4 (3.0 MBq) intravenously and performed SPECT 30 min later, repeating this at a 2-wk interval. After the second scan, we harvested the pancreas and calculated BCM from immunohistochemically stained pancreatic sections. Specific accumulation of [111In]-Ex4 in β cells was confirmed by autoradiography, with a significant correlation (r = 0.94) between the fluorescent and radioactive signal intensities. The radioactive signal from the pancreas in the second SPECT scan significantly correlated (r = 0.89) with BCM calculated from the immunostained pancreatic sections. We developed a regression formula to estimate BCM from the radioactive signals from the pancreas in SPECT scans. BCM can be quantified longitudinally and noninvasively by SPECT imaging with [111In]-Ex4. This technique successfully demonstrated longitudinal changes in BCM in NOD mice before and after onset of hyperglycemia.-Fujita, N., Fujimoto, H., Hamamatsu, K., Murakami, T., Kimura, H., Toyoda, K., Saji, H., Inagaki, N. Noninvasive longitudinal quantification of β-cell mass with [111In]-labeled exendin-4.
Collapse
Affiliation(s)
- Naotaka Fujita
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Radioisotope Research Center, Agency for Health, Safety, and Environment, Kyoto University, Kyoto, Japan
| | - Keita Hamamatsu
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kentaro Toyoda
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Kaeppeli SAM, Schibli R, Mindt TL, Behe M. Comparison of desferrioxamine and NODAGA for the gallium-68 labeling of exendin-4. EJNMMI Radiopharm Chem 2019; 4:9. [PMID: 31659487 PMCID: PMC6522624 DOI: 10.1186/s41181-019-0060-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/02/2019] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Radiolabeled exendin-4 (Ex4) derivatives are used to target the glucagon-like peptide-1 receptor (GLP-1R) for the clinical diagnosis of insulinomas, a rare type of neuroendocrine tumor. Gallium-68 is an ideal diagnostic nuclide for this application and a study evaluating an exendin-4-NODAGA conjugate is currently underway. However, in complexion with the chelator DFO, its in vivo stability has been a matter of dispute. The aim of this work was to directly compare [68Ga]Ga-Ex4NOD with [68Ga]Ga-Ex4DFO in vitro and in vivo. METHODS In our approach, we directly compared N'-[5-(acetyl-hydroxy-amino)pentyl]-N-[5-[3-(5-aminopentyl-hydroxy-carbamoyl)propanoylamino]pentyl]-N-hydroxy-butane diamide (desferriox-amine B, DFO) and 2-(4,7-bis (carboxymethyl)-1,4,7-triazonan-1-yl) pentanedioic acid (NODAGA) conjugated to exendin-4 in vitro and in vivo. We radiolabeled the peptides with gallium-68, followed by HPLC quality control. In vitro characterization was performed in CHL cells overexpressing the GLP-1R and in vivo studies were conducted with CD1 nu/nu mice carrying tumors derived from these cells. RESULTS We found that both peptides could be radiolabeled with a molar activity of about 9.33 MBq/nmol without further purification. They internalized equally well into GLP-1R-expressing cells and their IC50 was similar with 15.6 ± 7.8 nM and 18.4 ± 3.0 nM for [natGa]Ga-Ex4NOD and [natGa]Ga-Ex4DFO, respectively. In vivo, [68Ga]Ga-Ex4NOD accumulated more in all tissue, while [68Ga]Ga-Ex4DFO exhibited a more favorable target-to-kidney ratio. CONCLUSION AND RELEVANCE DFO is a suitable chelator for the radiolabeling of exendin-4 derivatives with gallium-68 for in vitro and preclinical in vivo studies. DFO performed better in vivo due to its significantly lower kidney accumulation (p < 0.0001). It was also found to be stable in vivo in mice, contrary to earlier reports. Based on our results, the DFO chelating system in combination with exendin-4 would be an interesting option for clinical imaging of insulinomas.
Collapse
Affiliation(s)
- Simon A M Kaeppeli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA/102, Forschungsstrasse 111, 5232, Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA/102, Forschungsstrasse 111, 5232, Villigen-PSI, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna (AKH), c/o Sekretariat Nuklearmedizin Währinger Gürtel 18-20, Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA/102, Forschungsstrasse 111, 5232, Villigen-PSI, Switzerland.
| |
Collapse
|
8
|
Hamamatsu K, Fujimoto H, Fujita N, Murakami T, Kimura H, Saji H, Inagaki N. Establishment of a method for in-vivo SPECT/CT imaging analysis of 111In-labeled exendin-4 pancreatic uptake in mice without the need for nephrectomy or a secondary probe. Nucl Med Biol 2018; 64-65:22-27. [PMID: 30015092 DOI: 10.1016/j.nucmedbio.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/09/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Radiolabeled exendin derivatives have been developed to visualize and quantify pancreatic beta cells. However, there are currently no established methods for analyzing in-vivo SPECT/CT images to quantify probe accumulation in the pancreas in rodent models. In this study, we aimed to establish an analytical method for murine in-vivo SPECT/CT imaging. METHODS First, we investigated the correlation between radioactivity measured by curiemeter and uptake calculated from SPECT/CT images of pancreata harvested after probe injection. Second, ROI volume necessary for reliable estimation of pancreatic uptake value was also examined. Third, the influence of high renal uptake on analysis was investigated with SPECT/CT imaging of harvested kidneys. Fourth, we compared pancreatic uptake values and ROI volumes estimated from in-vivo SPECT/CT images of pre- and post-nephrectomy mice. Finally, we assessed the correlation between the pancreatic uptake values from in-vivo SPECT/CT image analysis and radioactivity of harvested pancreata determined with a curiemeter. RESULTS Radioactivity of harvested pancreata measured by curiemeter and uptake values derived from SPECT/CT imaging of harvested pancreas showed an almost perfect correlation (r = 0.99, p < 0.001). Analysis using ROIs with >40% of the volume of the whole pancreas enabled reliable estimates of uptake (%CV < 10%). Exclusion of the perirenal space 2.7 mm from the kidney surface removed the influence of high renal uptake. Setting the uptake value of post-nephrectomy pancreatic ROIs as 100%, the uptake estimated from pre-nephrectomy images was comparable (102.9 ± 2.2%). A strong correlation was observed between pancreatic radioactivity measured by curiemeter and the uptake value derived from in-vivo SPECT/CT imaging (r = 0.90, p < 0.001). CONCLUSION Our analytical method without nephrectomy or additional probes enables reliable quantification of the pancreatic uptake of 111In-labeled exendin-4 using in-vivo SPECT/CT imaging. The quantification of rodent BCM with our method would be helpful to drug development.
Collapse
Affiliation(s)
- Keita Hamamatsu
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naotaka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|