1
|
Partheniadis I, Martins ICB, Müllertz A, Nikolakakis I, Rades T. The role of feed pretreatment and thermal stress in the development of griseofulvin/amino acid CAMS by Hot-Melt Extrusion - Structure relaxation and release/permeability evaluation. Int J Pharm 2025; 679:125765. [PMID: 40425057 DOI: 10.1016/j.ijpharm.2025.125765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 05/29/2025]
Abstract
Development of co-amorphous systems (CAMS) of griseofulvin (GRI) with three amino acids (AAs) - L-lysine (GRI/LYS), L-methionine (GRI/MET), and L-valine (GRI/VAL) was investigated using the established methods of feed solvent pretreatment hot melt extrusion (mHME), ball milling (BM; dry and liquid-assisted), quench cooling (QC), and solvent evaporation (SE). The role of solvent treatment and thermal stress in mHME was elucidated. CAMS formation was evaluated using crystallography (XRPD) and modulated differential scanning colorimetry (DSC). Successful CAMS development was possible only with mHME emphasizing the importance of thermal stress. Hydrogen bonding was identified spectroscopically (ATR-FTIR) in the mHME and SE products by the disappearance of the 1658 cm-1 FTIR carbonyl peak indicating the important role of AcOH in feed pretreatment. Structural relaxation time of the developed CAMS was studied using thermal activity monitoring (TAM). Johari-Goldstein (β) secondary relaxation temperature was estimated using dynamic mechanical analysis (DMA). The structural relaxation time (τDβ), and the secondary relaxation temperature (Tgβ) of the developed CAMS increased in the order GRI/LYS < GRI/MET < GRI/VAL. Significant correlations exist between Tgβ and τDβ (R2 = 0.9922), and between Tgβ and the Hansen solubility parameters (R2 = 0.9965). The results of the in vitro dissolution/permeability test using the MicroFLUX™ system, in which the donor and receiver compartments are separated by a lipophilic membrane/hydrophilic filter barrier showed that GRI/VAL and GRI/MET CAMS gave significantly higher release and permeability compared to amorphous drug alone, due to the superior dissolution and sustained supersaturation.
Collapse
Affiliation(s)
- Ioannis Partheniadis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124 Thessaloniki, Greece
| | - Inês C B Martins
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124 Thessaloniki, Greece.
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Yarlagadda DL, Kawakami K, Samavedi S. Leveraging Molecular Interactions to Develop a Generalized Design Framework for Coamorphous Drug-Drug Mixtures Exhibiting Elevated Glass Transition Temperatures. Mol Pharm 2025. [PMID: 40377977 DOI: 10.1021/acs.molpharmaceut.5c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Coamorphous mixtures (CAMs) prepared with two drugs have the potential to enhance the oral absorption of poorly soluble drugs and achieve combination therapy. From a practical standpoint, improving the glass transition temperature (Tg) of CAMs is desirable as it enhances stability and extends shelf life during storage. Toward the eventual goal of developing highly stable CAMs, this study establishes a generalized framework that systematically relates elevated Tg values of CAMs to intermolecular interactions based on specific functional groups. CAMs were prepared via quench-cooling using various combinations of indomethacin, ketoprofen, flurbiprofen, flufenamic acid, aripiprazole, bifonazole, and clotrimazole. CAMs prepared with drugs containing the COOH group exhibited significant positive deviations from the Tg values predicted by the Gordon-Taylor equation (i.e., ideal mixing behavior). COOH-associated hydrogen bonding was determined to be a key factor for Tg elevation, with synergistic contributions from π-π interactions and halogen bonding. In CAMs exhibiting the largest Tg deviations, contributions from ionic bonding were crucial, and were likely favored by differences in the pKa values of the constituent drugs. Continuity in Tg as a function of varying molar ratios indicated that stoichiometric pairing had a relatively minor contribution, while a decrease in the width of the glass transition suggested enhancement of molecular cooperativity as a possible mechanism for CAM stabilization. In contrast, non-COOH hydrogen bonding, π-π interactions, and halogen bonding on their own did not result in any meaningful Tg deviations from theoretical predictions. Systematic correlations between Tg deviations and molecular interactions reported in this study can lead to generalized design rules for the development of stable CAMs.
