1
|
Wang T, Sun N, Ma Y, Zhang S. Recent Advances in the Development of Sigma Receptor (Radio)Ligands and Their Application in Tumors. ACS Pharmacol Transl Sci 2025; 8:951-977. [PMID: 40242588 PMCID: PMC11997895 DOI: 10.1021/acsptsci.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer ranks among the top triumvirate leading causes of human deaths worldwide. The pathological mechanisms are notably intricate, demonstrating proliferative and metastatic capabilities, which complicate therapeutic interventions. The sigma-1 receptor (σ1R) plays a crucial role in tumor survival and migration, while the sigma-2 receptor (σ2R) is intimately associated with tumor proliferation. This review encapsulated the investigation concerning σ1R and σ2R in neoplasms and rigorously summarized the ligands and radio-ligands development and their tumor applications, such as antitumor cell proliferation and PET/SPECT imaging in tumors. A comprehensive classification discussion was undertaken regarding the chemical structures and emphasized the possibility of dual/multitargeted ligands. Ultimately, we discussed the effects of chiral structures and the pharmacological characteristics of ligands on affinity and pharmacokinetic features in vivo, particularly concerning radiopharmaceuticals. This review functions as a beneficial resource, fostering ligand deployment and stimulating the generation of innovative ideas for developing innovative radiopharmaceuticals.
Collapse
Affiliation(s)
- Tao Wang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
- School
of Medical Imaging, North Sichuan Medical
College, NanChong 637100, China
- Department
of Nuclear Medicine, Affiliated Hospital
of North Sichuan Medical College, North Sichuan Medical College, NanChong 637000, China
| | - Na Sun
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Yanxi Ma
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Song Zhang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| |
Collapse
|
2
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
3
|
A carbon monoxide releasing metal organic framework nanoplatform for synergistic treatment of triple-negative breast tumors. J Nanobiotechnology 2022; 20:494. [PMID: 36424645 PMCID: PMC9685850 DOI: 10.1186/s12951-022-01704-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Carbon monoxide (CO) is an important signaling molecule participating in multiple biological functions. Previous studies have confirmed the valuable roles of CO in cancer therapies. If the CO concentration and distribution can be controlled in tumors, new cancer therapeutic strategy may be developed to benefit the patient survival. RESULTS In this study, a UiO-67 type metal-organic framework (MOF) nanoplatform was produced with cobalt and ruthenium ions incorporated into its structure (Co/Ru-UiO-67). Co/Ru-UiO-67 had a size range of 70-90 nm and maintained the porous structure, with cobalt and ruthenium distributed uniformly inside. Co/Ru-UiO-67 was able to catalyze carbon dioxide into CO upon light irradiation in an efficient manner with a catalysis speed of 5.6 nmol/min per 1 mg Co/Ru-UiO-67. Due to abnormal metabolic properties of tumor cells, tumor microenvironment usually contains abundant amount of CO2. Co/Ru-UiO-67 can transform tumor CO2 into CO at both cellular level and living tissues, which consequently interacts with relevant signaling pathways (e.g. Notch-1, MMPs etc.) to adjust tumor microenvironment. With proper PEGylation (pyrene-polyacrylic acid-polyethylene glycol, Py-PAA-PEG) and attachment of a tumor-homing peptide (F3), functionalized Co/Ru-UiO-67 could accumulate strongly in triple-negative MDA-MB-231 breast tumors, witnessed by positron emission tomography (PET) imaging after the addition of radioactive zirconium-89 (89Zr) into Co-UiO-67. When applied in vivo, Co/Ru-UiO-67 could alter the local hypoxic condition of MDA-MB-231 tumors, and work synergistically with tirapazamine (TPZ). CONCLUSION This nanoscale UiO-67 MOF platform can further our understanding of CO functions while produce CO in a controllable manner during cancer therapeutic administration.
