1
|
Budiman A, Hafidz NPM, Azzahra RSS, Amaliah S, Sitinjak FY, Rusdin A, Subra L, Aulifa DL. Advancing the Physicochemical Properties and Therapeutic Potential of Plant Extracts Through Amorphous Solid Dispersion Systems. Polymers (Basel) 2024; 16:3489. [PMID: 39771340 PMCID: PMC11679451 DOI: 10.3390/polym16243489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Plant extracts demonstrate significant potential as a rich source of active pharmaceutical ingredients, exhibiting diverse biological activities and minimal toxicity. However, the low aqueous solubility of extracts and their gastrointestinal permeability, as well as their poor oral bioavailability, limit clinical advancements due to drug delivery problems. An amorphous solid dispersion (ASD) delivers drugs by changing an active pharmaceutical ingredient (API) into an amorphous state to increase the solubility and availability of the API to the body. This research aimed to analyze and summarize the successful advancements of ASD systems derived from plant extracts, emphasizing characterization and the effects on dissolution and pharmacological activity. The results show that ASD systems improve phytoconstituent dissolution, bioavailability, and stability, in addition to reducing dose and toxicity. This research demonstrates the significance of ASD in therapeutic formulations to augment the pharmacological activities and efficacy of medicinal plant extracts. The prospects indicate promising potential for therapeutic applications utilizing ASD systems, alongside medicinal plant extracts for clinical therapy.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (S.A.); (F.Y.S.); (A.R.)
| | - Nur Parida Mahdhani Hafidz
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (N.P.M.H.); (R.S.S.A.); (D.L.A.)
| | - Raden Siti Salma Azzahra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (N.P.M.H.); (R.S.S.A.); (D.L.A.)
| | - Salma Amaliah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (S.A.); (F.Y.S.); (A.R.)
| | - Feggy Yustika Sitinjak
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (S.A.); (F.Y.S.); (A.R.)
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (S.A.); (F.Y.S.); (A.R.)
| | - Laila Subra
- Department of Pharmacy, Faculty of Bioeconomic, Food and Health Sciences, Universiti Geomatika Malaysia, Kuala Lumpur 54200, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (N.P.M.H.); (R.S.S.A.); (D.L.A.)
| |
Collapse
|
2
|
Dos Santos KA, Chaves LL, Nadvorny D, de La Roca Soares MF, Sobrinho JLS. Exploring Co-Amorphous Formulations Of Nevirapine: Insights From Computational, Thermal, And Solubility Analyses. AAPS PharmSciTech 2024; 25:214. [PMID: 39266781 DOI: 10.1208/s12249-024-02932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
This study aimed to assess the formation of nevirapine (NVP) co-amorphs systems (CAM) with different co-formers (lamivudine-3TC, citric acid-CAc, and urea) through combined screening techniques as computational and thermal studies, solubility studies; in addition to develop and characterize suitable NVP-CAM. NVP-CAM were obtained using the quench-cooling method, and characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and polarized light microscopy (PLM), in addition to in vitro dissolution in pH 6.8. The screening results indicated intermolecular interactions occurring between NVP and 3TC; NVP and CAc, where shifts in the melting temperature of NVP were verified. The presence of CAc impacted the NVP equilibrium solubility, due to hydrogen bonds. DSC thermograms evidenced the reduction and shifting of the endothermic peaks of NVP in the presence of its co-formers, suggesting partial miscibility of the compounds. Amorphization was proven by XRD and PLM assays. In vitro dissolution study exhibited a significant increase in solubility and dissolution efficiency of NVP-CAM compared to free NVP. Combined use of screening studies was useful for the development of stable and amorphous NVP-CAM, with increased NVP solubility, making CAM promising systems for combined antiretroviral therapy.
Collapse
Affiliation(s)
- Kayque Almeida Dos Santos
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Daniela Nadvorny
- Postgraduate Program in Pharmaceutical Sciences, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - José Lamartine Soares Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
3
|
Marks JA, Nichols BLB, Mosquera-Giraldo LI, T Yazdi S, Taylor LS, Edgar KJ. 6-Carboxycellulose Acetate Butyrate: Effectiveness as an Amorphous Solid Dispersion Polymer. Mol Pharm 2024; 21:4589-4602. [PMID: 39088435 DOI: 10.1021/acs.molpharmaceut.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Amorphous solid dispersion (ASD) in a polymer matrix is a powerful method for enhancing the solubility and bioavailability of otherwise crystalline, poorly water-soluble drugs. 6-Carboxycellulose acetate butyrate (CCAB) is a relatively new commercial cellulose derivative that was introduced for use in waterborne coating applications. As CCAB is an amphiphilic, carboxyl-containing, high glass transition temperature (Tg) polymer, characteristics essential to excellent ASD polymer performance, we chose to explore its ASD potential. Structurally diverse drugs quercetin, ibuprofen, ritonavir, loratadine, and clarithromycin were dispersed in CCAB matrices. We evaluated the ability of CCAB to create ASDs with these drugs and its ability to provide solubility enhancement and effective drug release. CCAB/drug dispersions prepared by spray drying were amorphous up to 25 wt % drug, with loratadine remaining amorphous up to 50% drug. CCAB formulations with 10% drug proved effective at providing in vitro solubility enhancement for the crystalline flavonoid drug quercetin as well as ritonavir, but not for the more soluble APIs ibuprofen and clarithromycin and the more hydrophobic loratadine. CCAB did provide slow and controlled release of ibuprofen, offering a simple and promising Long-duration ibuprofen formulation. Formulation with clarithromycin showed the ability of the polymer to protect against degradation of the drug at stomach pH. Furthermore, CCAB ASDs with both loratadine and ibuprofen could be improved by the addition of the water-soluble polymer poly(vinylpyrrolidone) (PVP), with which CCAB shows good miscibility. CCAB provided solubility enhancement in some cases, and the slower drug release exhibited by CCAB, especially in the stomach, could be especially beneficial, for example, in formulations containing known stomach irritants like ibuprofen.