Collapse
Affiliation(s)
- Dani Lakshman Yarlagadda
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, IITH Main Road, Near NH 65, Kandi, Sangareddy, Telangana 502285, India
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Satyavrata Samavedi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, IITH Main Road, Near NH 65, Kandi, Sangareddy, Telangana 502285, India
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
3
|
Zografi G, Newman A, Shalaev E. Structural features of the glassy state and their impact on the solid-state properties of organic molecules in pharmaceutical systems. J Pharm Sci 2025; 114:40-69. [PMID: 38768756 DOI: 10.1016/j.xphs.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
This paper reviews the structure and properties of amorphous active pharmaceutical ingredients (APIs), including small molecules and proteins, in the glassy state (below the glass transition temperature, Tg). Amorphous materials in the neat state and formulated with excipients as miscible amorphous mixtures are included, and the role of absorbed water in affecting glass structure and stability has also been considered. We defined the term "structure" to indicate the way the various molecules in a glass interact with each other and form distinctive molecular arrangements as regions or domains of varying number of molecules, molecular packing, and density. Evidence is presented to suggest that such systems generally exist as heterogeneous structures made up of high-density domains surrounded by a lower density arrangement of molecules, termed the microstructure. It has been shown that the method of preparation and the time frame for handling and storage can give rise to variable glass structures and varying physical properties. Throughout this paper, examples are given of theoretical, computer simulation, and experimental studies which focus on the nature of intermolecular interactions, the size of heterogeneous higher density domains, and the impact of such systems on the relative physical and chemical stability of pharmaceutical systems.
Collapse
Affiliation(s)
- George Zografi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann Newman
- Seventh Street Development Group LLC, Kure Beach, NC, United States.
| | | |
Collapse
|
4
|
Vallaster B, Engelsing F, Grohganz H. Influence of water and trehalose on α- and β-relaxation of freeze-dried lysozyme formulations. Eur J Pharm Biopharm 2024; 194:1-8. [PMID: 38029940 DOI: 10.1016/j.ejpb.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Molecular mobility in form of alpha and beta relaxations is considered crucial for characterization of amorphous lyophilizates and reflected in the transition temperatures Tgα and Tgβ. Based on an overview of applied methods to study beta relaxations, Dynamic Mechanical analysis was used to measure Tgα and Tgβ in amorphous freeze-dried samples. Lysozyme and trehalose as well as their mixtures in varying ratios were investigated. Three different residual moisture levels, ranging from roughly 0.5-7 % (w/w), were prepared via equilibration of the freeze-dried samples. Known plasticising effects of water on Tgα were confirmed, also via differential scanning calorimetry. In addition and contrary to expectations, an influence of water on the Tgβ also was observed. On the other hand, an increasing amount of trehalose lowered Tgα but increased Tgβ showing that Tgα and Tgβ are not paired. The findings were interpreted with regard to their underlying molecular mechanisms and a correlation with the known influences of water and trehalose on stability. The results provide encouraging hints for future stability studies of freeze-dried protein formulations, which are urgently needed, not least for reasons of sustainability.
Collapse
Affiliation(s)
- Bernadette Vallaster
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Florian Engelsing
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
Alwaleedy S, Kabara KB, Karale RR, Kamble S, Al-Hamdani S, Kumbharkhane AC, Sarode AV. Water dynamics on the structural properties of some NSAID's with leucine in the picosecond region using time domain spectroscopy. J Biomol Struct Dyn 2023; 42:12900-12917. [PMID: 37897192 DOI: 10.1080/07391102.2023.2273987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Concentration-dependent dielectric response for non-steroidal anti-inflammatory drugs (NSAIDs): Aceclofenac (ACF) and Diclofenac (DCF) in the aqueous leucine solution have been reported at different concentrations and temperatures (298.15 K to 283.15 K). The time domain reflectometry technique in the frequency region of 1 GHz to 30 GHz was used for the present study. Complex permittivity (ε*), static dielectric constant (ε), dielectric relaxation time (τ), dipole moment (μ) and Kirkwood correlation factor (g) have been calculated and discussed in terms of the molecular interaction of water and the used drugs. To give more insights into the structural dynamics of drug-induced amino acids, the study includes molar enthalpy of activation (ΔH), entropy of activation (ΔS), and free energy of activation (ΔF). The overall study concludes that the drug (DCF) having a potent inhibitor of cyclooxygenase found a higher static dielectric constant (ε0) than that of the drug (ACF) having more carbon (C), hydrogen (H), and oxygen (O) in the chain, which is more efficient in controlling pain.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suad Alwaleedy
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, India