Collapse
|
4
|
Yi X, Wang Z, Hu X, Yu A. Affinity probes based on small-molecule inhibitors for tumor imaging. Front Oncol 2022; 12:1028493. [PMID: 36387103 PMCID: PMC9647038 DOI: 10.3389/fonc.2022.1028493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Methods for molecular imaging of target areas, including optical imaging, radionuclide imaging, magnetic resonance imaging and other imaging technologies, are helpful for the early diagnosis and precise treatment of cancers. In addition to cancer management, small-molecule inhibitors are also used for developing cancer target probes since they act as the tight-binding ligands of overexpressed proteins in cancer cells. This review aims to summarize the structural designs of affinity probes based on small-molecule inhibitors from the aspects of the inhibitor, linker, dye and radionuclide, and discusses the influence of the modification of these structures on affinity and pharmacokinetics. We also present examples of inhibitor affinity probes in clinical applications, and these summaries will provide insights for future research and clinical translations.
Collapse
Affiliation(s)
| | | | - Xiang Hu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| | - Aixi Yu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| |
Collapse
|
5
|
Mishiro K, Wang M, Hirata S, Fuchigami T, Shiba K, Kinuya S, Ogawa K. Development of tumor-targeting aza-vesamicol derivatives with high affinity for sigma receptors for cancer theranostics. RSC Med Chem 2022; 13:986-997. [PMID: 36092143 PMCID: PMC9384704 DOI: 10.1039/d2md00099g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 07/31/2023] Open
Abstract
As sigma receptors are highly expressed on various cancer cells, radiolabeled sigma receptor ligands have been developed as imaging and therapeutic probes for cancer. Previously, we synthesized and evaluated a radioiodinated vesamicol derivative, 2-(4-[125I](4-iodophenyl)piperidine)cyclohexanol ((+)-[125I]pIV), and a radioiodinated aza-vesamicol derivative, trans-2-(4-(3-[125I](4-iodophenyl)propyl)piperazin-1-yl)cyclohexan-1-ol ([125I]2), as sigma-1 receptor-targeting probes. In order to obtain sigma receptor-targeting probes with superior biodistribution characteristics, we firstly synthesized twelve bromine-containing aza-vesamicol derivatives and evaluated their affinity for sigma receptors. One such derivative exhibited high selectivity for the sigma-1 receptor and another exhibited high affinity for both the sigma-1 and sigma-2 receptors. Thus, their halogen-substituted iodine- and radioiodine-containing compounds were prepared. The 125I-labeled compounds exhibited high uptake in tumor and lower uptake in non-target tissues than the two previously developed and evaluated 125I-labeled sigma receptor-targeting probes, [125I]pIV and [125I]2. Therefore, these novel radioiodine-labeled compounds should be promising as sigma receptor-targeting probes.
Collapse
Affiliation(s)
- Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Mengfei Wang
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Saki Hirata
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fuchigami
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Kazuhiro Shiba
- Research Center for Experimental Modeling of Human Disease, Kanazawa University Takara-machi Kanazawa Ishikawa 920-8640 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University Takara-machi Kanazawa Ishikawa 920-8641 Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
6
|
Liu Q, Li C, Liu J, Krish K, Fu X, Zhao J, Chen JC. Technical Note: Performance evaluation of a small-animal PET/CT system based on NEMA NU 4-2008 standards. Med Phys 2021; 48:5272-5282. [PMID: 34252215 DOI: 10.1002/mp.15088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/01/2021] [Accepted: 06/22/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The MetisTM PET/CT is a self-developed, silicon photomultiplier (SiPM) detector-based, rodent PET/CT system. The objective of this study was to evaluate the performance of the system using the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard protocol. METHODS Energy resolution, spatial resolution, sensitivity, scatter fraction (SF), noise-equivalent count rate (NECR), and image quality (IQ) characteristics were measured. A micro Derenzo phantom experiment was performed to evaluate the spatial resolution using three-dimensional ordered-subsets expectation maximization (3D-OSEM) and maximum likelihood expectation maximization (MLEM) reconstructed images. In addition, the CT imaging agent Ioverol 350 was mixed with fluorine-18 (18 F)-fluorodeoxyglucose (FDG) and then injected into the micro Derenzo phantom to evaluate the PET/CT imaging. In vivo PET/CT imaging studies were also conducted in a healthy mouse and rat using 18 F-FDG. RESULTS The mean energy resolution of the system was 15.3%. The tangential resolution was 0.82 mm full-width half-maximum (FWHM) at the center of the field of the view (FOV), and the radial and axial resolution were generally lower than 2.0 mm FWHM. The spatial resolution was significantly improved when using 3D-OSEM, especially the axial FWHM could be improved by up to about 57%. The system absolute sensitivity was 7.7% and 6.8% for an energy window of 200-750 and 350-750 keV respectively. The scatter fraction was 8.2% and 12.1% for the mouse- and rat-like phantom respectively. The peak NECR was 1343.72 kcps at 69 MBq and 640.32 kcps at 53 MBq for the mouse- and rat-like phantom respectively. The 1-mm fillable rod in the IQ phantom can be clearly observed. We can identify the 0.6-mm aperture of the micro Derenzo phantom image clearly using 3D-OSEM (10 subsets, 5 iterations). We also performed the fusion of the PET and CT images of the mouse and the brain imaging of the rat. CONCLUSIONS The results show that the system has the characteristics of high-resolution, high-sensitivity, and excellent IQ and is suitable for rodent imaging-based research.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical Imaging, Xuzhou Medical University, Jiangsu, China
| | - Chaofan Li
- School of Medical Information and Engineering, Xuzhou Medical University, Jiangsu, China
| | - Jiguo Liu
- Shandong Madic Technology Co., Ltd., Shandong, China
| | - Kishore Krish
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Xinlei Fu
- Shandong Madic Technology Co., Ltd., Shandong, China
| | - Jie Zhao
- School of Medical Imaging, Xuzhou Medical University, Jiangsu, China
| | - Jyh-Cheng Chen
- School of Medical Imaging, Xuzhou Medical University, Jiangsu, China.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| |
Collapse
|
7
|
Bergkemper M, Schepmann D, Wünsch B. Synthesis of σ Receptor Ligands with a Spirocyclic System Connected with a Tetrahydroisoquinoline Moiety via Different Linkers. ChemMedChem 2021; 16:1184-1197. [PMID: 33332704 PMCID: PMC8048568 DOI: 10.1002/cmdc.202000861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Indexed: 12/11/2022]
Abstract
With the aim to develop new σ2 receptor ligands, spirocyclic piperidines or cyclohexanamines with 2-benzopyran and 2-benzofuran scaffolds were connected to the 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline moiety by variable linkers. In addition to flexible alkyl chains, linkers containing an amide as functional group were synthesized. The 2-benzopyran and 2-benzofuran scaffold of the spirocyclic compounds were synthesized from 2-bromobenzaldehyde. The amide linkers were constructed by acylation of amines with chloroacetyl chloride and subsequent nucleophilic substitution, the alkyl linkers were obtained by LiAlH4 reduction of the corresponding amides. For the development of σ2 receptor ligands, the spirocyclic 2-benzopyran scaffold is more favorable than the ring-contracted 2-benzofuran system. Compounds bearing an alkyl chain as linker generally show higher σ affinity than acyl linkers containing an amide as functional group. A higher σ1 affinity for the cis-configured cyclohexanamines than for the trans-configured derivatives was found. The highest σ2 affinity was observed for cis-configured spiro[[2]benzopyran-1,1'-cyclohexan]-4'-amine connected to the tetrahydroisoquinoline system by an ethylene spacer (cis-31, Ki (σ2 )=200 nM; the highest σ1 affinity was recorded for the corresponding 2-benzofuran derivative with a CH2 C=O linker (cis-29, Ki (σ1 )=129 nM).
