1
|
Rosenn EH, Korlansky M, Benyaminpour S, Munarova V, Fox E, Shah D, Durham A, Less N, Pasinetti GM. Antibody immunotherapies for personalized opioid addiction treatment. J Pharmacol Exp Ther 2025; 392:103522. [PMID: 40112764 DOI: 10.1016/j.jpet.2025.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/16/2025] [Indexed: 03/22/2025] Open
Abstract
Approved therapies for managing opioid addiction involve intensive treatment regimens which remain both costly and ineffective. As pharmaceutical interventions have achieved variable success treating substance use disorders (SUD), alternative therapeutics must be considered. Antidrug antibodies induced by vaccination or introduced as monoclonal antibody formulations can neutralize or destroy opioids in circulation before they reach their central nervous system targets or act as enzymes to deactivate opioid receptors, preventing the physiologic and psychoactive effects of the substance. A lack of "reward" for those suffering from SUD has been shown to result in cessation of use and promote long-term abstinence. Decreased antibody production costs and the advent of novel gene therapies that stimulate in vivo production of monoclonal antibodies have renewed interest in this strategy. Furthermore, advances in understanding of SUD immunopathogenesis have revealed distinct mechanisms of neuroimmune dysregulation underlying the disorder. Beyond assisting with cessation of drug use, antibody therapies could treat or reverse pathophysiologic hallmarks that contribute to addiction and which could be the cause of chronic cognitive defects resulting from drug use. In this review, we synthesize key current literature regarding the efficacy of immunotherapies in managing opioid addiction and SUD. We will explore the neuropharmacology underlying these treatments by relating evidence from studies on the use of antibody therapeutics to counteract various drug behaviors and by drawing parallels to the similar immunopathology observed in neurodegenerative disorders. Finally, we will discuss the implications of novel immunization technologies and the application of computational methods in developing personalized addiction treatments. SIGNIFICANCE STATEMENT: Significant new evidence contributing to our understanding of substance use disorders has recently emerged leading to a paradigm shift concerning the role of immunology in the neuropathogenesis of opioid use disorder. Concurrently, immunotherapeutic technologies such as antibody therapeutics have advanced the capabilities regarding applications that take advantage of these key principles. This article reviews key antibody-based treatments being studied and highlights directions for further research that may contribute to the management of opioid use disorder.
Collapse
Affiliation(s)
- Eric H Rosenn
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| | | | | | - Violet Munarova
- College of Osteopathic Medicine, Touro University, New York, New York
| | - Eryn Fox
- Department of Allergy and Immunology, Montefiore Medical Center-Albert Einstein College of Medicine, Bronx, New York, New York
| | - Divyash Shah
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Durham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicole Less
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York.
| |
Collapse
|
2
|
Wang K, Luo J, Wang H, Wang X. Polymer-based vaccines for substance use disorders: Targeting ketamine and methamphetamine with protein-free hyperbranched polyethyleneimine carriers. Eur J Med Chem 2025; 285:117274. [PMID: 39818013 DOI: 10.1016/j.ejmech.2025.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Substance use disorders (SUDs) present a critical global health challenge, as current treatment options often prove insufficient, particularly for substances like ketamine and methamphetamine. In this study, we developed a novel immunotherapeutic strategy utilizing protein-free, polymer-based vaccines, with hyperbranched polyethylenimine (Hb-PEI) as a carrier to enhance immune specificity and remove the production of non-specific antibodies. Haptens for ketamine and methamphetamine were covalently conjugated to the Hb-PEI carrier, along with the Toll-like receptor (TLR) 7/8 agonist 1V209, to stimulate targeted humoral immune responses. Our results demonstrated that vaccines produced specific antibodies capable of effectively neutralizing ketamine- and methamphetamine-induced effects, such as conditioned place preference (CPP) and ketamine-induced analgesia. Notably, the immune response persisted for 95-112 days, demonstrating the vaccines' long-lasting efficacy. In contrast, no antibodies were generated when the adjuvant 1V209 was physically combined with the hapten, underscoring the importance of synergistic vaccine components. Additionally, the polymer-based approach exhibited excellent biocompatibility, without generating non-specific antibodies or causing adverse health effects. These findings highlight the potential of Hb-PEI-based vaccines as a promising platform for treating SUDs, offering a new pathway for clinical applications in combating drug addiction.
Collapse
Affiliation(s)
- Kaixuan Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Luo
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
3
|
Tuncturk M, Kushwaha S, Heider RM, Oesterle T, Weinshilboum R, Ho MF. The development of opioid vaccines as a novel strategy for the treatment of opioid use disorder and overdose prevention. Int J Neuropsychopharmacol 2025; 28:pyaf005. [PMID: 39831679 PMCID: PMC11792077 DOI: 10.1093/ijnp/pyaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
Opioid use disorder (OUD) affects over 40 million people worldwide, creating significant social and economic burdens. Medication for opioid use disorder (MOUD) is often considered the primary treatment approach for OUD. MOUD, including methadone, buprenorphine, and naltrexone, is effective for some, but its benefits may be limited by poor adherence to treatment recommendations. Immunopharmacotherapy offers an innovative approach by using vaccines to generate antibodies that neutralize opioids, blocking them from crossing the blood-brain barrier and reducing their psychoactive effects. To date, only 3 clinical trials for opioid vaccines have been published. While these studies demonstrated the potential of opioid vaccines for relapse prevention, there is currently no standardized protocol for evaluating their effectiveness. We have reviewed recent preclinical studies that demonstrated the efficacy of vaccines targeting opioids, including heroin, morphine, oxycodone, hydrocodone, and fentanyl. These studies showed that vaccines against opioids reduced drug reinforcement, decreased opioid-induced antinociception, and increased survival rates against lethal opioid doses. These studies also demonstrated the importance of vaccine formulation and the use of adjuvants in enhancing antibody production and specificity. Finally, we highlighted the strengths and concerns associated with the opioid vaccine treatment, including ethical considerations.
Collapse
Affiliation(s)
- Mustafa Tuncturk
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Shikha Kushwaha
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Robin M Heider
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Tyler Oesterle
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Ming-Fen Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Hamid FA, Le NMN, Song D, Amin H, Hicks L, Bird S, Siram K, Hoppe B, Demeler B, Evans JT, Burkhart D, Pravetoni M. A cationic liposome-formulated Toll Like Receptor (TLR)7/8 agonist enhances the efficacy of a vaccine against fentanyl toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631964. [PMID: 39868149 PMCID: PMC11761771 DOI: 10.1101/2025.01.08.631964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The U.S. opioid epidemic is an extraordinary public health crisis that started in 1990 and significantly accelerated in the last decade. Since 2020, over 100,000 fatal drug overdoses have been reported annually, and 75% of those involved fentanyl and its analogs (F/FA). Accelerating the translation of innovative, effective, and safe treatments is needed to augment existing measures to counteract such a crisis. Active immunization against F/FA and other opioids represents a promising therapeutic and prophylactic strategy for opioid use disorder (OUD) and opioid-induced overdose toxicity. Previously we demonstrated that the anti-fentanyl vaccine comprising a fentanyl-based hapten (F) conjugated to the diphtheria cross-reactive material (CRM), admixed with the novel lipidated toll-like receptor 7/8 (TLR7/8) agonist INI-4001 adsorbed on Alhydrogel ® (alum) induced high-affinity fentanyl-specific polyclonal antibodies that protected against fentanyl-induced pharmacological effects in mice, rats, and mini-pigs. Here, INI-4001 was formulated into liposomes with different surface charges, and their impact on F-CRM adsorption, INI-4001 adjuvanticity, and vaccine efficacy were explored. Additionally, as the role of innate immunity in mediating the efficacy of addiction vaccines is largely unknown, we tested these formulations on the activation of innate immunity in vitro . Cationic INI-4001 liposomes surpassed other liposomal and aluminum-based formulations of INI-4001 by enhancing the efficacy of fentanyl vaccines and protecting rats against bradycardia and respiratory depression by blocking the distribution of fentanyl to the brain. Fentanyl vaccines adjuvanted with either cationic INI-4001 liposomes or the aqueous INI-4001 adsorbed to alum induced significant surface expression of co-stimulatory molecules and maturation markers in a murine dendritic cell line (JAWS II), while the former was superior in enhancing the macrophages surface expression of CD40, CD86 and inducible nitric oxide synthase (iNOS), indicative of maturation and activation. These results warrant further investigation of liposome-based formulations of TLR7/8 agonists for improving the efficacy of vaccines targeting F/FA and other opioids of public health interest. Graphical abstract
Collapse
|
5
|
Song D, Crouse B, Vigliaturo J, Wu MM, Heimisdottir D, Kassick AJ, Averick SE, Raleigh MD, Pravetoni M. Multivalent Vaccination Strategies Protect against Exposure to Polydrug Opioid and Stimulant Mixtures in Mice and Rats. ACS Pharmacol Transl Sci 2024; 7:363-374. [PMID: 38357285 PMCID: PMC10863445 DOI: 10.1021/acsptsci.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024]
Abstract
Illicit drug mixtures containing opioids and stimulants have been responsible for the majority of fatal drug overdoses among occasional users, and those with either opioid use disorder (OUD) or substance use disorder (SUD). As a complementary strategy to current pharmacotherapies, active immunization with conjugate vaccines has been proposed as a viable intervention to treat OUD as well as other SUD for which there are either limited or no treatment options. Vaccination against opioids and stimulants could help address the limitations of current medications (e.g., patient access, compliance, misuse liability, and safety) by providing an additional tool to prevent drug misuse and/or overdoses. However, more research is needed to fully understand the potential benefits and limitations of using vaccines to treat SUD and overdose and to inform us on how to deploy this strategy in the field. Previous reports have shown promise by combining two vaccines into bivalent vaccine formulations to concurrently target multiple drugs. Here, multiple individual candidate monovalent vaccines were incrementally combined in multivalent vaccine formulations to simultaneously target fentanyl, carfentanil, oxycodone, heroin, methamphetamine, and their analogs or metabolites. Bi-, tri-, and quadrivalent vaccine formulations induced the formation of independent serum antibody responses against their respective opioid targets and selectively attenuated the distribution of each individual drug to the brain in mice and rats. Results indicate that a single injection of an admixed multivalent vaccine formulation may be more effective than coinjecting multiple monovalent vaccines at multiple sites. Finally, adding a methamphetamine conjugate vaccine to an quadrivalent opioid vaccine in a pentavalent formulation did not interfere with the production of effective antiopioid IgG antibodies. Multivalent vaccines could provide multifaceted, yet selective, protection against polydrug use and exposure.