Collapse
Affiliation(s)
- Joyann A Marks
- Macromolecules Innovation Institute, Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, University of the West Indies, Mona, Kingston JMAAW15, Jamaica
| | - Brittany L B Nichols
- Department of Chemistry, College of Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Laura I Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sara T Yazdi
- Macromolecules Innovation Institute, Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Aulifa DL, Al Shofwan AA, Megantara S, Fakih TM, Budiman A. Elucidation of Molecular Interactions Between Drug-Polymer in Amorphous Solid Dispersion by a Computational Approach Using Molecular Dynamics Simulations. Adv Appl Bioinform Chem 2024; 17:1-19. [PMID: 38282640 PMCID: PMC10821732 DOI: 10.2147/aabc.s441628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
Introduction Amorphous drug dispersion is frequently used to enhance the solubility and dissolution of poorly water-soluble drugs, thereby improving their oral bioavailability. The dispersion of these drugs into polymer matrix can inhibit their recrystallization. The inter-molecular interactions between drug and polymer plays a role in the improvement of the dissolution rate, solubility, and physical stability of drug. Aim This study aims to investigate the formation and interactions of ritonavir (RTV)/poloxamer (PLX) amorphous formulation using a computational approach via molecular dynamics (MD) simulations, which mimicked solvent evaporation and melt-quenching method. Methods TheRoot Mean Square Deviation (RMSD) value, Root Mean Square Fluctuation (RMSF), Radial Distribution Function (RDF), Radius of Gyration (Rg), Solvent Accessible Surface Area (SASA), and hydrogen bond interactions were analyzed to determine interaction mechanisms between RTV and PLX in amorphous solid dispersion. Results The pi-alkyl bonds between RTV and PLX were formed after simulations of solvent evaporation, while the hydrogen bond interactions of RTV-PLX was observed during melt method simulations. These results indicate the successful formulation of amorphous solid dispersion (ASD) from RTV and PLX. The RMSD values obtained from the solvent evaporation, melt-cooling-A, melt-cooling-B, and melt-cooling-C methods were 3.33 Å, 1.97 Å, 1.30 Å, and 1.29 Å, respectively, while the average RMSF values were 2.65 Å, 1.04 Å, 1.05 Å, and 1.07 Å, respectively. This indicates that the suppression of translational motion of RTV from the melt method can be stronger than solvent evaporation caused by the intermolecular interactions of RTV-PLX. Conclusion MD simulations helped in understanding the formation and interaction mechanisms of ASD formulations that were difficult to detect by experimental approaches.
Collapse
Affiliation(s)
- Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Adnan Aly Al Shofwan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Taufik Muhammad Fakih
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
5
|
Joshi P, Sangamwar AT. Insights into the Role of Compendial/Biorelevant Media on the Supersaturation Behaviour of Drug Combination (Drug-Drug Interaction) and Precipitation Inhibition by Polymers. AAPS PharmSciTech 2022; 23:300. [DOI: 10.1208/s12249-022-02448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
|
6
|
Nambiar AG, Singh M, Mali AR, Serrano DR, Kumar R, Healy AM, Agrawal AK, Kumar D. Continuous Manufacturing and Molecular Modeling of Pharmaceutical Amorphous Solid Dispersions. AAPS PharmSciTech 2022; 23:249. [PMID: 36056225 DOI: 10.1208/s12249-022-02408-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Amorphous solid dispersions enhance solubility and oral bioavailability of poorly water-soluble drugs. The escalating number of drugs with poor aqueous solubility, poor dissolution, and poor oral bioavailability is an unresolved problem that requires adequate interventions. This review article highlights recent solubility and bioavailability enhancement advances using amorphous solid dispersions (ASDs). The review also highlights the mechanism of enhanced dissolution and the challenges faced by ASD-based products, such as stability and scale-up. The role of process analytical technology (PAT) supporting continuous manufacturing is highlighted. Accurately predicting interactions between the drug and polymeric carrier requires long experimental screening methods, and this is a space where computational tools hold significant potential. Recent advancements in data science, computational tools, and easy access to high-end computation power are set to accelerate ASD-based research. Hence, particular emphasis has been given to molecular modeling techniques that can address some of the unsolved questions related to ASDs. With the advancement in PAT tools and artificial intelligence, there is an increasing interest in the continuous manufacturing of pharmaceuticals. ASDs are a suitable option for continuous manufacturing, as production of a drug product from an ASD by direct compression is a reality, where the addition of multiple excipients is easy to avoid. Significant attention is necessary for ongoing clinical studies based on ASDs, which is paving the way for the approval of many new ASDs and their introduction into the market.