Collapse
Affiliation(s)
- Melanie Bergkemper
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstr. 4848149MünsterGermany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstr. 4848149MünsterGermany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische ChemieWestfälische Wilhelms-Universität MünsterCorrensstr. 4848149MünsterGermany
| |
Collapse
|
8
|
Chen CC, Chen YY, Lo YH, Lin MH, Chang CH, Chen CL, Wang HE, Wu CY. Evaluation of Radioiodinated Fluoronicotinamide/Fluoropicolinamide-Benzamide Derivatives as Theranostic Agents for Melanoma. Int J Mol Sci 2020; 21:ijms21186597. [PMID: 32916962 PMCID: PMC7554940 DOI: 10.3390/ijms21186597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/01/2022] Open
Abstract
Malignant melanoma is the most harmful type of skin cancer and its incidence has increased in this past decade. Early diagnosis and treatment are urgently desired. In this study, we conjugated picolinamide/nicotinamide with the pharmacophore of 131I-MIP-1145 to develop 131I-iodofluoropicolinamide benzamide (131I-IFPABZA) and 131I-iodofluoronicotiamide benzamide (131I-IFNABZA) with acceptable radiochemical yield (40 ± 5%) and high radiochemical purity (>98%). We also presented their biological characteristics in melanoma-bearing mouse models. 131I-IFPABZA (Log P = 2.01) was more lipophilic than 131I-IFNABZA (Log P = 1.49). B16F10-bearing mice injected with 131I-IFNABZA exhibited higher tumor-to-muscle ratio (T/M) than those administered with 131I-IFPABZA in planar γ-imaging and biodistribution studies. However, the imaging of 131I-IFNABZA- and 131I-IFPABZA-injected mice only showed marginal tumor uptake in A375 amelanotic melanoma-bearing mice throughout the experiment period, indicating the high binding affinity of these two radiotracers to melanin. Comparing the radiation-absorbed dose of 131I-IFNABZA with the melanin-targeted agents reported in the literature, 131I-IFNABZA exerts lower doses to normal tissues on the basis of similar tumor dose. Based on the in vitro and in vivo studies, we clearly demonstrated the potential of using 131I-IFNABZA as a theranostic agent against melanoma.
Collapse
Affiliation(s)
- Chao-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
| | - Yang-Yi Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
| | - Yi-Hsuan Lo
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Taipei City Hospital Zhongxiao Branch, Taipei 115, Taiwan;
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
- Institute of Nuclear Energy Research, Taoyuan 325, Taiwan
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.C.); (Y.-Y.C.); (Y.-H.L.); (C.-H.C.); (C.-L.C.); (H.-E.W.)
- Correspondence:
| |
Collapse
|
9
|
Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors. Sci Rep 2020; 10:10987. [PMID: 32620860 PMCID: PMC7335198 DOI: 10.1038/s41598-020-67748-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The biggest challenge in colorectal cancer therapy is to avoid intestinal drug absorption before reaching the colon, while focusing on tumor specific delivery with high local concentration and minimal toxicity. In our work, thymoquinone (TQ)-loaded polymeric nanocapsules were prepared using the nanoprecipitation technique using Eudragit S100 as polymeric shell. Conjugation of anisamide as a targeting ligand for sigma receptors overexpressed by colon cancer cells to Eudragit S100 was carried out via carbodiimide coupling reaction, and was confirmed by thin layer chromatography and 1H-NMR. TQ nanocapsules were characterized for particle size, surface morphology, zeta potential, entrapment efficiency % (EE%), in vitro drug release and physical stability. A cytotoxicity study on three colon cancer cell lines (HT-29, HCT-116, Caco-2) was performed. Results revealed that the polymeric nanocapsules were successfully prepared, and the in vitro characterization showed a suitable size, zeta potential, EE% and physical stability. TQ exhibited a delayed release pattern from the nanocapsules in vitro. Anisamide-targeted TQ nanocapsules showed higher cytotoxicity against HT-29 cells overexpressing sigma receptors compared to their non-targeted counterparts and free TQ after incubation for 48 h, hence delineating anisamide as a promising ligand for active colon cancer targeting.
Collapse
|
10
|
Qu D, Jiao M, Lin H, Tian C, Qu G, Xue J, Xue L, Ju C, Zhang C. Anisamide-functionalized pH-responsive amphiphilic chitosan-based paclitaxel micelles for sigma-1 receptor targeted prostate cancer treatment. Carbohydr Polym 2020; 229:115498. [PMID: 31826492 DOI: 10.1016/j.carbpol.2019.115498] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/03/2019] [Accepted: 10/17/2019] [Indexed: 02/09/2023]
Abstract
Controlled release and tumor-selective distribution are highly desirable for anticancer nanomedicines. Here, we design and synthesize an anisamide-conjugated N-octyl-N,O-maleoyl-O-phosphoryl chitosan (a-OMPC) which can form amphiphilic micelles featuring pH-responsive release and high affinity to sigma-1 receptor-overexpressed tumors for paclitaxel (PTX) delivery. Thereinto, maleoyl and phosphoryl groups cooperatively contribute to pH-responsive drug release due to a conversion from hydrophile to hydrophobe in the acidic microenvironment of endo/lysosomes. We demonstrated that PTX-loaded a-OMPC micelles (PTX-aM) enhanced the cellular internalization via the affinity between anisamide and sigma-1 receptor, rapidly released drug in endo/lysosomes and elevated the cytotoxicity against PC-3 cells. The in vivo studies further verified that PTX-aM could largely accumulate at the tumor site even after 24 h of administration, resulting in obvious inhibition effect and prolonged survival period in PC-3 tumor xenograft-bearing mice. Moreover, OMPC showed no obvious hemolytic and acute toxicity. Collectively, this chitosan derivate holds a promising potential in application of prostate cancer-targeted drug delivery system.