Collapse
Affiliation(s)
- Daihyun Song
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Bethany Crouse
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
- School
of Veterinary Population Medicine, University
of Minnesota, St. Paul, Minnesota 55455, United States
| | - Jennifer Vigliaturo
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Mariah M. Wu
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
- School
of Veterinary Population Medicine, University
of Minnesota, St. Paul, Minnesota 55455, United States
| | - Dagny Heimisdottir
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Andrew J. Kassick
- Neuroscience
Disruptive Research Lab, Allegheny Health
Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Saadyah E. Averick
- Neuroscience
Disruptive Research Lab, Allegheny Health
Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Neuroscience
Institute, Allegheny Health Network, Allegheny
General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Michael D. Raleigh
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Marco Pravetoni
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
- Department
of Psychiatry and Behavioral Sciences, University
of Washington School of Medicine, Seattle, Washington 98195, United States
- University
of Washington Center for Medication Development for Substance Use
Disorders; Garvey Institute for Brain Solutions, Seattle,Washington 98195, United States
| |
Collapse
|
6
|
Powers N, Massena C, Crouse B, Smith M, Hicks L, Evans JT, Miller S, Pravetoni M, Burkhart D. Self-Adjuvanting TLR7/8 Agonist and Fentanyl Hapten Co-Conjugate Achieves Enhanced Protection against Fentanyl Challenge. Bioconjug Chem 2023; 34:1811-1821. [PMID: 37758302 PMCID: PMC10587865 DOI: 10.1021/acs.bioconjchem.3c00347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Currently approved pharmacotherapies for opioid use disorders (OUDs) and overdose reversal agents are insufficient to slow the spread of OUDs due to the proliferation of fentanyl. This is evident in the 31% rise in drug overdose deaths from 2019 to 2022, with rates increasing from 21.6 to 28.3 overdoses per 100,000 deaths. Vaccines are a potential alternative or adjunct therapy for the treatment of several substance use disorders (nicotine, cocaine) but have shown limited clinical success due to suboptimal antibody titers. In this study, we demonstrate that coconjugation of a Toll-like receptor 7/8 (TLR7/8) agonist (UM-3006) alongside a fentanyl-based hapten (F1) on the surface of the carrier protein cross-reactive material 197 (CRM) significantly increased generation of high-affinity fentanyl-specific antibodies. This demonstrated enhanced protection against fentanyl challenges relative to an unconjugated (admix) adjuvant control in mice. Inclusion of aluminum hydroxide (alum) adjuvant further increased titers and enhanced protection, as determined by analysis of fentanyl concentration in serum and brain tissue. Collectively, our findings present a promising approach to enhance the efficacy of antiopioid vaccines, underscoring the need for extensive exploration of TLR7/8 agonist conjugates as a compelling strategy to combat opioid use disorders.
Collapse
Affiliation(s)
- Noah Powers
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Casey Massena
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Bethany Crouse
- Department
of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mira Smith
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Linda Hicks
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Jay T. Evans
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Shannon Miller
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Marco Pravetoni
- Department
of Psychiatry and Behavioral Sciences, University
of Washington School of Medicine, Seattle, Washington 98195, United States
| | - David Burkhart
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| |
Collapse
|
7
|
Crouse B, Miller SM, Muelken P, Hicks L, Vigliaturo JR, Marker CL, Guedes AGP, Pentel PR, Evans JT, LeSage MG, Pravetoni M. A TLR7/8 agonist increases efficacy of anti-fentanyl vaccines in rodent and porcine models. NPJ Vaccines 2023; 8:107. [PMID: 37488109 PMCID: PMC10366150 DOI: 10.1038/s41541-023-00697-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Opioid use disorders (OUD) and overdose are public health threats worldwide. Widespread access to highly potent illicit synthetic opioids such as fentanyl is driving the recent rise in fatal overdoses. Vaccines containing fentanyl-based haptens conjugated to immunogenic carrier proteins offer a long-lasting, safe, and cost-effective strategy to protect individuals from overdose upon accidental or deliberate exposure to fentanyl and its analogs. Prophylactic or therapeutic active immunization with an anti-fentanyl vaccine induces the production of fentanyl-specific antibodies that bind the drug in the blood and prevent its distribution to the brain, which reduces its reinforcing effects and attenuates respiratory depression and bradycardia. To increase the efficacy of a lead anti-fentanyl vaccine, this study tested whether the incorporation of synthetic toll-like receptor (TLR) 4 and TLR7/8 agonists as vaccine adjuvants would increase vaccine efficacy against fentanyl challenge, overdose, and self-administration in either rats or Hanford miniature pigs. Formulation of the vaccine with a nucleolipid TLR7/8 agonist enhanced its immunogenicity and efficacy in preventing fentanyl-induced respiratory depression, analgesia, bradycardia, and self-administration in either rats or mini-pigs. These studies support the use of TLR7/8 adjuvants in vaccine formulations to improve their clinical efficacy against OUD and potentially other substance use disorders (SUD).
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- HealthPartners Institute, Research and Evaluation Division, 8170 33rd Ave S, Bloomington, MN, 55425, USA
| | - Shannon M Miller
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Peter Muelken
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Linda Hicks
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Cheryl L Marker
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Luvo Bioscience, 7500W. Henrietta Road, Rush, NY, 14543, USA
| | - Alonso G P Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Paul R Pentel
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Jay T Evans
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Mark G LeSage
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Center for Medication Development for Substance Use Disorders, Seattle, WA, USA.
| |
Collapse
|
8
|
Malik JA, Agrewala JN. Future perspectives of emerging novel drug targets and immunotherapies to control drug addiction. Int Immunopharmacol 2023; 119:110210. [PMID: 37099943 DOI: 10.1016/j.intimp.2023.110210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Substance Use Disorder (SUD) is one of the major mental illnesses that is terrifically intensifying worldwide. It is becoming overwhelming due to limited options for treatment. The complexity of addiction disorders is the main impediment to understanding the pathophysiology of the illness. Hence, unveiling the complexity of the brain through basic research, identification of novel signaling pathways, the discovery of new drug targets, and advancement in cutting-edge technologies will help control this disorder. Additionally, there is a great hope of controlling the SUDs through immunotherapeutic measures like therapeutic antibodies and vaccines. Vaccines have played a cardinal role in eliminating many diseases like polio, measles, and smallpox. Further, vaccines have controlled many diseases like cholera, dengue, diphtheria, Haemophilus influenza type b (Hib), human papillomavirus, influenza, Japanese encephalitis, etc. Recently, COVID-19 was controlled in many countries by vaccination. Currently, continuous effort is done to develop vaccines against nicotine, cocaine, morphine, methamphetamine, and heroin. Antibody therapy against SUDs is another important area where serious attention is required. Antibodies have contributed substantially against many serious diseases like diphtheria, rabies, Crohn's disease, asthma, rheumatoid arthritis, and bladder cancer. Antibody therapy is gaining immense momentum due to its success rate in cancer treatment. Furthermore, enormous advancement has been made in antibody therapy due to the generation of high-efficiency humanized antibodies with a long half-life. The advantage of antibody therapy is its instant outcome. This article's main highlight is discussing the drug targets of SUDs and their associated mechanisms. Importantly, we have also discussed the scope of prophylactic measures to eliminate drug dependence.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Javed N Agrewala
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
9
|
Hossain MK, Davidson M, Kypreos E, Feehan J, Muir JA, Nurgali K, Apostolopoulos V. Immunotherapies for the Treatment of Drug Addiction. Vaccines (Basel) 2022; 10:vaccines10111778. [PMID: 36366287 PMCID: PMC9697687 DOI: 10.3390/vaccines10111778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Substance use disorders (SUD) are a serious public health concern globally. Existing treatment platforms suffer from a lack of effectiveness. The development of immunotherapies against these substances of abuse for both prophylactic and therapeutic use has gained tremendous importance as an alternative and/or supplementary to existing therapies. Significant development has been made in this area over the last few decades. Herein, we highlight the vaccine and other biologics development strategies, preclinical, clinical updates along with challenges and future directions. Articles were searched in PubMed, ClinicalTrial.gov, and google electronic databases relevant to development, preclinical, clinical trials of nicotine, cocaine, methamphetamine, and opioid vaccines. Various new emerging vaccine development strategies for SUD were also identified through this search and discussed. A good number of vaccine candidates demonstrated promising results in preclinical and clinical phases and support the concept of developing a vaccine for SUD. However, there have been no ultimate success as yet, and there remain some challenges with a massive push to take more candidates to clinical trials for further evaluation to break the bottleneck.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Erica Kypreos
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Joshua Alexander Muir
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
10
|
Lin M, Marin A, Ellis B, Eubanks LM, Andrianov AK, Janda KD. Polyphosphazene: A New Adjuvant Platform for Cocaine Vaccine Development. Mol Pharm 2022; 19:3358-3366. [PMID: 35984034 DOI: 10.1021/acs.molpharmaceut.2c00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cocaine is a highly addictive drug that has seen a steady uptrend causing severe health problems worldwide. Currently, there are no approved therapeutics for treating cocaine use disorder; hence, there is an urgent need to identify new medications. Immunopharmacotherapeutics is a promising approach utilizing endogenous antibodies generated through active vaccination, and if properly programmed, can blunt a drug's psychoactive and addictive effects. However, drug vaccine efficacy has largely been limited by the modest levels of antibodies induced. Herein, we explored an adjuvant system consisting of a polyphosphazene macromolecule, specifically poly[di(carboxylatoethylphenoxy)-phosphazene] (PCEP), a biocompatible synthetic polymer that was solicited for improved cocaine conjugate vaccine delivery performance. Our results demonstrated PCEP's superior assembling efficiency with a cocaine hapten as well as with the combined adjuvant CpG oligodeoxynucleotide (ODN). Importantly, this combination led to a higher titer response, balanced immunity, successful sequestering of cocaine in the blood, and a reduction in the drug in the brain. Moreover, a PCEP-cocaine conjugate vaccine was also found to function well via intranasal administration, where its efficacy was demonstrated through the antibody titer, affinity, mucosal IgA production, and a reduction in cocaine's locomotor activity. Overall, a comprehensive evaluation of PCEP integrated within a cocaine vaccine established an advance in the use of synthetic adjuvants in the drugs of abuse vaccine field.