Collapse
Affiliation(s)
- Amritha G Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishek R Mali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
7
|
Shi Q, Li F, Yeh S, Moinuddin SM, Xin J, Xu J, Chen H, Ling B. Recent Advances in Enhancement of Dissolution and Supersaturation of Poorly Water-Soluble Drug in Amorphous Pharmaceutical Solids: A Review. AAPS PharmSciTech 2021; 23:16. [PMID: 34893936 DOI: 10.1208/s12249-021-02137-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Amorphization is one of the most effective pharmaceutical approaches to enhance the dissolution and oral bioavailability of poorly water-soluble drugs. In recent years, amorphous formulations have been experiencing rapid development both in theoretical and practical application. Based on using different types of stabilizing agents, amorphous formulations can be mainly classified as polymer-based amorphous solid dispersion, coamorphous formulation, mesoporous silica-based amorphous formulation, etc. This paper summarizes recent advances in the dissolution and supersaturation of these amorphous formulations. Moreover, we also highlight the roles of stabilizing agents such as polymers, low molecular weight co-formers, and mesoporous silica. Maintaining supersaturation in solution is a key factor for the enhancement of dissolution profile and oral bioavailability, and thus, the strategies and challenges for maintaining supersaturation are also discussed. With an in-depth understanding of the inherent mechanisms of dissolution behaviors, the design of amorphous pharmaceutical formulations will become more scientific and reasonable, leading to vigorous development of commercial amorphous drug products.
Collapse
|
8
|
El Sayed M, Alhalaweh A, Bergström CAS. Impact of Simulated Intestinal Fluids on Dissolution, Solution Chemistry, and Membrane Transport of Amorphous Multidrug Formulations. Mol Pharm 2021; 18:4079-4089. [PMID: 34613730 PMCID: PMC8564758 DOI: 10.1021/acs.molpharmaceut.1c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The solution behavior
and membrane transport of multidrug formulations
were herein investigated in a biorelevant medium simulating fasted
conditions. Amorphous multidrug formulations were prepared by the
solvent evaporation method. Combinations of atazanavir (ATV) and ritonavir
(RTV) and felodipine (FDN) and indapamide (IPM) were prepared and
stabilized by a polymer for studying their dissolution (under non-sink
conditions) and membrane transport in fasted state simulated intestinal
fluid (FaSSIF). The micellar solubilization by FaSSIF enhanced the
amorphous solubility of the drugs to different extents. Similar to
buffer, the maximum achievable concentration of drugs in combination
was reduced in FaSSIF, but the extent of reduction was affected by
the degree of FaSSIF solubilization. Dissolution studies of ATV and
IPM revealed that the amorphous solubility of these two drugs was
not affected by FaSSIF solubilization. In contrast, RTV was significantly
affected by FaSSIF solubilization with a 30% reduction in the maximum
achievable concentration upon combination to ATV, compared to 50%
reduction in buffer. This positive deviation by FaSSIF solubilization
was not reflected in the mass transport–time profiles. Interestingly,
FDN concentrations remain constant until the amount of IPM added was
over 1000 μg/mL. No decrease in the membrane transport of FDN
was observed for a 1:1 M ratio of FDN-IPM combination. This study
demonstrates the importance of studying amorphous multidrug formulations
under physiologically relevant conditions to obtain insights into
the performance of these formulations after oral administration.
Collapse
Affiliation(s)
- Mira El Sayed
- Department of Pharmacy, Biomedical Centre, Uppsala University, P.O. Box 580, Uppsala SE-751 23, Sweden.,Recipharm OT Chemistry AB, Uppsala SE-754 50, Sweden
| | | | - Christel A S Bergström
- Department of Pharmacy, Biomedical Centre, Uppsala University, P.O. Box 580, Uppsala SE-751 23, Sweden
| |
Collapse
|
9
|
Bharate SS. Enhancing Biopharmaceutical Attributes of Khellin by Amorphous Binary Solid Dispersions. AAPS PharmSciTech 2021; 22:260. [PMID: 34705156 DOI: 10.1208/s12249-021-02126-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Khellin, a furanochromone isolated from fruits and seeds of Ammi visnaga, is traditionally used in many eastern Mediterranean countries. The plant decoction and the crystalline substance khellin have many pharmacological activities. For instance, it acts as a bronchodilator and also relieves renal colic and urethral stones, etc. However, the low water solubility (~ 120 µg/mL) and low bioavailability limit its therapeutic application. Thus, the present research explores the development of its binary and ternary solid dispersion formulations to improve its solubility and dissolution behavior. A 24-well plate miniaturized protocol was established to identify the optimal hydrophilic polymer to prepare its solid dispersions. PEG-4000 was recognized as the favorable hydrophilic carrier in preparation of solid dispersion, SSB17. The formulation displayed ~ five-fold enhancement in the aqueous solubility of khellin. The binary solid dispersion SSB17 was manufactured at a gram scale and evaluated using 1H-NMR, 13C-NMR, FT-IR, p-XRD, SEM, DSC, in vitro dissolution, and predicted pharmacokinetics. The quantitative dissolution data of SSB17 demonstrated ~ 2-3-fold improvement in AUC at physiological pH conditions. These conclusions highlight the basis for further preclinical studies on solid dispersions of khellin with improved biopharmaceutical properties.