Collapse
Affiliation(s)
- Ding Qu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Mengying Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Haijiao Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chunli Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guowei Qu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jingwei Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Caoyun Ju
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
11
|
Ogawa K, Masuda R, Mishiro K, Wang M, Kozaka T, Shiba K, Kinuya S, Odani A. Syntheses and evaluation of a homologous series of aza-vesamicol as improved radioiodine-labeled probes for sigma-1 receptor imaging. Bioorg Med Chem 2019; 27:1990-1996. [PMID: 30975500 DOI: 10.1016/j.bmc.2019.03.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Sigma-1 receptor imaging probes for determining the expression levels are desirable for diagnoses of various diseases and companion diagnoses of therapeutic agents targeting the sigma-1 receptor. In this study, we aimed to develop probes with higher affinity for the sigma-1 receptor. For this purpose, we synthesized and evaluated compounds, namely, vesamicol derivatives, in which alkyl chains of varying chain length were introduced between a piperazine ring and a benzene ring. The binding affinity of the vesamicol derivatives for the sigma-1 receptor tended to increase depending on the length of the alkyl chain between the benzene ring and the piperazine ring. The sigma-1 receptor of 2-(4-(3-phenylpropyl)piperazin-1-yl)cyclohexan-1-ol (5) (Ki = 5.8 nM) exhibited the highest binding affinity; therefore, we introduced radioiodine into the benzene ring in 5. The radioiodine labeled probe [125I]2-(4-(3-(4-iodophenyl)propyl)piperazin-1-yl)cyclohexan-1-ol ([125I]10) showed high accumulation in the sigma-1 receptor expressing DU-145 cells both in vitro and in vivo. Co-injection of [125I]10 with an excess level of a sigma receptor ligand, haloperidol, resulted in a significant decrease in the tumor accumulation in vitro and in vivo, indicating sigma receptor-mediated tumor uptake. These results provide useful information for developing sigma-1 receptor imaging probes.
Collapse
Affiliation(s)
- Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Graduate School of medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Ryohei Masuda
- Graduate School of medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mengfei Wang
- Graduate School of medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Kozaka
- Advanced Science Research Centre, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuhiro Shiba
- Advanced Science Research Centre, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Seigo Kinuya
- Graduate School of medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akira Odani
- Graduate School of medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
12
|
Cao X, Yao Z, Dou F, Zhang Y, Qiu Y, Zhao S, Xu X, Liu X, Liu BF, Chen Y, Zhang G. Synthesis and Biological Evaluation of Sigma-1 (σ 1 ) Receptor Ligands Based on Phenyl-1,2,4-oxadiazole Derivatives. Chem Biodivers 2019; 16:e1800599. [PMID: 30549193 DOI: 10.1002/cbdv.201800599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2023]
Abstract
In this study, a series of phenyl-1,2,4-oxadiazole derivatives were synthesized and evaluated for anti-allodynic activity. Structure-activity relationship studies identified 1-{4-[3-(2,4-dichlorophenyl)-1,2,4-oxadiazol-5-yl]butyl}piperidine (39) with excellent affinity for the σ1 receptor and selectivity for the σ2 receptor, with poor activity to other central nervous system neurotransmitter receptors and transporters associated with pain. Compound 39 exhibited dose-dependent efficacy in suppressing the formalin-induced flinching and attenuating mechanical allodynia in chronic constriction injury-induced neuropathic rats. These results suggest that compound 39 exerts potent antihyperalgesic activity and could be considered as a promising candidate for treating neuropathic pain.