Collapse
Affiliation(s)
- Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Beverly Ellis
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Lee JC, Janda KD. Development of effective therapeutics for polysubstance use disorders. Curr Opin Chem Biol 2021; 66:102105. [PMID: 34936944 DOI: 10.1016/j.cbpa.2021.102105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022]
Abstract
Traditional pharmacotherapies for substance use disorders have focused on mono-substance abuse. However, recent epidemiological studies have found polysubstance use disorders (PUD) are becoming more prevalent and the abuse of adulterated drugs has led to increasing unintentional overdose deaths. Unfortunately, there are no approved pharmacological agents for PUD. Hence, a therapeutic model of interest to address this growing epidemic is immunopharmacotherapy, where individuals are inoculated with conjugate vaccines formulated with haptens that mimic the drug of abuse. These conjugate vaccines have demonstrated significant therapeutic potential against mono-substance abuse, thus recent studies have applied this model to address PUD. This review presents immunopharmacotherapeutic advancements against polysubstance abuse and discusses necessary developments for conjugate vaccines in order to effectively treat this unaddressed epidemic.
Collapse
Affiliation(s)
- Jinny Claire Lee
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The WIRM Institute for Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The WIRM Institute for Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| |
Collapse
|
12
|
Ziaks TJ, Hwang CS. Is it possible to design a clinically viable heroin vaccine? The progress and pitfalls. Expert Opin Drug Discov 2021; 17:207-210. [PMID: 34842015 DOI: 10.1080/17460441.2022.2008904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Therese J Ziaks
- Department of Chemistry, Southern Connecticut State University, New Haven, CT, USA
| | - Candy S Hwang
- Department of Chemistry, Southern Connecticut State University, New Haven, CT, USA
| |
Collapse
|
13
|
Zheng Z, Kyzer JL, Worob A, Wenthur CJ. Family of Structurally Related Bioconjugates Yields Antibodies with Differential Selectivity against Ketamine and 6-Hydroxynorketamine. ACS Chem Neurosci 2021; 12:4113-4122. [PMID: 34652905 PMCID: PMC9358770 DOI: 10.1021/acschemneuro.1c00498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The dissociative-hypnotic compound ketamine is being used in an increasingly wide range of therapeutic contexts, including anesthesia, adjunctive analgesia, treatment-resistant depression, but it also continues to be a notable substance of abuse. No specific antidotes exist for ketamine intoxication or overdose. Immunopharmacotherapy has demonstrated the ability to offer overdose protection through production of highly specific antibodies that prevent psychoactive drug penetration across the blood-brain barrier, although antiketamine antibodies have not yet been assessed or optimized for use in this approach. Moreover, generation of specific antibodies also provides an opportunity to address the role of 6-hydroxynorketamine metabolites in ketamine's rapid-acting antidepressant effect through selective restriction of metabolite access to the central nervous system. Hapten design is a critical element for tuning immune recognition of small molecules, as it affects the presentation of the target antigen and thus the quality and selectivity of the response. Here, we report the synthesis and optimization of carrier protein and conjugation conditions for an initial hapten, norketamine-N-COOH (NK-N-COOH), to optimize vaccination conditions and assess the functional consequences of such vaccination on ketamine-induced behavioral alterations occurring at dissociative-like (50 mg/kg) doses. Iterating from this initial approach, two additional haptens, ketamine-N-COOH (KET-N-COOH) and 6-hydroxynorketamine-N-COOH (HNK-N-COOH), were synthesized to target either ketamine or 6-hydroxynorketamine with greater selectivity. The ability of these haptens to generate antiketamine, antinorketamine, and anti-6-hydroxynorketamine immune responses in mice was then assessed using enzyme-linked immunosorbent assay (ELISA) and competitive surface plasmon resonance (SPR) methods. All three haptens provoked immune responses in vivo, although the KET-N-COOH and 6-HNK-N-COOH haptens yielded antibodies with 5- to 10-fold improvements in affinity for ketamine and/or 6-hydroxynorketamine, as compared to NK-N-COOH. Regarding selectivity, vaccines bearing a KET-N-COOH hapten yielded an antibody response with approximately equivalent Kd values against ketamine (86.4 ± 3.2 nM) and 6-hydroxynorketamine (74.1 ± 7.8 nM) and a 90-fold weaker Kd against norketamine. Contrastingly, 6-HNK-N-COOH generated the highest affinity and most selective antibody profile, with a 38.3 ± 4.7 nM IC50 against 6-hydroxynorketamine; Kd values for ketamine and norketamine were 33- to 105-fold weaker, at 1290 ± 281.5 and 3971 ± 2175 nM, respectively. Overall, these findings support the use of rational hapten design to generate antibodies capable of distinguishing between structurally related, yet mechanistically distinct, compounds arising from the same precursor molecule. As applied to the production of the first-reported anti-6-hydroxynorketamine antibodies to date, this approach demonstrates a promising path forward for identifying the individual and combinatorial roles of ketamine and its metabolites in supporting rewarding effects and/or rapid-acting antidepressant activity.
Collapse
Affiliation(s)
- Zhen Zheng
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Jillian L Kyzer
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Adam Worob
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Cody J Wenthur
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
14
|
Crouse B, Zhang L, Robinson C, Ban Y, Vigliaturo JR, Roy S, Pravetoni M. Housing conditions and microbial environment do not affect the efficacy of vaccines for treatment of opioid use disorders in mice and rats. Hum Vaccin Immunother 2021; 17:4383-4392. [PMID: 34411500 PMCID: PMC8828096 DOI: 10.1080/21645515.2021.1954442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
Vaccines offer a promising prophylactic and therapeutic intervention to counteract opioid use disorders (OUD) and fatal overdoses. Vaccines generate opioid-specific antibodies that bind the target opioid, reducing drug distribution to the brain and preventing drug-induced behavioral and pharmacological effects. Due to their selectivity, anti-opioid vaccines can be administered in combination with FDA-approved medications. Because patients with OUD or other substance use disorders may be affected by other multifactorial co-morbidities, such as infection or depression, it is important to test whether vaccine efficacy is modified by factors that may impact individual innate or adaptive immunity. To that end, this study tested whether housing conditions would affect the efficacy of two lead vaccine formulations targeting oxycodone and fentanyl in male mice and rats, and further analyzed whether differences in the gastrointestinal (GI) microbiome would be correlated with either vaccine efficacy or housing conditions. Results showed that housing mice and rats in either conventional (non-controlled) or specific pathogen-free (SPF, sterile barrier maintained) environment did not affect vaccine-induced antibody responses against oxycodone and fentanyl, nor their efficacy against oxycodone- and fentanyl-induced antinociception, respiratory depression, and bradycardia. Differences in the GI microbiome detected via 16S rRNA gene sequencing were related to the housing environment. This study supports use of anti-opioid vaccines in clinical populations that may display deficits in microbiome function.