Collapse
|
10
|
Borde S, Hegde P, Prathipati P, North J, Kumari D, Chauhan H. Formulation and characterization of ternary amorphous solid dispersions of a highly potent anti-tubercular agent and curcumin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Shi X, Zhou X, Shen S, Chen Q, Song S, Gu C, Wang C. Improved in vitro and in vivo properties of telmisartan in the co-amorphous system with hydrochlorothiazide: A potential drug-drug interaction mechanism prediction. Eur J Pharm Sci 2021; 161:105773. [PMID: 33640500 DOI: 10.1016/j.ejps.2021.105773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022]
Abstract
The aim of this study is to improve in vitro and in vivo properties of an antihypertensive poorly soluble drug Telmisartan (TEL) by co-amorphization with a pharmacologically relevant drug Hydrochlorothiazide (HCT), and to improve the stability of single amorphous drugs. Herein, TEL-HCT co-amorphous systems (CAMs) (1:1, 2:3, 1:2, 1:3) were prepared by solvent evaporation. The apparent solubility and the dissolution of TEL in the TEL-HCT CAM (1:3) were increased by 79 times and 10 times compared to crystalline TEL, which showed the optimal properties. Cmax and AUC0-48h value of TEL-HCT CAM (1:3) were 10-fold and 3-fold as the crystalline state. Moreover, TEL-HCT CAM (1:3) remained stable in 60 °C, 0 % RH (30 days), 40 °C, 75 % RH (90 days) and 25 °C, 0 % RH (180 days). Positive ΔTgs were observed in all CAMs, suggesting the existence of potential intermolecular force. Fourier Transform-Infrared and Raman spectra were used to further prove the drug-drug interaction and predict potential mechanisms. Therefore, in the strategy of combined medication, CAM provides a promising way to transfer drugs with poor properties into systems with enhanced dissolution, greater bioavailability, and stabilized amorphous state, which has been proven in this study.
Collapse
Affiliation(s)
- Xiangjun Shi
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China.
| | - Xiyue Zhou
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Shuimei Shen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Qifeng Chen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Shengjie Song
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Chenru Gu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Chao Wang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| |
Collapse
|
12
|
Szell PMJ, Lewandowski JR, Blade H, Hughes LP, Nilsson Lill SO, Brown SP. Taming the dynamics in a pharmaceutical by cocrystallization: investigating the impact of the coformer by solid-state NMR. CrystEngComm 2021. [DOI: 10.1039/d1ce01084k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anti-HIV pharmaceutical efavirenz is highly dynamic in its crystalline state, and we show that these dynamics can be tamed through the introduction of a coformer.
Collapse
Affiliation(s)
| | | | - Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Leslie P. Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Sten O. Nilsson Lill
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
13
|
Yu J, Yu D, Lane S, McConnachie L, Ho RJY. Controlled Solvent Removal from Antiviral Drugs and Excipients in Solution Enables the Formation of Novel Combination Multi-Drug-Motifs in Pharmaceutical Powders Composed of Lopinavir, Ritonavir and Tenofovir. J Pharm Sci 2020; 109:3480-3489. [PMID: 32791073 PMCID: PMC8986323 DOI: 10.1016/j.xphs.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023]
Abstract
Diverging physicochemical properties of HIV drug combinations are challenging to formulate as a single dosage form. We have found that 2-to-4 hydrophilic and hydrophobic HIV drugs in combination can be stabilized with lipid excipients under a controlled solvent removal process to form a novel pharmaceutical powder distinct from typical amorphous material. This discovery has enabled production of a drug combination nanoparticle (DcNP) powder composed of 3 HIV drugs-water-insoluble lopinavir (LogP = 4.7) and ritonavir (LogP = 5.6) and water-soluble tenofovir (LogP = -1.6). DcNP powder, exhibiting repeating units of multi-drug-motifs (referred to as MDM), is made by dissolving all constituents in ethanolic solution, followed by controlled solvent removal. The DcNP powder intersperses chemically diverse drug molecules with lipid excipients to form repeating MDM units. The proposed MDM structure is consistent with data collected with X-ray diffraction, differential calorimetry, and time-of-flight secondary ion mass spectrometry. The successful assembly of chemically diverse drugs in MDM structure is likely due to a novel process of making drug combination powders. The method described here has successfully extended to formulating other clinically prescribed antiviral drug combinations, and thus may serve as a platform technology for developing drug combination nanoparticles for treating a wide range of chronic diseases.
