1
|
Choi D, Ryu S, Kong M. Phage-derived proteins: Advancing food safety through biocontrol and detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2025; 24:e70124. [PMID: 39898971 PMCID: PMC11891642 DOI: 10.1111/1541-4337.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
The emergence of antimicrobial-resistant foodborne pathogens poses a continuous health risk and economic burden as they can easily spread through contaminated food. Therefore, the demand for new antimicrobial agents to address this problem is steadily increasing. Similarly, the development of rapid, sensitive, and accurate pathogen detection tools is a prerequisite for ensuring food safety. Phage-derived proteins have become innovative tools for combating these pathogens because of their potent antimicrobial activity and host specificity. Phage proteins are relatively free from regulation compared to phages per se, and there are no concerns about the transduction of harmful genes. With recent progress in next-generation sequencing technology, the analysis of phage genomes has become more accessible, and numerous phage proteins with potential for biocontrol and detection have been identified. This review provides a comprehensive overview of phage protein research on food safety from 2006 to the present, a pivotal period marked by the certification of phages as Generally Recognized As Safe (GRAS). Emphasizing recent advancements, we investigated the diverse applications of various phage proteins for biocontrol and detection purposes. While highlighting the successful implementation of these proteins, we also address the current bottlenecks and propose strategies to overcome these challenges. By summarizing the current state of research on phage-derived proteins, this review contributes to a deeper understanding of their potential as effective antimicrobial agents and tools for detecting foodborne pathogens.
Collapse
Affiliation(s)
- Dahee Choi
- Department of Food Science and Biotechnology, Institute of Food and BiotechnologySeoul National University of Science and TechnologySeoulSouth Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Minsuk Kong
- Department of Food Science and Biotechnology, Institute of Food and BiotechnologySeoul National University of Science and TechnologySeoulSouth Korea
| |
Collapse
|
2
|
PEGylation Prolongs the Half-Life of Equine Anti-SARS-CoV-2 Specific F(ab') 2. Int J Mol Sci 2023; 24:ijms24043387. [PMID: 36834803 PMCID: PMC9963672 DOI: 10.3390/ijms24043387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Therapeutic antibodies-F(ab')2 obtained from hyperimmune equine plasma could treat emerging infectious diseases rapidly because of their high neutralization activity and high output. However, the small-sized F(ab')2 is rapidly eliminated by blood circulation. This study explored PEGylation strategies to maximize the half-life of equine anti-SARS-CoV-2 specific F(ab')2. Equine anti-SARS-CoV-2 specific F(ab')2 were combined with 10 KDa MAL-PEG-MAL in optimum conditions. Specifically, there were two strategies: Fab-PEG and Fab-PEG-Fab, F(ab')2 bind to a PEG or two PEG, respectively. A single ion exchange chromatography step accomplished the purification of the products. Finally, the affinity and neutralizing activity was evaluated by ELISA and pseudovirus neutralization assay, and ELISA detected the pharmacokinetic parameters. The results displayed that equine anti-SARS-CoV-2 specific F(ab')2 has high specificity. Furthermore, PEGylation F(ab')2-Fab-PEG-Fab had a longer half-life than specific F(ab')2. The serum half-life of Fab-PEG-Fab, Fab-PEG, and specific F(ab')2 were 71.41 h, 26.73 h, and 38.32 h, respectively. The half-life of Fab-PEG-Fab was approximately two times as long as the specific F(ab')2. Thus far, PEGylated F(ab')2 has been prepared with high safety, high specificity, and a longer half-life, which could be used as a potential treatment for COVID-19.
Collapse
|
3
|
Lim HT, Kok BH, Lim CP, Abdul Majeed AB, Leow CY, Leow CH. Single domain antibodies derived from ancient animals as broadly neutralizing agents for SARS-CoV-2 and other coronaviruses. BIOMEDICAL ENGINEERING ADVANCES 2022; 4:100054. [PMID: 36158162 PMCID: PMC9482557 DOI: 10.1016/j.bea.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
Abstract
With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.