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Li Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine Robinson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sabita Roy
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- University of Minnesota Center for Immunology, Minneapolis, MN, USA
| |
Collapse
|
15
|
Wicks C, Hudlicky T, Rinner U. Morphine alkaloids: History, biology, and synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:145-342. [PMID: 34565506 DOI: 10.1016/bs.alkal.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This chapter provides a short overview of the history of morphine since it's isolation by Sertürner in 1805. The biosynthesis of the title alkaloid as well as all total and formal syntheses of morphine and codeine published after 1996 are discussed in detail. The last section of this chapter provides a detailed overview of medicinally relevant derivatives of the title alkaloid.
Collapse
Affiliation(s)
- Christopher Wicks
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Tomas Hudlicky
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Uwe Rinner
- IMC Fachhochschule Krems/IMC University of Applied Sciences Krems, Krems, Austria.
| |
Collapse
|
16
|
The M3-TT Vaccine Decreases the Antinociceptive Effects of Morphine and Heroin in Mice. Int J Ment Health Addict 2021. [DOI: 10.1007/s11469-021-00621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Yadav PR, Munni MN, Campbell L, Mostofa G, Dobson L, Shittu M, Pattanayek SK, Uddin MJ, Das DB. Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics 2021; 13:1132. [PMID: 34452093 PMCID: PMC8401662 DOI: 10.3390/pharmaceutics13081132] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing search for biodegradable and biocompatible microneedles (MNs) that are strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use continues. As such, this review paper is focused upon discussing the key points (e.g., choice polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals that polymers are most appropriately used for dissolvable and swellable MNs due to their wide range of tunable properties and that natural polymers are an ideal material choice as they structurally mimic native cellular environments. It has also been concluded that natural and synthetic polymer combinations are useful as polymers usually lack mechanical strength, stability, or other desired properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and materials choice, disease and health conditions, clinical challenges, and the future of MNs in public healthcare services, focusing on literature from the last decade.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India;
| | | | - Lauryn Campbell
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Golam Mostofa
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
| | - Lewis Dobson
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Morayo Shittu
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | | | - Md. Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| |
Collapse
|
18
|
Park H, Lee JC, Eubanks LM, Ellis B, Zhou B, Janda KD. Improvements on a chemically contiguous hapten for a vaccine to address fentanyl-contaminated heroin. Bioorg Med Chem 2021; 41:116225. [PMID: 34034147 DOI: 10.1016/j.bmc.2021.116225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
Unintentional overdose deaths related to opioids and psychostimulants have increased in prevalence due to the adulteration of these drugs with fentanyl. Synergistic effects between illicit compounds and fentanyl cause aggravated respiratory depression, leading to inadvertent fatalities. Traditional small-molecule therapies implemented in the expanding opioid epidemic present numerous problems since they interact with the same opioid receptors in the brain as the abused drugs. In this study, we report an optimized dual hapten for use as an immunopharmacotherapeutic tool in order to develop antibodies capable of binding to fentanyl-contaminated heroin in the periphery, thus impeding the drugs' psychoactive effects on the central nervous system. This vaccine produced antibodies with nanomolar affinities and effectively blocked opioid analgesic effects elicited by adulterated heroin. These findings provide further insight into the development of chemically contiguous haptens for broad-spectrum immunopharmacotherapies against opioid use disorders.
Collapse
Affiliation(s)
- Hyeri Park
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jinny Claire Lee
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Lisa M Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Beverly Ellis
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
19
|
Barbosa-Méndez S, Matus-Ortega M, Hernández-Miramontes R, Salazar-Juárez A. The morphine/heroin vaccine decreased the heroin-induced antinociceptive and reinforcing effects in three inbred strains mouse. Int Immunopharmacol 2021; 98:107887. [PMID: 34186279 DOI: 10.1016/j.intimp.2021.107887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
Clinical trials have indicated that a vaccine must be immunogenic in genetically diverse human populations and that immunogenicity and protective efficacy in animal models are two key indices required for the approval of a new vaccine. Additionally, the immune response (immunogenicity) and immunoprotection are dependent on the mouse strain. Therefore, the objective of the present study was to determine the immune response (immunogenicity) and the protective efficacy (behavioral response) in three inbred mouse strains immunized with the M6TT vaccine. Female BALB/c, C57Bl/6, and DBA/2 inbred mice were immunized with the M6-TT vaccine. A solid-phase antibody-capture ELISA was used to monitor antibody titer responses after each booster dose in vaccinated animals. The study used tail-flick testing to evaluate the antinociceptive effects induced by heroin. Additionally, heroin-induced locomotor activity and place preference were evaluated. The M6-TT vaccine was able to generate a specific antibody titer in the three inbred mouse strains evaluated. The antibodies reduced the antinociceptive effect of different doses of heroin. In addition, they decreased the heroin-induced locomotor activity and place preference. These findings suggest that the M6-TT vaccine generates a powerful immunogenic response capable of reducing the antinociceptive and reinforcing effects of heroin in different inbred mouse strains, which supports its possible future use in clinical trials in genetically diverse human populations.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Maura Matus-Ortega
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Ricardo Hernández-Miramontes
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México DF 14370, Mexico.
| |
Collapse
|
20
|
Vaccine design through transition state mimicry of heroin hydrolysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Gutman ES, Irvin TC, Morgan JB, Barrientos RC, Torres OB, Beck Z, Matyas GR, Jacobson AE, Rice KC. Synthesis and immunological effects of C14-linked 4,5-epoxymorphinan analogues as novel heroin vaccine haptens. RSC Chem Biol 2021; 2:835-842. [PMID: 34179783 PMCID: PMC8190897 DOI: 10.1039/d1cb00029b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Active immunization is being explored as a potential therapeutic to combat accidental overdose and to mitigate the abuse potential of opioids. Hapten design is one of the crucial factors that determines the efficacy of a candidate vaccine to substance abuse and remains one of the most active areas of research in vaccine development. Herein we report for the first time the synthesis of three novel opiate surrogates with the linker attachment site at C14, 1 (6,14-AmidoHap), 2 (14-AmidoMorHap), and 3 (14-AmidoHerHap) as novel heroin haptens. The compounds 1, 2, and 3 are analogues with different substituents at C6: an acetamide, a hydroxyl moiety, and an acetate, respectively. All three haptens had a phenolic hydroxyl group at C3. The haptens were conjugated to the tetanus toxoid carrier protein, adjuvanted with liposomal monophosphoryl lipid A/aluminum hydroxide and were tested in mice in terms of immunogenicity and efficacy. Immunization of mice resulted in antibody endpoint titers of >105 against all the haptens. Neither of the conjugates of 1, 2, and 3 had induced antibodies with selectivity broad enough to recognize and bind heroin, 6-AM, and morphine resulting in little to no protection against the antinociceptive effects of heroin in vivo. Only the mice immunized with conjugate 3 were partially protected against heroin-induced antinociception. These results contribute to the growing body of knowledge that the linker position and the subtle structural differences in the hapten scaffold impact the selectivity of the induced antibodies. Together, these highlight the importance of rational hapten design for heroin vaccine development. Three novel opiate surrogates with the linker at C14, 1 (6,14-AmidoHap), 2 (14-AmidoMorHap), and 3 (14-AmidoHerHap) were conjugated to tetanus toxoid (TT) and tested as heroin vaccines. The C3 and C6 moieties are crucial in antibody selectivity.![]()
Collapse
Affiliation(s)
- Eugene S Gutman
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Thomas C Irvin
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - J Brian Morgan
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Rodell C Barrientos
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Oscar B Torres
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Zoltan Beck
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine 6720A Rockledge Drive Bethesda MD 20817 USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research 503 Robert Grant Avenue Silver Spring MD 20910 USA
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services 9800 Medical Center Drive Bethesda MD 20892-3373 USA +1 301-451-4799 +1 301-451-5028
| |
Collapse
|
22
|
Wartenweiler V, Chung G, Stewart A, Wenthur C. Pharmacy stakeholder reports on ethical and logistical considerations in anti-opioid vaccine development. BMC Med Ethics 2021; 22:30. [PMID: 33766021 PMCID: PMC7992836 DOI: 10.1186/s12910-021-00599-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/14/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND As opioid use disorder (OUD) incidence and its associated deaths continue to persist at elevated rates, the development of novel treatment modalities is warranted. Recent strides in this therapeutic area include novel anti-opioid vaccine approaches. This work compares logistical and ethical considerations surrounding currently available interventions for opioid use disorder with an anti-opioid vaccine approach. METHODS The opinions of student pharmacists and practicing pharmacists assessing knowledge, perceptions, and attitudes toward current and future OUD management strategies were characterized using a staged, multi-modal research approach incorporating a focus group, pilot survey development and refinement, and final survey deployment. Survey responses were assessed using one- and two-way parametric and non-parametric analyses where appropriate, and multi-dimensional matrix profiles were compared using z-tests following an exhaustive combinatorial sum of differences calculation between items within each compared matrix. RESULTS Focus group content analysis revealed a high level of agreeableness among participants regarding anti-opioid vaccine technology and a sense of shared ownership regarding solutions to the opioid epidemic at large. Pilot survey results demonstrated subject ability to consider both pragmatic and ethical considerations related to current therapeutics and novel interventions in a single instrument, with high endurance amongst engaged subjects. Access inequality was the most concerning ethical consideration identified for anti-opioid vaccines. Support for anti-opioid vaccine implementation across various clinical scenarios was strongest for voluntary use amongst individuals in recovery, and lowest for mandatory use in at-risk individuals. CONCLUSIONS Ethical and logistical concerns surrounding anti-opioid vaccines were largely similar to those for current OUD therapeutics overall. Anti-opioid vaccines were endorsed as helpful potential additions to current OUD therapeutic approaches, particularly for voluntary use in the later stages of clinical progression.