Collapse
Affiliation(s)
- Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Danni Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Sarah Lane
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Lisa McConnachie
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195-7610, USA.
| |
Collapse
|
14
|
Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, Qian S. Co-amorphous systems for the delivery of poorly water-soluble drugs: recent advances and an update. Expert Opin Drug Deliv 2020; 17:1411-1435. [DOI: 10.1080/17425247.2020.1796631] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yan Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Runze Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
15
|
Chen J, Nichols BLB, Norris AM, Frazier CE, Edgar KJ. All-Polysaccharide, Self-Healing Injectable Hydrogels Based on Chitosan and Oxidized Hydroxypropyl Polysaccharides. Biomacromolecules 2020; 21:4261-4272. [PMID: 32809805 DOI: 10.1021/acs.biomac.0c01046] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polysaccharide-based hydrogels are attractive materials for biomedical applications for reasons that include their polyfunctionality, generally benign nature, and biodegradability. However, the use of polysaccharide-based hydrogels may be limited by toxicity arising from small-molecule crosslinkers, or may involve undesired chemical modification [Hennink, W. E.; et al. Adv. Drug Delivery Rev. 2012, 64, 223-236]. Here, we report a green, simple, efficient strategy for the preparation of polysaccharide-based, in situ forming hydrogels. The Edgar group reports in the accompanying manuscript that chemoselective oxidation of oligo(hydroxypropyl)-substituted polysaccharides introduces ketone groups at the termini of the side chains [Nichols, B. L. B.; et al]. Amine-containing moieties can condense with ketones to form imines. The imine linkage is dynamic in the presence of water, providing the potential for self-healing [Wei, Z.; et al. Adv. Funct. Mater. 2015, 25, 1352-1359], injectability [Wei, Z.; et al. Adv. Funct. Mater. 2015, 25, 1352-1359], and pH responsiveness [Yao, K.; et al. J. Appl. Polym. Sci. 1993, 48, 343-354]. In this work, we designed and prepared two different types of hydrogels, oxidized hydroxypropyl cellulose/chitosan (Ox-HPC-Chitosan) and oxidized hydroxypropyl dextran/chitosan (Ox-HPD-Chitosan), each cross-linked by imine bonds. The mechanical properties of these hydrogels were characterized by rheometry, revealing that hydrogel storage modulus could be tuned from 300 Pa to 13 kPa simply by controlling the degree of substitution (DS) of ketone groups. Rheological characterization also illustrated the rapid self-healing property of these all-polysaccharide hydrogels. Moreover, these hydrogels exhibited high swelling rates and facile injectability. Therefore, this work reveals a potential strategy for the construction of hydrogels that require no small-molecule crosslinkers and are therefore highly attractive for biomedical, agricultural, controlled release, and other applications.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brittany L B Nichols
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ann M Norris
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Charles E Frazier
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
16
|
Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm 2020; 586:119560. [PMID: 32565285 PMCID: PMC8691091 DOI: 10.1016/j.ijpharm.2020.119560] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 01/24/2023]
Abstract
Amorphous solid dispersions (ASDs) are being employed frequently to improve bioavailability of poorly soluble molecules by enhancing the rate and extant of dissolution in drug product development process. These systems comprise of an amorphous active pharmaceutical ingredient stabilized by a polymer matrix to provide enhanced stability. This review discussed the methodologies of preparation and characterization of ASDs with an emphasis on understanding and predicting stability. Rational selection of polymers, preparation techniques with its advantages and disadvantages and characterization of polymeric amorphous solid dispersions have discussed. Stability aspects have been described as per ICH guidelines which intend to depend on selection of polymers and preparation methods of ASD. The mechanism involved on improvement of bioavailability also considered. Regulatory importance of ASD and current evolving details of QBD approach were reviewed. Amorphous products and particularly ASDs are currently most emerging area in the pharmaceutical field. This strategic approach presents huge impact and advantageous features concerning the overall improvement of drug product performance in clinical settings which ultimately lead to drug product approval by leading regulatory agencies into the market.
Collapse
Affiliation(s)
- Palpandi Pandi
- Department of Pharmacy, Employee State Insurance Corporation Medical College and Hospital, Chennai 600078, India
| | - Raviteja Bulusu
- Department of Pharmaceutics, Jawaharlal Nehru Technological University, Kakinada 533003, India
| | - Nagavendra Kommineni
- College of Pharmacy, Florida Agriculture and Mechanical University, FL 32307, USA
| | - Wahid Khan
- Natco Research Centre, NATCO Pharma Limited, Hyderabad 500018, India.
| | - Mandip Singh
- College of Pharmacy, Florida Agriculture and Mechanical University, FL 32307, USA.