Collapse
Key Words
-
γ
, Gamma
-
δ
, Delta
- ACE2, Angiotensin-converting enzyme 2
- ADCC, Antibody-dependent cell-mediated cytotoxicity
- ADCP, Antibody-dependent cellular phagocytosis
- ADE, Antibody-dependent enhancement
- Alb, Albumin
- Bat-SL-CoV, Bat SARS-like coronavirus
- Broad neutralization
- CDC, Complement-dependent cytotoxicity
- CDR, Complementarity-determining region
- CH, Constant domain of antibody heavy chain
- CHO, Chinese hamster ovary
- CL, Constant domain of antibody light chain
- CNAR, Constant domain of immunoglobulin new antigen receptor
- COVID-19
- COVID-19, Coronavirus disease 2019
- Cryo-EM, Cryogenic electron microscopy
- Cu, Copper
- DNA, Deoxyribonucleic acid
- DPP4, Dipeptidyl peptidase 4
- E, Envelope
- EC50, Half-maximal effective concentration
- FDA, The United States Food and Drug Administration
- Fab, Antigen-binding fragment
- Fc, Crystallisable fragment
- FcR, Crystallisable fragment receptor
- Fig., Figure
- HCoV, Human coronavirus
- HIV, Human immunodeficiency virus
- HR, Heptad repeat
- HRP, Horseradish peroxidase
- HV, Hypervariable region
- IC50, Half-maximal inhibitory concentration
- Ig, Immunoglobulin
- IgNAR, Immunoglobulin new antigen receptor
- KD, Equilibrium dissociation constant
- L, Litre
- LRT, Lower respiratory tract
- M, Membrane
- MERS, Middle East respiratory syndrome
- MERS-CoV, Middle East respiratory syndrome coronavirus
- N, Nucleocapsid
- ND50, 50% neutralizing dose
- NTD, N-terminal domain
- Nb, Nanobody
- PCR, Polymerase chain reaction
- PEG, Polyethylene glycol
- RBD, Receptor-binding domain
- RBM, Receptor-binding motif
- RNA, Ribonucleic acid
- S, Spike
- SARS, Severe acute respiratory syndrome
- SARS-CoV, Severe acute respiratory syndrome coronavirus
- SARS-CoV-2 mutation
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SPAAC, Strain-promoted azide-alkyne cycloaddition
- Single-domain antibody
- Spike protein
- TMPRSS2, Transmembrane serine protease 2
- Therapeutic
- URT, Upper respiratory tract
- VH, Variable domain of antibody heavy chain
- VHH, Variable domain of camelid heavy-chain only antibody
- VL, Variable domain of antibody light chain
- VNAR, Variable domain of immunoglobulin new antigen receptor
- WHO, World Health Organization
- cDNA, Complementary deoxyribonucleic acid
- dpi, Days' post infection
- g, Gram
- kDa, Kilodalton
- koff, Dissociation rate constant
- mAb, Monoclonal antibody
- mRNA, Messenger ribonucleic acid
- nM, Nanomolar
- pM, Picomolar
- scFv, Single-chain variable fragment
- sdAb, Single-domain antibody
- ß, Beta
- α, Alpha
Collapse
Affiliation(s)
- H T Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - B H Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - C P Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - A B Abdul Majeed
- Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia
| | - C Y Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| | - C H Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
4
|
Abu-Dief AM, Alsehli M, Awaad A. A higher dose of PEGylated gold nanoparticles reduces the accelerated blood clearance phenomenon effect and induces spleen B lymphocytes in albino mice. Histochem Cell Biol 2022; 157:641-656. [PMID: 35157114 DOI: 10.1007/s00418-022-02086-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Polyethylene glycol (PEG) is a multifunctional polymer that has many uses in medical and biological applications. Recently, PEG has been mainly used in developing nanomaterial-based drug delivery systems (DDS). PEG is characterized by its high solubility, biological inertness, and ability to escape from immune cells (stealthiness) after systemic injection. The most challenging problem for PEGylated nanomaterials is their rapid elimination from the bloodstream after repeated doses of systemic injection, called accelerated blood clearance (ABC). Therefore, in