Collapse
Affiliation(s)
- Vincent Wartenweiler
- School of Pharmacy, University of WI - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | | | - Amy Stewart
- Department of Pharmacy, UW-Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Cody Wenthur
- School of Pharmacy, University of WI - Madison, 777 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Opioid use disorder (OUD) remains a national epidemic with an immense consequence to the United States' healthcare system. Current therapeutic options are limited by adverse effects and limited efficacy. RECENT FINDINGS Recent advances in therapeutic options for OUD have shown promise in the fight against this ongoing health crisis. Modifications to approved medication-assisted treatment (MAT) include office-based methadone maintenance, implantable and monthly injectable buprenorphine, and an extended-release injectable naltrexone. Therapies under investigation include various strategies such as heroin vaccines, gene-targeted therapy, and biased agonism at the G protein-coupled receptor (GPCR), but several pharmacologic, clinical, and practical barriers limit these treatments' market viability. This manuscript provides a comprehensive review of the current literature regarding recent innovations in OUD treatment.
Collapse
|
24
|
Méndez SB, Matus-Ortega M, Miramontes RH, Salazar-Juárez A. Effect of the morphine/heroin vaccine on opioid and non-opioid drug-induced antinociception in mice. Eur J Pharmacol 2021; 891:173718. [PMID: 33171151 DOI: 10.1016/j.ejphar.2020.173718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023]
Abstract
Pain is a common symptom in patients with opioid use disorder (OUD), which increases synthetic and illicit synthetic opioid abuse and even fatalities due to opioid overdose. Many FDA-approved drugs are available for the treatment of OUD, however, the use of these medications is limited, mainly due to the development of various side effects. Active vaccination is a new therapeutic approach but the resulting antibodies may compromise the use and efficiency of opioid and non-opioid drugs. In this study, we evaluated whether the antibodies produced by the morphine/heroin vaccine (M-TT) would alter the antinociceptive effects of opioid and non-opioid drugs. Female Balb-c mice were immunized with the M-TT vaccine. A solid-phase antibody-capture ELISA was used for monitoring antibody titer responses after each booster dose in vaccinated animals, followed by tail-flick testing. This study found that the M-TT vaccine did not affect the antinociception induced by different doses of morphine or the ability of non-opioid and synthetic opioid drugs to decrease thermal pain. Moreover, the combination of vaccination and naloxone increased the time-course of morphine antagonism relative to either vaccination or naloxone alone. These results suggest that the antibody titers generated by the M-TT vaccine 1) are capable of reducing morphine-induced antinociception and 2) are selective enough not to alter antinociception induced by non-opioid or synthetic drugs. These characteristics support its potential as a treatment agent for patients with symptoms of pain comorbid to OUD.
Collapse
|
25
|
Blake S, Bremer PT, Zhou B, Petrovsky N, Smith LC, Hwang CS, Janda KD. Developing Translational Vaccines against Heroin and Fentanyl through Investigation of Adjuvants and Stability. Mol Pharm 2021; 18:228-235. [PMID: 33301675 PMCID: PMC9946458 DOI: 10.1021/acs.molpharmaceut.0c00837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nearly insurmountable adversity that accompanies opioid use disorder (OUD) creates life-altering complications for opioid users. To worsen matters, existing small-molecule drugs continue to inadequately address OUD due to their engagement of the opioid receptor, which can leave the user to deal with side effects and financial hardships from their repeated use. An alternative therapeutic approach utilizes endogenously generated antibodies through active vaccination to reduce the effect of opioids without modulating the opioid receptor. Here, we explore different adjuvants and storage conditions to improve opioid vaccine efficacy and shelf life. Our results revealed that inulin-based formulations (Advax) containing a CpG oligodeoxynucleotide (ODN) acted as effective adjuvants when combined with a heroin conjugate: immunized mice showed excellent recovery from heroin-induced antinociception accompanied by high titer, high opioid affinity serum antibodies similar to the immunopotentiating properties of traditional alum-based adjuvants. Moreover, nonhuman primates vaccinated with a heroin/fentanyl combination vaccine demonstrated potent antibody responses against opioids when formulated with both inulin and alum adjuvants. Finally, storing a freeze-dried opioid vaccine formulation maintained efficacy for up 1 year at room temperature. The results from our studies represent an advance toward a clinically feasible opioid vaccine.
Collapse
Affiliation(s)
- Steven Blake
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Paul T. Bremer
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States,Cessation Therapeutics, LLC, 3031 Tisch Way, San Jose, California 95128, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikolai Petrovsky
- Flinders Medical Centre, Flinders University, GPO Box 2100, Adelaide 5001, South Australia, Australia,Vaxine Pty Ltd, 11 Walkley Avenue, Warradale 5046, South Australia, Australia
| | - Lauren C. Smith
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Candy S. Hwang
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States,Corresponding Author: Kim D. Janda - The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States. Phone: (858), 785-2515. Fax: (858) 784-2595. .
| |
Collapse
|
26
|
Townsend EA, Bremer PT, Jacob NT, Negus SS, Janda KD, Banks ML. A synthetic opioid vaccine attenuates fentanyl-vs-food choice in male and female rhesus monkeys. Drug Alcohol Depend 2021; 218:108348. [PMID: 33268227 PMCID: PMC8224470 DOI: 10.1016/j.drugalcdep.2020.108348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
AIM Opioid-targeted vaccines are under consideration as candidate Opioid Use Disorder medications. We recently reported that a fentanyl-targeted vaccine produced a robust and long-lasting attenuation of fentanyl-vs-food choice in rats. In the current study, we evaluated an optimized fentanyl-targeted vaccine in rhesus monkeys to determine whether vaccine effectiveness to attenuate fentanyl choice translated to a species with greater phylogenetic similarity to humans. METHODS Adult male (2) and female (3) rhesus monkeys were trained to respond under a concurrent schedule of food (1 g pellets) and intravenous fentanyl (0, 0.032-1 μg/kg/injection) reinforcement during daily 2 h sessions. Fentanyl choice dose-effect functions were determined daily and 7-day buprenorphine treatments (0.0032-0.032 mg/kg/h IV; n = 4-5) were determined for comparison to vaccine effects. Subsequently, a fentanyl-CRM197 conjugate vaccine was administered at week 0, 3, 8, 15 over a 29-week experimental period during which fentanyl choice dose-effect functions continued to be determined daily. RESULTS Buprenorphine significantly decreased fentanyl choice and reciprocally increased food choice. Vaccination eliminated fentanyl choice and increased food choice in four-of-the-five monkeys. A transient and less robust vaccine effect was observed in the fifth monkey. Fentanyl-specific antibody concentrations peaked after the third vaccination to approximately 50 μg/mL while anti-fentanyl antibody affinity increased to a sustained low nanomolar level. CONCLUSION These results translate fentanyl vaccine effectiveness from rats to rhesus monkeys to decrease fentanyl-vs-food choice, albeit with greater individual differences observed in monkeys. These results support the potential and further clinical evaluation of this fentanyl-targeted vaccine as a candidate Opioid Use Disorder medication.
Collapse
Affiliation(s)
- E. Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA, corresponding author: (EAT) or (KDJ)
| | - Paul T. Bremer
- Cessation Therapeutics, San Jose, CA 95128, USA,Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Kim D. Janda
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA., corresponding author: (EAT) or (KDJ)
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
27
|
Crouse B, Robinson C, Huseby Kelcher A, Laudenbach M, Abrahante JE, Pravetoni M. Mechanisms of interleukin 4 mediated increase in efficacy of vaccines against opioid use disorders. NPJ Vaccines 2020; 5:99. [PMID: 33101712 PMCID: PMC7578047 DOI: 10.1038/s41541-020-00247-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Opioid use disorders (OUD) affect over 27 million people worldwide. Anti-opioid vaccines offer a promising strategy to treat OUD and prevent overdose. Using immunomodulation of cytokine signaling to increase vaccine efficacy, this study found that blocking IL-4 improved the efficacy of vaccines targeting oxycodone and fentanyl in male and female mice. Genetic deletion of the IL-4 receptor, STAT6, or antibody-based depletion of IL-13, did not increase vaccine efficacy against opioids, suggesting the involvement of type I IL-4 receptors. Enhancement of vaccine efficacy with blockade of IL-4 was associated with improved germinal center formation in secondary lymphoid organs and selective transcriptome signatures in the activated CD4+ T cell population subset. These data suggest that IL-4 is both a pharmacological target and a potential biomarker of vaccine efficacy against OUD.