| |
Collapse
|
17
|
Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv 2020; 27:110-127. [PMID: 31885288 PMCID: PMC6968646 DOI: 10.1080/10717544.2019.1704940] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Amorphous solid dispersions (ASDs) can increase the oral bioavailability of poorly soluble drugs. However, their use in drug development is comparably rare due to a lack of basic understanding of mechanisms governing drug liberation and absorption in vivo. Furthermore, the lack of a unified nomenclature hampers the interpretation and classification of research data. In this review, we therefore summarize and conceptualize mechanisms covering the dissolution of ASDs, formation of supersaturated ASD solutions, factors responsible for solution stabilization, drug uptake from ASD solutions, and drug distribution within these complex systems as well as effects of excipients. Furthermore, we discuss the importance of these findings on the development of ASDs. This improved overall understanding of these mechanisms will facilitate a rational ASD formulation development and will serve as a basis for further mechanistic research on drug delivery by ASDs.
Collapse
Affiliation(s)
- Andreas Schittny
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland.,Department of Biomedicine, Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Maxim Puchkov
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Moinuddin SM, Shi Q, Tao J, Guo M, Zhang J, Xue Q, Ruan S, Cai T. Enhanced Physical Stability and Synchronized Release of Febuxostat and Indomethacin in Coamorphous Solids. AAPS PharmSciTech 2020; 21:41. [PMID: 31898765 DOI: 10.1208/s12249-019-1578-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022] Open
Abstract
Coamorphous formulation, a homogeneous monophasic amorphous system composed of multiple components, has been demonstrated as an effective approach for delivering drugs with poor aqueous solubility. In this study, we prepared the coamorphous system composed of two poorly soluble drugs febuxostat (FEB) and indomethacin (IMC) by using cryogenic milling. The combination of these two drugs in the coamorphous form can attain a synergistic effect, especially on gout therapy. Coamorphous solid of FEB and IMC in 1:1 molar ratio exhibited superior physical stability compared with the individual amorphous components, as evidenced by X-ray powder diffractions after 30 days of storage at ambient and elevated temperature. In addition, the FEB-IMC coamorphous system has been demonstrated to show enhanced dissolution performance. The intrinsic dissolution rates of two components in the coamorphous system exhibited the synchronized drug release. Based on the FT-IR spectroscopy, the excellent physical stability and synchronized release of FEB-IMC coamorphous system could be attributed to the heterodimer structure formed by strong hydrogen bonding interactions between these drugs. Furthermore, the supersaturation potential of FEB-IMC coamorphous solids was also investigated through the cosolvent quenching method. The FEB-IMC coamorphous system can effectively inhibit the fast crystallization of FEB in the supersaturated solution. However, the maximum achievable supersaturation of IMC in the coamorphous system decreases to only one fifth of that achieved for the pure amorphous IMC. These results are relevant for understanding the physical stability and complex solution behaviors of the coamorphous formulation.
Collapse
|
19
|
Costa B, Sauceau M, Del Confetto S, Sescousse R, Ré M. Determination of drug-polymer solubility from supersaturated spray-dried amorphous solid dispersions: A case study with Efavirenz and Soluplus®. Eur J Pharm Biopharm 2019; 142:300-306. [DOI: 10.1016/j.ejpb.2019.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 04/17/2019] [Accepted: 06/23/2019] [Indexed: 11/28/2022]
|
20
|
Bazzo GC, Mostafa D, França MT, Pezzini BR, Stulzer HK. How tenofovir disoproxil fumarate can impact on solubility and dissolution rate of efavirenz? Int J Pharm 2019; 570:118597. [PMID: 31401297 DOI: 10.1016/j.ijpharm.2019.118597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/16/2022]
Abstract
Efavirenz (EFZ) and tenofovir disoproxil fumarate (TDF) can be used simultaneously in the treatment of human immunodeficiency virus type1 infection. In this work the impact of TDF, a hydrophilic drug, on the solubility and dissolution rate of EFZ, a poorly water-soluble drug, was evaluated. EFZ/TDF binary mixtures in different molar ratios were prepared. Differential scanning calorimetry (DSC) results indicate the formation of a eutectic mixture, the molar ratio of 65/35 being the eutectic point. It was observed an increase in the EFZ solubility in water and acidic conditions (0.1 N HCl and biorelevant medium), in the presence of TDF. On the other hand, there was a decreasing on EFZ solubility in phosphate buffer pH 6.8, probably influenced by the lower solubility of TDF in this medium. The high solubility of TDF in water and acidic medium may have contributed to improve the solubility of EFZ, as well as the formation of a eutectic mixture, supported by X-ray powder diffraction (XRPD) and Fourier Transform infrared spectroscopy (FTIR) analyses. However, TDF solubility and dissolution rate was not significantly influenced by the presence of EFZ.