Collapse
Affiliation(s)
- Xudong Cao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhongyuan Yao
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, 221116, P. R. China
| | - Fei Dou
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, 221116, P. R. China
| | - Yifang Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, 221116, P. R. China
| | - Song Zhao
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, 221116, P. R. China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, 221116, P. R. China
| | - Xin Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bi-Feng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yin Chen
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, 221116, P. R. China
- Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, P. R. China
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, 221116, P. R. China
| |
Collapse
|
13
|
Sun YT, Wang GF, Yang YQ, Jin F, Wang Y, Xie XY, Mach RH, Huang YS. Synthesis and pharmacological evaluation of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives as sigma-2 receptor ligands. Eur J Med Chem 2018; 147:227-237. [DOI: 10.1016/j.ejmech.2017.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/13/2017] [Accepted: 11/05/2017] [Indexed: 01/02/2023]
|
14
|
Nunes PSG, Zhang Z, Kuo HT, Zhang C, Rousseau J, Rousseau E, Lau J, Kwon D, Carvalho I, Bénard F, Lin KS. Synthesis and evaluation of an 18
F-labeled trifluoroborate derivative of 2-nitroimidazole for imaging tumor hypoxia with positron emission tomography. J Labelled Comp Radiopharm 2018; 61:370-379. [DOI: 10.1002/jlcr.3594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Paulo Sérgio Gonçalves Nunes
- School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
- Department of Molecular Oncology; BC Cancer Agency; Vancouver BC Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology; BC Cancer Agency; Vancouver BC Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology; BC Cancer Agency; Vancouver BC Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology; BC Cancer Agency; Vancouver BC Canada
| | - Julie Rousseau
- Department of Molecular Oncology; BC Cancer Agency; Vancouver BC Canada
| | - Etienne Rousseau
- Department of Molecular Oncology; BC Cancer Agency; Vancouver BC Canada
| | - Joseph Lau
- Department of Molecular Oncology; BC Cancer Agency; Vancouver BC Canada
| | - Daniel Kwon
- Department of Molecular Oncology; BC Cancer Agency; Vancouver BC Canada
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - François Bénard
- Department of Molecular Oncology; BC Cancer Agency; Vancouver BC Canada
- Department of Functional Imaging; BC Cancer Agency; Vancouver BC Canada
- Department of Radiology; University of British Columbia; Vancouver BC Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology; BC Cancer Agency; Vancouver BC Canada
- Department of Functional Imaging; BC Cancer Agency; Vancouver BC Canada
- Department of Radiology; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
15
|
Synthesis and evaluation of haloperidol metabolite II prodrugs as anticancer agents. Future Med Chem 2017; 9:1749-1764. [DOI: 10.4155/fmc-2017-0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The use of haloperidol metabolite II (HP-metabolite II) prodrugs is an emerging strategy in the treatment of cancer. HP-metabolite II exhibits antiproliferative properties at micromolar concentrations inducing apoptosis in different types of cancer. Thus, the application of the prodrug approach appears as a useful method leading to much more desirable pharmacokinetic and pharmacodynamic properties. Some studies have shown that the esterification of the hydroxyl group of HP-metabolite II with 4-phenylbutiric acid (4-PBA) or valproic acid enhances the anticancer therapeutic potency. The current progresses in the design, synthesis and evaluation of anticancer activity of HP metabolite II prodrugs will be discussed in this review.
Collapse
|
16
|
Georgiadis MO, Karoutzou O, Foscolos AS, Papanastasiou I. Sigma Receptor (σR) Ligands with Antiproliferative and Anticancer Activity. Molecules 2017; 22:E1408. [PMID: 28841173 PMCID: PMC6151391 DOI: 10.3390/molecules22091408] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023] Open
Abstract
Sigma receptor (σR) ligands have proven to be useful as cancer diagnostics and anticancer therapeutics and their ligands have been developed as molecular probes in oncology. Moreover, various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have exhibited promising results against numerous human and rodent cancers and are investigated under preclinical and clinical study trials, indicating a new category of drugs in cancer therapy.
Collapse
Affiliation(s)
- Markos-Orestis Georgiadis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| | - Olga Karoutzou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| | - Angeliki-Sofia Foscolos
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| | - Ioannis Papanastasiou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| |
Collapse
|