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455 USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55455 USA
| | - Christine Robinson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - April Huseby Kelcher
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455 USA.,Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Megan Laudenbach
- Hennepin Healthcare Research Institute, Minneapolis, MN 55404 USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN 55455 USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455 USA.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
28
|
Natori Y, Janda KD. Synthesis of Drug Vaccine against Heroin Contaminated with Fentanyl and Their Biological Evaluation. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshihiro Natori
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Kim D. Janda
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute
| |
Collapse
|
29
|
Belz TF, Bremer PT, Zhou B, Blake S, Ellis B, Eubanks LM, Janda KD. Sulfonate-isosteric replacement examined within heroin-hapten vaccine design. Bioorg Med Chem Lett 2020; 30:127388. [PMID: 32738981 PMCID: PMC7398700 DOI: 10.1016/j.bmcl.2020.127388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Heroin overdose and addiction remain significant health and economic burdens in the world today costing billions of dollars annually. Moreover, only limited pharmacotherapeutic options are available for treatment of heroin addiction. In our efforts to combat the public health threat posed by heroin addiction, we have developed vaccines against heroin. To expand upon our existing heroin-vaccine arsenal, we synthesized new aryl and alkyl sulfonate ester haptens; namely aryl-mono-sulfonate (HMsAc) and Aryl/alkyl-di-sulfonate (H(Ds)2) as carboxyl-isosteres of heroin then compared them to our model heroin-hapten (HAc) through vaccination studies. Heroin haptens were conjugated to the carrier protein CRM197 and the resulting CRM-immunoconjugates were used to vaccinate Swiss Webster mice following an established immunization protocol. Binding studies revealed that the highest affinity anti-heroin antibodies were generated by the HMsAc vaccine followed by the HAc and H(Ds)2 vaccines, respectively (HMsAc > HAc≫HDs2). However, neither the HMsAc nor H(Ds)2 vaccines were able to generate high affinity antibodies to the psychoactive metabolite 6-acetyl morphine (6-AM), in comparison to the HAc vaccine. Blood brain bio-distribution studies supported these binding results with vaccine efficiency following the trend HAc > HMsAc ≫ H(Ds)2 The work described herein provides insight into the use of hapten-isosteric replacement in vaccine drug design.
Collapse
Affiliation(s)
- Tyson F Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Paul T Bremer
- Cessation Therapeutics LLC, 3031 Tisch Way Ste 505, San Jose, CA 95128, United States
| | - Bin Zhou
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Steven Blake
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Lisa M Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
30
|
Belz TF, Bremer PT, Zhou B, Ellis B, Eubanks LM, Janda KD. Enhancement of a Heroin Vaccine through Hapten Deuteration. J Am Chem Soc 2020; 142:13294-13298. [PMID: 32700530 DOI: 10.1021/jacs.0c05219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The United States is in the midst of an unprecedented epidemic of opioid substance use disorder, and while pharmacotherapies including opioid agonists and antagonists have shown success, they can be inadequate and frequently result in high recidivism. With these challenges facing opioid use disorder treatments immunopharmacotherapy is being explored as an alternative therapy option and is based upon antibody-opioid sequestering to block brain entry. Development of a heroin vaccine has become a major research focal point; however, producing an efficient vaccine against heroin has been particularly challenging because of the need to generate not only a potent immune response but one against heroin and its multiple psychoactive molecules. In this study, we explored the consequence of regioselective deuteration of a heroin hapten and its impact upon the immune response against heroin and its psychoactive metabolites. Deuterium (HdAc) and cognate protium heroin (HAc) haptens were compared head to head in an inclusive vaccine study. Strikingly the HdAc vaccine granted greater efficacy in blunting heroin analgesia in murine behavioral models compared to the HAc vaccine. Binding studies confirmed that the HdAc vaccine elicited both greater quantities and equivalent or higher affinity antibodies toward heroin and 6-AM. Blood-brain biodistribution experiments corroborated these affinity tests. These findings suggest that regioselective hapten deuteration could be useful for the resurrection of previous drug of abuse vaccines that have met limited success in the past.
Collapse
Affiliation(s)
- Tyson F Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Paul T Bremer
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,Cessation Therapeutics LLC, 3031 Tisch Way Ste 505, San Jose, California 95128, United States
| | - Bin Zhou
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Townsend EA, Bremer PT, Faunce KE, Negus SS, Jaster AM, Robinson HL, Janda KD, Banks ML. Evaluation of a Dual Fentanyl/Heroin Vaccine on the Antinociceptive and Reinforcing Effects of a Fentanyl/Heroin Mixture in Male and Female Rats. ACS Chem Neurosci 2020; 11:1300-1310. [PMID: 32271538 DOI: 10.1021/acschemneuro.0c00064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Opioid-targeted vaccines represent an emerging treatment strategy for opioid use disorder. To determine whether concurrent vaccination against two commonly abused opioids (fentanyl and heroin) would confer broader spectrum opioid coverage, the current study evaluated dual fentanyl/heroin conjugate vaccine effectiveness using a warm water tail-withdrawal and a fentanyl/heroin-vs-food choice procedure in male and female rats across a 105-day observation period. Vaccine administration generated titers of high-affinity antibodies to both fentanyl and heroin sufficient to decrease the antinociceptive potency of fentanyl (25-fold), heroin (4.6-fold), and a 1:27 fentanyl/heroin mixture (7.5-fold). Vaccination did not alter the antinociceptive potency of the structurally dissimilar opioid agonist methadone. For comparison, continuous treatment with a naltrexone dose (0.032 mg/kg/h) shown previously to produce clinically relevant plasma-naltrexone levels decreased the antinociceptive potency of fentanyl, heroin, and the 1:27 fentanyl/heroin mixture by approximately 20-fold. Naltrexone treatment also shifted the potency of 1:27 fentanyl/heroin mixture in a drug-vs-food choice self-administration procedure 4.3-fold. In contrast, vaccination did not attenuate 1:27 fentanyl/heroin mixture self-administration in the drug-vs-food choice procedure. These data demonstrate that a vaccine can simultaneously attenuate the thermal antinociceptive effects of two structurally dissimilar opioids. However, the vaccine did not attenuate fentanyl/heroin mixture self-administration, suggesting a greater magnitude of vaccine responsiveness is required to decrease opioid reinforcement relative to antinociception.
Collapse
Affiliation(s)
- E. Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Paul T. Bremer
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kaycee E. Faunce
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Alaina M. Jaster
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Hannah L. Robinson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| |
Collapse
|
32
|
Xiaoshan T, Junjie Y, Wenqing W, Yunong Z, Jiaping L, Shanshan L, Kutty Selva N, Kui C. Immunotherapy for treating methamphetamine, heroin and cocaine use disorders. Drug Discov Today 2020; 25:610-619. [DOI: 10.1016/j.drudis.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
|
33
|
Schwienteck KL, Blake S, Bremer PT, Poklis JL, Townsend EA, Negus SS, Banks ML. Effectiveness and selectivity of a heroin conjugate vaccine to attenuate heroin, 6-acetylmorphine, and morphine antinociception in rats: Comparison with naltrexone. Drug Alcohol Depend 2019; 204:107501. [PMID: 31479865 PMCID: PMC6878171 DOI: 10.1016/j.drugalcdep.2019.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND One emerging strategy to address the opioid crisis includes opioid-targeted immunopharmacotherapies. This study compared effectiveness of a heroin-tetanus toxoid (TT) conjugate vaccine to antagonize heroin, 6-acetylmorphine (6-AM), morphine, and fentanyl antinociception in rats. METHODS Adult male and female Sprague Dawley rats received three doses of active or control vaccine at weeks 0, 2, and 4. Vaccine pharmacological selectivity was assessed by comparing opioid dose-effect curves in 50 °C warm-water tail-withdrawal procedure before and after active or control heroin-TT vaccine. Route of heroin administration [subcutaneous (SC) vs. intravenous [IV)] was also examined as a determinant of vaccine effectiveness. Continuous naltrexone treatment (0.0032-0.032 mg/kg/h) effects on heroin, 6-AM, and morphine antinociceptive potency were also determined as a benchmark for minimal vaccine effectiveness. RESULTS The heroin-TT vaccine decreased potency of SC heroin (5-fold), IV heroin (3-fold), and IV 6-AM (3-fold) for several weeks without affecting IV morphine or SC and IV fentanyl potency. The control vaccine did not alter potency of any opioid. Naltrexone dose-dependently decreased antinociceptive potency of SC heroin, and treatment with 0.01 mg/kg/h naltrexone produced similar, approximate 8-fold decreases in potencies of SC and IV heroin, IV 6-AM, and IV morphine. The combination of naltrexone and active vaccine was more effective than naltrexone alone to antagonize SC heroin but not IV heroin. CONCLUSIONS The heroin-TT vaccine formulation examined is less effective, but more selective, than chronic naltrexone to attenuate heroin antinociception in rats. Furthermore, these results provide an empirical framework for future preclinical opioid vaccine research to benchmark effectiveness against naltrexone.