Collapse
Affiliation(s)
- Giovana Carolina Bazzo
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, SC, Brazil
| | - Dina Mostafa
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, SC, Brazil
| | - Maria Terezinha França
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, SC, Brazil
| | - Bianca Ramos Pezzini
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, SC, Brazil
| | - Hellen Karine Stulzer
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, SC, Brazil.
| |
Collapse
|
21
|
Salim M, Khan J, Ramirez G, Murshed M, Clulow AJ, Hawley A, Ramachandruni H, Beilles S, Boyd BJ. Impact of Ferroquine on the Solubilization of Artefenomel (OZ439) during in Vitro Lipolysis in Milk and Implications for Oral Combination Therapy for Malaria. Mol Pharm 2019; 16:1658-1668. [PMID: 30830789 PMCID: PMC6448114 DOI: 10.1021/acs.molpharmaceut.8b01333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Milk is an attractive lipid-based formulation for the delivery of poorly water-soluble drugs to pediatric populations. We recently observed that solubilization of artefenomel (OZ439) during in vitro intestinal lipolysis was driven by digestion of triglycerides in full-cream bovine milk, reflecting the ability of milk to act as an enabling formulation in the clinic. However, when OZ439 was co-administered with a second antimalarial drug, ferroquine (FQ) the exposure of OZ439 was reduced. The current study therefore aimed to understand the impact of the presence of FQ on the solubilization of OZ439 in milk during in vitro intestinal digestion. Synchrotron small-angle X-ray scattering was used for in situ monitoring of drug solubilization (inferred via decreases in the intensity of drug diffraction peaks) and polymorphic transformations that occurred during the course of digestion. Quantification of the amount of each drug solubilized over time and analysis of their distributions across the separated phases of digested milk were determined using high-performance liquid chromatography. The results show that FQ reduced the solubilization of OZ439 during milk digestion, which may be due to competitive binding of FQ to the digested milk products. Interactions between the protonated FQ-H+ and ionized liberated free fatty acids resulted in the formation of amorphous salts, which removes the low-energy crystalline state as a barrier to dissolution of FQ, while inhibiting the solubilization of OZ439. We conclude that although milk could enhance the solubilization of poorly water-soluble OZ439 during in vitro digestion principally due to the formation of fatty acids, the solubilization efficiency was reduced by the presence of FQ by competition for the available fatty acids. Assessment of the solubilization of both drugs during digestion of fixed-dose combination lipid formulations (such as milk) is important and may rationalize changes in bioavailability when compared to that of the individual drugs in the same formulation.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Jamal Khan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Mubtasim Murshed
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline , Australian Synchrotron , ANSTO, 800 Blackburn Road , Clayton , VIC 3169 , Australia
| | - Hanu Ramachandruni
- Medicines for Malaria Venture , 20, Route de Pré-Bois , 1215 Geneva 15 , Switzerland
| | - Stephane Beilles
- Sanofi R&D , 371 Rue du Professeur Blayac , 34080 Montpellier , France
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University (Parkville Campus) , 381 Royal Parade , Parkville , VIC 3052 , Australia
| |
Collapse
|
22
|
Amorphisation of Free Acid Ibuprofen and Other Profens in Mixtures with Nanocellulose: Dry Powder Formulation Strategy for Enhanced Solubility. Pharmaceutics 2019; 11:pharmaceutics11020068. [PMID: 30736357 PMCID: PMC6409705 DOI: 10.3390/pharmaceutics11020068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
The formulation of arylpropionic acid derivatives (profens), which are poorly soluble Biopharmaceutical Classification System (BCS) Type II drugs, has a strong impact on their therapeutic action. This article shows that heat-treated powder mixtures of free acid profens with high surface area Cladophora cellulose induces drug amorphization and results in enhanced solubility and bioavailability. Similar mixtures produced using conventional low surface area cellulose, i.e., microcrystalline cellulose, does not produce the same effect. The concept is thoroughly described and links the solid-state characterization data, such as differential scanning calorimetry, X-ray powder diffraction, and Fourier-transform infra-red spectroscopy, with in vitro dissolution in biorelevant media and in vivo pharmacokinetic analysis in rats. The concept is demonstrated for several substances from the profens group, including ibuprofen (main model drug), ketoprofen, flurbiprofen, and naproxen. The presented approach opens new ways to produce solid dosage forms of profen drugs in their free acidic form as alternatives to existing analogues, e.g., drug-salt conjugates or soft gel liquid capsules.
Collapse
|
23
|
Zhao Y, Xie X, Zhao Y, Gao Y, Cai C, Zhang Q, Ding Z, Fan Z, Zhang H, Liu M, Han J. Effect of plasticizers on manufacturing ritonavir/copovidone solid dispersions via hot-melt extrusion: Preformulation, physicochemical characterization, and pharmacokinetics in rats. Eur J Pharm Sci 2019; 127:60-70. [DOI: 10.1016/j.ejps.2018.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/11/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023]
|
24
|
Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B 2019; 9:19-35. [PMID: 30766775 PMCID: PMC6361732 DOI: 10.1016/j.apsb.2018.08.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023] Open
Abstract
In recent years, the coamorphous drug delivery system has been established as a promising formulation approach for delivering poorly water-soluble drugs. The coamorphous solid is a single-phase system containing an active pharmaceutical ingredient (API) and other low molecular weight molecules that might be pharmacologically relevant APIs or excipients. These formulations exhibit considerable advantages over neat crystalline or amorphous material, including improved physical stability, dissolution profiles, and potentially enhanced therapeutic efficacy. This review provides a comprehensive overview of coamorphous drug delivery systems from the perspectives of preparation, physicochemical characteristics, physical stability, in vitro and in vivo performance. Furthermore, the challenges and strategies in developing robust coamorphous drug products of high quality and performance are briefly discussed.