this study, the effect of PEGylated nanomaterial dose concentration on ABC induction will be investigated using quantitative, histological, and immunohistochemical analyses. A higher dose concentration (2 mg/kg) of PEGylated gold nanoparticles (PEG-coated AuNPs) reduced the ABC phenomenon when intravenously injected into mice preinjected with the same dose. In contrast, a lower dose concentration (< 1 mg/kg) significantly induced the ABC phenomenon by the rapid elimination of the second dose of PEG-coated AuNPs from the bloodstream. To explain the relationship between the dose concentration (from PEG and AuNPs) and the induction of ABC, the biodistribution of PEG-coated AuNPs in liver and spleen [reticuloendothelial systems (RES)-rich organs] was investigated. The injected dose of PEG-coated AuNPs accumulated mainly in the hepatic Kupffer cells and hepatocytes. Similarly, spleen red pulp received a higher amount of the injected dose of PEG-coated AuNPs. However, the biodistriution profiles of PEG-coated AuNPs after the first and second dose for different dose concentrations varied in RES-rich organs. Additionally, the number of B lymphocytes, which have an important role in producing anti-PEG immunoglobulin (Ig)M, was affected by the repeated dose of PEG-coated AuNPs in the spleen. Therefore, for effective nanomaterial-based DDS development, dose optimization of PEG molecules that express PEGylated nanomaterials is important to reduce the ABC phenomenon effect. The ideal concentration of PEG molecules used to coat nanomaterials and the role of RES-rich organs must be determined to control the ABC phenomenon effect of PEGylated nanomaterials.
Collapse
Affiliation(s)
- Ahmed M Abu-Dief
- Department of Chemistry, College of Science, Taibah University, P.O. Box 344, Madinah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mosa Alsehli
- Department of Chemistry, College of Science, Taibah University, P.O. Box 344, Madinah, Saudi Arabia
| | - Aziz Awaad
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 52824, Egypt.
| |
Collapse
|
5
|
Yang X, Xia X, Xia XX, Sun Z, Yan D. Improving Targeted Delivery and Antitumor Efficacy with Engineered Tumor Necrosis Factor-Related Apoptosis Ligand-Affibody Fusion Protein. Mol Pharm 2021; 18:3854-3861. [PMID: 34543035 DOI: 10.1021/acs.molpharmaceut.1c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumor necrosis factor-related apoptosis ligand (TRAIL) is a promising protein candidate for selective apoptosis of a variety of cancer cells. However, the short half-life and a lack of targeted delivery are major obstacles for its application in cancer therapy. Here, we propose a simple strategy to solve the targeting problem by genetically fusing an anti-HER2 affibody to the C-terminus of the TRAIL. The fusion protein TRAIL-affibody was produced as a soluble form with high yield in recombinant Escherichia coli. In vitro studies proved that the affibody domain promoted the cellular uptake of the fusion protein in the HER2 overexpressed SKOV-3 cells and improved its apoptosis-inducing ability. In addition, the fusion protein exhibited higher accumulation at the tumor site and greater antitumor effect than those of TRAIL in vivo, indicating that the affibody promoted the tumor homing of the TRAIL and then improved the therapeutic efficacy. Importantly, repeated injection of high-dose TRAIL-affibody showed no obvious toxicity in mice. These results demonstrated that the engineered TRAIL-affibody is promising to be a highly tumor-specific and targeted cancer therapeutic agent.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhao Sun
- Shandong Luning Pharmaceutical Co. Ltd., Guangrao County, Shandong Province 257336, People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
6
|