Collapse
Affiliation(s)
- Kathryn L. Schwienteck
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Steven Blake
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paul T. Bremer
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - E. Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
34
|
Tenney RD, Blake S, Bremer PT, Zhou B, Hwang CS, Poklis JL, Janda KD, Banks ML. Vaccine blunts fentanyl potency in male rhesus monkeys. Neuropharmacology 2019; 158:107730. [PMID: 31369740 PMCID: PMC6745253 DOI: 10.1016/j.neuropharm.2019.107730] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 11/30/2022]
Abstract
One proposed factor contributing to the increased frequency of opioid overdose deaths is the emergence of novel synthetic opioids, including illicit fentanyl and fentanyl analogues. A treatment strategy currently under development to address the ongoing opioid crisis is immunopharmacotherapies or opioid-targeted vaccines. The present study determined the effectiveness and selectivity of a fentanyl-tetanus toxoid conjugate vaccine to alter the behavioral effects of fentanyl and a structurally dissimilar mu-opioid agonist oxycodone in male rhesus monkeys (n = 3-4). Fentanyl and oxycodone produced dose-dependent suppression of behavior in an assay of schedule-controlled responding and antinociception in an assay of thermal nociception (50 °C). Acute naltrexone (0.032 mg/kg) produced an approximate 10-fold potency shift for fentanyl to decrease operant responding. The fentanyl vaccine was administered at weeks 0, 2, 4, 9, 19, and 44 and fentanyl or oxycodone potencies in both behavioral assays were redetermined over the course of 49 weeks. The vaccine significantly and selectively shifted fentanyl potency at least 10-fold in both assays at several time points over the entire experimental period. Mid-point titer levels correlated with fentanyl antinociceptive potency shifts. Antibody affinity for fentanyl as measured by a competitive binding assay improved over time to approximately 3-4 nM. The fentanyl vaccine also increased fentanyl plasma levels approximately 6-fold consistent with the hypothesis that the vaccine sequesters fentanyl in the blood. Overall, these results support the continued development and evaluation of this fentanyl vaccine in humans to address the ongoing opioid crisis.
Collapse
Affiliation(s)
- Rebekah D Tenney
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Steven Blake
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Paul T Bremer
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bin Zhou
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Candy S Hwang
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Kim D Janda
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
35
|
Townsend EA, Blake S, Faunce KE, Hwang CS, Natori Y, Zhou B, Bremer PT, Janda KD, Banks ML. Conjugate vaccine produces long-lasting attenuation of fentanyl vs. food choice and blocks expression of opioid withdrawal-induced increases in fentanyl choice in rats. Neuropsychopharmacology 2019; 44:1681-1689. [PMID: 31043682 PMCID: PMC6784909 DOI: 10.1038/s41386-019-0385-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/19/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
The current opioid crisis remains a significant public health issue and there is a critical need for biomedical research to develop effective and easily deployable candidate treatments. One emerging treatment strategy for opioid use disorder includes immunopharmacotherapies or opioid-targeted vaccines. The present study determined the effectiveness of a fentanyl-tetanus toxoid conjugate vaccine to alter fentanyl self-administration using a fentanyl-vs.-food choice procedure in male and female rats under three experimental conditions. For comparison, continuous 7-day naltrexone (0.01-0.1 mg/kg/h) and 7-day clonidine (3.2-10 μg/kg/h) treatment effects were also determined on fentanyl-vs.-food choice. Male and female rats responded for concurrently available 18% diluted Ensure® (liquid food) and fentanyl (0-10 μg/kg/infusion) infusions during daily sessions. Under baseline and saline treatment conditions, fentanyl maintained a dose-dependent increase in fentanyl-vs.-food choice. First, fentanyl vaccine administration significantly blunted fentanyl reinforcement and increased food reinforcement for 15 weeks in non-opioid dependent rats. Second, surmountability experiments by increasing the unit fentanyl dose available during the self-administration session 10-fold empirically determined that the fentanyl vaccine produced an approximate 22-fold potency shift in fentanyl-vs.-food choice that was as effective as the clinically approved treatment naltrexone. Clonidine treatment significantly increased fentanyl-vs.-food choice. Lastly, fentanyl vaccine administration prevented the expression of withdrawal-associated increases in fentanyl-vs.-food choice following introduction of extended 12 h fentanyl access sessions. Overall, these results support the potential and further consideration of immunopharmacotherapies as candidate treatments to address the current opioid crisis.
Collapse
Affiliation(s)
- E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Steven Blake
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kaycee E Faunce
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Candy S Hwang
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Chemistry, Southern Connecticut State University, 501 Crescent St, New Haven, CT, 06515, USA
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Bin Zhou
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Paul T Bremer
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kim D Janda
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
36
|
Hwang CS, Smith LC, Wenthur CJ, Ellis B, Zhou B, Janda KD. Heroin vaccine: Using titer, affinity, and antinociception as metrics when examining sex and strain differences. Vaccine 2019; 37:4155-4163. [PMID: 31176539 DOI: 10.1016/j.vaccine.2019.05.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023]
Abstract
Anti-drug vaccines have potential as new interventions against substance use disorder (SUD). However, given the challenges seen with inter-individual variability in SUD vaccine trials to date, new interventions should ensure a robust immune response and safety profile among a diverse population. This requires accounting for sex and heritable genetic differences in response to both abused substances as well as the vaccination itself. To test response variability to our heroin-tetanus toxoid (Her-TT) immunoconjugate vaccine, we vaccinated male and female mice from several mouse strains including Swiss Webster (SW), BALB/c, and Jackson diversity mice (J:DO). Previous studies with vaccinated male SW mice demonstrated a rare hypersensitivity resulting in mice rapidly expiring with exposure to a low dose of heroin. Our results indicate that this response is limited to only male SW mice, and not to any other strain or female SW mice. Our data suggest that this hypersensitivity is not the result of an overactive cytokine or IgE response. Vaccination was similarly effective among the sexes for each strain and against repeated heroin challenge. Inbred BALB/c and J:DO mice were found to have the best vaccine response against heroin in antinociception behavioral assay. These results highlight the importance of incorporating both male and female subjects, along with different strains to mimic diverse human populations, as new SUD vaccines are being tested.
Collapse
Affiliation(s)
- Candy S Hwang
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren C Smith
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Cody J Wenthur
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Beverly Ellis
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Bin Zhou
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kim D Janda
- Department of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
37
|
Park K, Otte A. Prevention of Opioid Abuse and Treatment of Opioid Addiction: Current Status and Future Possibilities. Annu Rev Biomed Eng 2019; 21:61-84. [PMID: 30786212 DOI: 10.1146/annurev-bioeng-060418-052155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prescription opioid medications have seen a dramatic rise in misuse and abuse, leading regulators and scientists to develop policies and abuse-deterrent technologies to combat the current opioid epidemic. These abuse-deterrent formulations (ADFs) are intended to deter physical and chemical tampering of opioid-based products, while still providing safe and effective delivery for therapeutic purposes. Even though formulations with varying abuse-deterrent technologies have been approved, questions remain about their effectiveness. While these formulations provide a single means to combat the epidemic, a greater emphasis should be placed on formulations for treatment of addiction and overdose to help those struggling with opioid dependence. This article analyzes various ADFs currently in clinical use and explores potential novel systems for treatment of addiction and prevention of overdose.
Collapse
Affiliation(s)
- Kinam Park
- Weldon School of Biomedical Engineering and College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Andrew Otte
- Weldon School of Biomedical Engineering and College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
38
|
Pravetoni M, Comer SD. Development of vaccines to treat opioid use disorders and reduce incidence of overdose. Neuropharmacology 2019; 158:107662. [PMID: 31173759 DOI: 10.1016/j.neuropharm.2019.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
Vaccines offer a promising therapeutic strategy to treat substance use disorders (SUD). Vaccines have shown extensive preclinical proof of selectivity, safety, and efficacy against opioids, nicotine, cocaine, methamphetamine, and designer drugs. Despite clinical evaluation of vaccines targeting nicotine and cocaine showing proof of concept for this approach, no vaccine for SUD has yet reached the market. This review first discusses how vaccines for treatment of opioid use disorders (OUD) and reduction of opioid-induced fatal overdoses fit within the current medication assisted treatment (MAT) portfolio, and then summarizes ongoing efforts toward translation of vaccines targeting heroin, oxycodone, fentanyl, and other opioids. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Marco Pravetoni
- University of Minnesota Medical School, Departments of Pharmacology and Medicine, Minneapolis, MN, USA; Hennepin Healthcare Research Institute, Minneapolis, MN, USA.
| | - Sandra D Comer
- Columbia University Irving Medical Center, Department of Psychiatry, The New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
39
|
Natori Y, Hwang CS, Lin L, Smith LC, Zhou B, Janda KD. A chemically contiguous hapten approach for a heroin-fentanyl vaccine. Beilstein J Org Chem 2019; 15:1020-1031. [PMID: 31164940 DOI: 10.3762/bjoc.15.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Increased death due to the opioid epidemic in the United States has necessitated the development of new strategies to treat addiction. Monoclonal antibodies and antidrug vaccines provide a tool that both aids addiction management and reduces the potential for overdose. Dual drug vaccines formulated by successive conjugation or by mixture have certain drawbacks. The current study examines an approach for combatting the dangers of fentanyl-laced heroin, by using a hapten with one epitope that has domains for both fentanyl and heroin. Results: We evaluated a series of nine vaccines developed from chemically contiguous haptens composed of both heroin- and fentanyl-like domains. Analysis of the results obtained by SPR and ELISA revealed trends in antibody affinity and titers for heroin and fentanyl based on epitope size and linker location. In antinociception studies, the best performing vaccines offered comparable protection against heroin as our benchmark heroin vaccine, but exhibited attenuated protection against fentanyl compared to our fentanyl vaccine. Conclusion: After thorough investigation of this strategy, we have identified key considerations for the development of a chemically contiguous heroin-fentanyl vaccine. Importantly, this is the first report of such a strategy in the opioid-drug-vaccine field.