Collapse
Key Words
- API, active pharmaceutical ingredient;
- AUC, area under plasma concentrations-time curve
- BCS, bio-pharmaceutics classification systems
- Bioavailability
- Characterization
- Cmax, maximum plasma concentration
- Coamorphous
- Css, plasma concentration at steady state
- DSC, differential scanning calorimetry
- DVS, dynamic vapor sorption
- Dc, relative degree of crystallization
- Dissolution
- FT-IR, fourier transform infrared spectroscopy
- HME, hot melt extrusion
- HPLC, high performance liquid chromatography
- IDR, intrinsic dissolution rate
- LFRS, low-frequency Raman spectroscopy
- LLPS, liquid—liquid phase separation
- MTDSC, modulated temperature differential scanning calorimetry
- NMR, nuclear magnetic resonance
- P-gp, P-glycoprotein
- PXRD, powder X-ray diffraction
- Physical stability
- Preparation
- RH, relative humidity
- SEM, scanning electron microscope
- TGA, thermogravimetric analysis
- Tg, glass transition temperature
- Tmax, time of maximum plasma concentration
- UV, ultraviolet spectroscopy
Collapse
Affiliation(s)
| | | | - Ting Cai
- Corresponding author. Tel.: +86 25 83271123.
| |
Collapse
|
25
|
Arca HC, Mosquera-Giraldo LI, Bi V, Xu D, Taylor LS, Edgar KJ. Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters. Biomacromolecules 2018; 19:2351-2376. [PMID: 29869877 DOI: 10.1021/acs.biomac.8b00517] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellulose ethers have proven to be highly useful natural-based polymers, finding application in areas including food, personal care products, oil field chemicals, construction, paper, adhesives, and textiles. They have particular value in pharmaceutical applications due to characteristics including high glass transition temperatures, high chemical and photochemical stability, solubility, limited crystallinity, hydrogen bonding capability, and low toxicity. With regard to toxicity, cellulose ethers have essentially no ability to permeate through gastrointestinal enterocytes and many are already in formulations approved by the U.S. Food and Drug Administration. We review pharmaceutical applications of these valuable polymers from a structure-property-function perspective, discussing each important commercial cellulose ether class; carboxymethyl cellulose, methyl cellulose, hydroxypropylcellulose, hydroxypropyl methyl cellulose, and ethyl cellulose, and cellulose ether esters including hydroxypropyl methyl cellulose acetate succinate and carboxymethyl cellulose acetate butyrate. We also summarize their syntheses, basic material properties, and key pharmaceutical applications.
Collapse
Affiliation(s)
| | - Laura I Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Vivian Bi
- Ashland Specialty Ingredients , 500 Hercules Road , Wilmington , Delaware 19808 , United States
| | - Daiqiang Xu
- Ashland Specialty Ingredients , 500 Hercules Road , Wilmington , Delaware 19808 , United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | | |
Collapse
|
26
|
Mosquera-Giraldo LI, Li N, Wilson VR, Nichols BLB, Edgar KJ, Taylor LS. Influence of Polymer and Drug Loading on the Release Profile and Membrane Transport of Telaprevir. Mol Pharm 2018. [PMID: 29513538 DOI: 10.1021/acs.molpharmaceut.8b00104] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During the dissolution of amorphous solid dispersions (ASDs), various phase transformations can occur, which will ultimately impact the degree of supersaturation. This study employed dissolution and diffusion measurements to compare the performance of various ASD formulations based on the maximum amount of free drug in the solution that was able to permeate through a cellulose-based membrane. Telaprevir (TPV) was used as the model drug compound, and ASDs were prepared with different drug loadings and with four different polymers. Four possible scenarios that can influence TPV mass flow rates upon ASD dissolution were described and supported with experimental data: (1) a system dissolves readily and completely undergoes phase separation via glass-liquid phase separation (GLPS), forming drug-rich aggregates, and reaches the maximum anticipated mass flow rate; (2) where the maximum mass flow rate decreases due to substantial mixing of the polymer into the drug-rich phase, and/or due to the formation of soluble polymer-drug complexes; (3) a system does not undergo GLPS due to slow drug release and/or matrix crystallization; and (4) a system does not undergo GLPS due to rapid crystallization from the supersaturated solution generated during dissolution. The results described herein support the importance of the combined use of the dissolution-diffusion measurements to determine the maximum level of supersaturation achievable for diverse drug formulations.
Collapse
Affiliation(s)
- Laura I Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Na Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Venecia R Wilson
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Brittany L B Nichols
- Department of Chemistry, College of Science , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Department of Sustainable Biomaterials, College of Natural Resources and Environment , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, College of Natural Resources and Environment , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|