Moliner-Morro A, J. Sheward D, Karl V, Perez Vidakovics L, Murrell B, McInerney GM, Hanke L. Picomolar SARS-CoV-2 Neutralization Using Multi-Arm PEG Nanobody Constructs. Biomolecules 2020; 10:biom10121661. [PMID: 33322557 PMCID: PMC7764822 DOI: 10.3390/biom10121661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/29/2022] Open
Abstract
Multivalent antibody constructs have a broad range of clinical and biotechnological applications. Nanobodies are especially useful as components for multivalent constructs as they allow increased valency while maintaining a small molecule size. We here describe a novel, rapid method for the generation of bi- and multivalent nanobody constructs with oriented assembly by Cu-free strain promoted azide-alkyne click chemistry (SPAAC). We used sortase A for ligation of click chemistry functional groups site-specifically to the C-terminus of nanobodies before creating C-to-C-terminal nanobody fusions and 4-arm polyethylene glycol (PEG) tetrameric nanobody constructs. We demonstrated the viability of this approach by generating constructs with the SARS-CoV-2 neutralizing nanobody Ty1. We compared the ability of the different constructs to neutralize SARS-CoV-2 pseudotyped virus and infectious virus in neutralization assays. The generated dimers neutralized the virus similarly to a nanobody-Fc fusion variant, while a 4-arm PEG based tetrameric Ty1 construct dramatically enhanced neutralization of SARS-CoV-2, with an IC50 in the low picomolar range.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
- Division of Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | - Vivien Karl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
- Correspondence:
| |
Collapse
|
7
|
Supasena W, Muangnoi C, Praengam K, Wong TW, Qiu G, Ye S, Wu J, Tanasupawat S, Rojsitthisak P. Enhanced selective cytotoxicity of doxorubicin to breast cancer cells by methoxypolyethylene glycol conjugation via a novel beta-thiopropanamide linker. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Tao Z, Liu Y, Yang H, Feng Y, Li H, Shi Q, Li S, Cheng J, Lu X. Customizing a Tridomain TRAIL Variant to Achieve Active Tumor Homing and Endogenous Albumin-Controlled Release of the Molecular Machine In Vivo. Biomacromolecules 2020; 21:4017-4029. [PMID: 32804484 DOI: 10.1021/acs.biomac.0c00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive antitumor drug candidate for precision cancer therapy due to its superior selective cytotoxicity in a variety of tumor cells. However, the clinical application of TRAIL in cancer therapy has been limited by its poor tumor-homing capacities and short half-life. Herein, we designed a tridomain TRAIL variant, Z-ABD-TRAIL, by sequentially fusing the platelet-derived growth factor receptor beta (PDGFRβ)-specific affibody ZPDGFRβ and an albumin-binding domain (ABD) to the N-terminus of TRAIL. The fusion protein Z-ABD-TRAIL was produced as a soluble protein with high yield in Escherichia coli (E. coli). The ZPDGFRβ domain provided Z-ABD-TRAIL with PDGFRβ-binding properties and thus promoted its tumor homing via the engagement of PDGFRβ-expressing pericytes on tumor microvessels. ABD-mediated binding of Z-ABD-TRAIL to albumin in the blood endowed TRAIL with long-lasting (>72 h for Z-ABD-TRAIL vs <0.5 h for TRAIL) abilities to kill tumor cells. Although the in vitro cytotoxicity of Z-ABD-TRAIL in tumor cells was similar to that of the parent TRAIL, the in vivo tumor uptake, apoptosis-inducing ability, and antitumor effect of Z-ABD-TRAIL were much greater than those of TRAIL, indicating that ZPDGFRβ-mediated tumor homing and ABD-introduced albumin binding significantly improved the pharmacodynamics of TRAIL. In addition, repeated injection of high-dose Z-ABD-TRAIL showed no obvious acute toxicity in mice. These results demonstrate that the newly designed tridomain Z-ABD-TRAIL is a promising agent for precision cancer therapy.