Collapse
Affiliation(s)
- Yoshihiro Natori
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA.,Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Candy S Hwang
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA.,Department of Chemistry, Southern Connecticut State University, 501 Crescent St, New Haven, CT, 06515, USA
| | - Lucy Lin
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Lauren C Smith
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Bin Zhou
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Kim D Janda
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology; The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| |
Collapse
|
40
|
Hwang CS, Ellis B, Zhou B, Janda KD. Heat shock proteins: A dual carrier-adjuvant for an anti-drug vaccine against heroin. Bioorg Med Chem 2019; 27:125-132. [PMID: 30497790 PMCID: PMC6442938 DOI: 10.1016/j.bmc.2018.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Heroin is a highly abused opioid that has reached epidemic status within the United States. Yet, existing therapies to treat addiction are inadequate and frequently result into rates of high recidivism. Vaccination against heroin offers a promising alternative therapeutic option but requires further development to enhance the vaccine's performance. Hsp70 is a conserved protein with known immunomodulatory properties and is considered an excellent immunodominant antigen. Within an antidrug vaccine context, we envisioned Hsp70 as a potential dual carrier-adjuvant, wherein immunogenicity would be increased by co-localization of adjuvant and antigenic drug hapten. Recombinant Mycobacterium tuberculosis Hsp70 was appended with heroin haptens and the resulting immunoconjugate granted anti-heroin antibody production and blunted heroin-induced antinociception. Moreover, Hsp70 as a carrier protein surpassed our benchmark Her-KLH cocktail through antibody-mediated blockade of 6-acetylmorphine, the main mediator of heroin's psychoactivity. The work presents a new avenue for exploration in the use of hapten-Hsp70 conjugates to elicit anti-drug immune responses.
Collapse
Affiliation(s)
- Candy S Hwang
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beverly Ellis
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bin Zhou
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kim D Janda
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Affiliation(s)
- Carly Baehr
- 0000000419368657grid.17635.36Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN USA ,0000 0000 9206 4546grid.414021.2Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation), Minneapolis, MN USA
| | - Marco Pravetoni
- Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation), Minneapolis, MN, USA. .,Departments of Medicine and Pharmacology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
42
|
Baruffaldi F, Kelcher AH, Laudenbach M, Gradinati V, Limkar A, Roslawski M, Birnbaum A, Lees A, Hassler C, Runyon S, Pravetoni M. Preclinical Efficacy and Characterization of Candidate Vaccines for Treatment of Opioid Use Disorders Using Clinically Viable Carrier Proteins. Mol Pharm 2018; 15:4947-4962. [PMID: 30240216 DOI: 10.1021/acs.molpharmaceut.8b00592] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vaccines may offer a new treatment strategy for opioid use disorders and opioid-related overdoses. To speed translation, this study evaluates opioid conjugate vaccines containing components suitable for pharmaceutical manufacturing and compares analytical assays for conjugate characterization. Three oxycodone-based haptens (OXY) containing either PEGylated or tetraglycine [(Gly)4] linkers were conjugated to a keyhole limpet hemocyanin (KLH) carrier protein via carbodiimide (EDAC) or maleimide chemistry. The EDAC-conjugated OXY(Gly)4-KLH was most effective in reducing oxycodone distribution to the brain in mice. Vaccine efficacy was T cell-dependent. The lead OXY hapten was conjugated to the KLH, tetanus toxoid, diphtheria cross-reactive material (CRM), as well as the E. coli-expressed CRM (EcoCRM) and nontoxic tetanus toxin heavy chain fragment C (rTTHc) carrier proteins. All vaccines induced early hapten-specific B cell expansion and showed equivalent efficacy against oxycodone in mice. However, some hapten-protein conjugates were easier to characterize for molecular weight and size. Finally, heroin vaccines formulated with either EcoCRM or KLH were equally effective in reducing heroin-induced antinociception and distribution to the brain of heroin and its metabolites in mice. This study identifies vaccine candidates and vaccine components for further development.
Collapse
Affiliation(s)
- Federico Baruffaldi
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - April Huseby Kelcher
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - Megan Laudenbach
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - Valeria Gradinati
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States.,Dipartimento di Chimica e Tecnologie Farmaceutiche, Socrates Program , Universitá degli Studi di Milano , Milan 20122 , Italy
| | - Ajinkya Limkar
- University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | | | - Angela Birnbaum
- University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Andrew Lees
- Fina Biosolutions, LLC , Rockville , Maryland 20850 , United States
| | - Carla Hassler
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Scott Runyon
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Marco Pravetoni
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States.,Departments of Medicine and Pharmacology, Center for Immunology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
43
|
Abstract
The opioid epidemic is at the epicenter of the drug crisis, resulting in an inconceivable number of overdose deaths and exorbitant associated medical costs that have crippled many communities across the socioeconomic spectrum in the United States. Classic medications for the treatment of opioid use disorder predominantly target the opioid system and thus have been underutilized, in part due to their own potential for abuse and heavy regulatory burden for patients and clinicians. Opioid antagonists are now evolving in their use, not only to prevent acute overdoses but as extended-use treatment options. Strategies that target specific genetic and epigenetic factors, along with novel nonopioid medications, hold promise as future therapeutic interventions for opioid abuse. Success in increasing the treatment options in the clinical toolbox will, hopefully, help to end the historical pattern of recurring opioid epidemics. [AJP at 175: Remembering Our Past As We Envision Our Future Drug Addiction in Relation to Problems of Adolescence Zimmering and colleagues wrote in the midst of an opiate epidemic among young people that "only the human being, or rather certain types of human beings, will return to the enslaving, self-destructive habit." (Am J Psychiatry 1952; 109:272-278 )].
Collapse
Affiliation(s)
- Yasmin L. Hurd
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine, Addiction Institute, Mount Sinai Behavioral Health System, New York
| | - Charles P. O’Brien
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Hwang C, Smith LC, Natori Y, Ellis B, Zhou B, Janda KD. Improved Admixture Vaccine of Fentanyl and Heroin Hapten Immunoconjugates: Antinociceptive Evaluation of Fentanyl-Contaminated Heroin. ACS OMEGA 2018; 3:11537-11543. [PMID: 30288464 PMCID: PMC6166218 DOI: 10.1021/acsomega.8b01478] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/07/2018] [Indexed: 05/25/2023]
Abstract
Fentanyl and its derivatives have become pervasive contaminants in the U.S. heroin supply. Previously, we reported a proof-of-concept vaccine designed to combat against heroin contaminated with fentanyl. Herein, we optimized the admixture vaccine and found that it surpassed the individual vaccines in every antinociceptive test, including a 10% fentanyl to heroin formulation. It is anticipated that other co-occurring drug abuse disorders may also be examined with admixture vaccines.
Collapse
Affiliation(s)
- Candy
S. Hwang
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Lauren C. Smith
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Yoshihiro Natori
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Beverly Ellis
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Bin Zhou
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Kim D. Janda
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| |
Collapse
|
45
|
Nguyen JD, Hwang CS, Grant Y, Janda KD, Taffe MA. Prophylactic vaccination protects against the development of oxycodone self-administration. Neuropharmacology 2018; 138:292-303. [PMID: 29936242 DOI: 10.1016/j.neuropharm.2018.06.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/22/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022]
Abstract
Abuse of prescription opioids is a growing public health crisis in the United States, with drug overdose deaths increasing dramatically over the past 15 years. Few preclinical studies exist on the reinforcing effects of oxycodone or on the development of therapies for oxycodone abuse. This study was conducted to determine if immunopharmacotherapy directed against oxycodone would be capable of altering oxycodone-induced antinociception and intravenous self-administration. Male Wistar rats were administered a small-molecule immunoconjugate vaccine (Oxy-TT) or the control carrier protein, tetanus toxoid (TT), and trained to intravenously self-administer oxycodone (0.06 or 0.15 mg/kg/infusion). Brain oxycodone concentrations were 50% lower in Oxy-TT rats compared to TT rats 30 min after injection (1 mg/kg, s.c.) whereas plasma oxycodone was 15-fold higher from drug sequestration by circulating antibodies. Oxy-TT rats were also less sensitive to 1-2 mg/kg, s.c. oxycodone on a hot water nociception assay. Half of the Oxy-TT rats failed to acquire intravenous self-administration under the 0.06 mg/kg/infusion training dose. Oxycodone self-administration of Oxy-TT rats trained on 0.15 mg/kg/infusion was higher than controls; however under progressive ratio (PR) conditions the Oxy-TT rats decreased their oxycodone intake, unlike TT controls. These data demonstrate that active vaccination provides protection against the reinforcing effects of oxycodone. Anti-oxycodone vaccines may entirely prevent repeated use in some individuals who otherwise would become addicted. Vaccination may also reduce dependence in those who become addicted and therefore facilitate the effects of other therapeutic interventions which either increase the difficulty of drug use or incentivize other behaviors.
Collapse
Affiliation(s)
- Jacques D Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Candy S Hwang
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA
| | - Yanabel Grant
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, USA
| | - Michael A Taffe
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|