Collapse
Affiliation(s)
- Ze Tao
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuehua Liu
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanru Feng
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Li
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuxiao Shi
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Zheng Z, Okada R, Kobayashi H, Nagaya T, Wei J, Zhou Q, Lee F, Bera TK, Gao Y, Kuhlman W, Tai CH, Pastan I. Site-Specific PEGylation of Anti-Mesothelin Recombinant Immunotoxins Increases Half-life and Antitumor Activity. Mol Cancer Ther 2020; 19:812-821. [PMID: 31871266 PMCID: PMC7056543 DOI: 10.1158/1535-7163.mct-19-0890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/11/2019] [Accepted: 12/13/2019] [Indexed: 01/20/2023]
Abstract
Recombinant immunotoxins (RIT) are chimeric proteins containing an Fv that binds to tumor cells, fused to a fragment of Pseudomonas exotoxin (PE) that kills the cell. Their efficacy is limited by their short half-life in the circulation. Chemical modification with polyethylene glycol (PEG) is a well-established method to extend the half-lives of biologics. Our goal was to engineer RITs with an increase in half-life and high cytotoxic activity. We introduced single cysteines at different locations in five anti-mesothelin RITs and employed site-specific PEGylation to conjugate them to 20-kDa PEG. Because our previous PEGylation method using β-mercaptoethanol reduction gave poor yields of PEG-modified protein, we employed a new method using tris(2-carboxyethyl)phosphine to reduce the protein and could PEGylate RITs at approximately 90% efficiency. The new proteins retained 19% to 65% of cytotoxic activity. Although all proteins are modified with the same PEG, the radius of hydration varies from 5.2 to 7.1, showing PEG location has a large effect on protein shape. The RIT with the smallest radius of hydration has the highest cytotoxic activity. The PEGylated RITs have a 10- to 30-fold increase in half-life that is related to the increase in hydrodynamic size. Biodistribution experiments indicate that the long half-life is due to delayed uptake by the kidney. Antitumor experiments show that several PEG-RITs are much more active than unmodified RIT, and the PEG location greatly affects antitumor activity. We conclude that PEGylation is a useful approach to improve the half-life and antitumor activity of RITs.
Collapse
Affiliation(s)
- Zeliang Zheng
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ryuhei Okada
- Laboratory of Molecular Theranostics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Hisataka Kobayashi
- Laboratory of Molecular Theranostics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Tadanobu Nagaya
- Laboratory of Molecular Theranostics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Junxia Wei
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Qi Zhou
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Fred Lee
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Tapan K Bera
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yun Gao
- Selecta Biosciences, Watertown, Massachusetts
| | | | - Chin-Hsien Tai
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
10
|
PDGFRβ-targeted TRAIL specifically induces apoptosis of activated hepatic stellate cells and ameliorates liver fibrosis. Apoptosis 2020; 25:105-119. [DOI: 10.1007/s10495-019-01583-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Fix SM, Nyankima AG, McSweeney MD, Tsuruta JK, Lai SK, Dayton PA. Accelerated Clearance of Ultrasound Contrast Agents Containing Polyethylene Glycol is Associated with the Generation of Anti-Polyethylene Glycol Antibodies. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1266-1280. [PMID: 29602540 PMCID: PMC6171506 DOI: 10.1016/j.ultrasmedbio.2018.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 05/10/2023]
Abstract
Emerging evidence suggests that the immune system can recognize polyethylene glycol (PEG), leading to the accelerated blood clearance (ABC) of PEGylated particles. Our aim here was to study the generation of anti-PEG immunity and changes in PEGylated microbubble pharmacokinetics during repeated contrast-enhanced ultrasound imaging in rats. We administered homemade PEGylated microbubbles multiple times over a 28-d period and observed dramatically accelerated clearance (4.2 × reduction in half-life), which was associated with robust anti-PEG IgM and anti-PEG IgG antibody production. Dosing animals with free PEG as a competition agent before homemade PEGylated microbubble administration significantly prolonged microbubble circulation, suggesting that ABC was largely driven by circulating anti-PEG antibodies. Experiments with U.S. Food and Drug Administration-approved Definity microbubbles similarly resulted in ABC and the generation of anti-PEG antibodies. Experiments repeated with non-PEGylated Optison microbubbles revealed a slight shift in clearance, indicating that immunologic factors beyond anti-PEG immunity may play a role in ABC, especially of non-PEGylated agents.
Collapse
Affiliation(s)
- Samantha M Fix
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A Gloria Nyankima
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Morgan D McSweeney
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James K Tsuruta
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Samuel K Lai
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul A Dayton
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|