- Department of Physics, Taiz University, Yemen
| | - Komal B Kabara
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, India
| | - Ravikant R Karale
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, India
| | - Savita Kamble
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, India
| | - Saeed Al-Hamdani
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, India
| | - Ashok C Kumbharkhane
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, India
| | - Arvind V Sarode
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS, India
| |
Collapse
|
6
|
Silva JC, Pereira Silva PS, Ramos Silva M, Fantechi E, Chelazzi L, Ciattini S, Eusébio MES, Rosado MTS. Amorphous Solid Forms of Ranolazine and Tryptophan and Their Relaxation to Metastable Polymorphs. CRYSTAL GROWTH & DESIGN 2023; 23:6679-6691. [PMID: 37692331 PMCID: PMC10486308 DOI: 10.1021/acs.cgd.3c00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Different methods were explored for the amorphization of ranolazine, a sparingly soluble anti-anginal drug, such as mechanochemistry, quench-cooling, and solvent evaporation from solutions. Amorphous phases, with Tg values lower than room temperature, were obtained by cryo-milling and quench-cooling. New forms of ranolazine, named II and III, were identified from the relaxation of the ranolazine amorphous phase produced by cryo-milling, which takes place within several hours after grinding. At room temperature, these metastable polymorphs relax to the lower energy polymorph I, whose crystal structure was solved in this work for the first time. A binary co-amorphous mixture of ranolazine and tryptophan was produced, with three important advantages: higher glass transition temperature, increased kinetic stability preventing relaxation of the amorphous to crystalline phases for at least two months, and improved aqueous solubility. Concomitantly, the thermal behavior of amorphous tryptophan obtained by cryo-milling was studied by DSC. Depending on experimental conditions, it was possible to observe relaxation directly to the lower energy form or by an intermediate metastable crystalline phase and the serendipitous production of the neutral form of this amino acid in the pure solid phase.
Collapse
Affiliation(s)
- Joana
F. C. Silva
- CQC-IMS,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Pedro S. Pereira Silva
- CFisUC,
Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Rua Larga, 3000-370 Coimbra, Portugal
| | - Manuela Ramos Silva
- CFisUC,
Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Rua Larga, 3000-370 Coimbra, Portugal
| | - Elvira Fantechi
- Centro
di Cristallografia Strutturale (CRIST), Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019 Firenze, Italy
| | - Laura Chelazzi
- Centro
di Cristallografia Strutturale (CRIST), Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019 Firenze, Italy
| | - Samuele Ciattini
- Centro
di Cristallografia Strutturale (CRIST), Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino 50019 Firenze, Italy
| | - M. Ermelinda S. Eusébio
- CQC-IMS,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Mário T. S. Rosado
- CQC-IMS,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
7
|
Ren S, Liu C, Sun Y, Zhang Y, Ruan J, Fang L. Formulation Development and Molecular Mechanism Characterization of Long-Acting Patches of Asenapine for Efficient Delivery by Combining API-ILs Strategy and Controlled-Release Polymers. J Pharm Sci 2023; 112:1850-1862. [PMID: 36858176 DOI: 10.1016/j.xphs.2023.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
The objective of our study, which combined API-ILs strategy and controlled-release polymers, was to prepare a 72 h long-acting drug-in-adhesive patch for optimum delivery of asenapine (ASE). Special attention was paid to the permeation promotion mechanism and the controlled release behavior of ASE-ILs in pressure sensitive adhesives (PSA). Formulation factors were investigated by ex vivo transdermal experiments. The optimized patch was evaluated by pharmacokinetics study and skin irritation test. The obtained formulation was as follows, 15% w/w ASE-MA (about 1136 μg/cm2 ASE, 413 μg/cm2 MA), AACONH2 (Amide adhesive) as the matrix, 80 μm thickness, backing film of CoTran™ 9733. The optimized patch displayed satisfactory ex vivo and in vivo performance with Q 72 h of 620 ± 44 µg/cm2 and Fabs of 62.4%, which utilization rate (54.6%) was significantly higher than the control group (38.3%). By using the classical shake flask method, 13C NMR, DSC, and FTIR, the physicochemical properties and structure of ILs were characterized. log Do/w, ATR-FTIR, Raman, and molecular dynamics simulation results confirmed that ASE-MA (MA: 3-Methoxypropionic acid) had appropriate lipophilicity, and affected lipid fluidity as well as the conformation of keratin to improve the skin permeation. The FTIR, MDSC, rheology, and molecular docking results revealed that hydrogen bond (H-bond), were formed between ASE-MA and PSA, and the drug increased the molecular mobility of polymer chains. In summary, the 72 h long-acting patch of ASE was successfully prepared and it supplied a reference for the design of long-acting patches with ASE.
Collapse
Affiliation(s)
- Shoujun Ren
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yutong Sun
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yang Zhang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Jiuheng Ruan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
8
|
Holzapfel K, Rades T, Leopold CS. Co-amorphous systems consisting of indomethacin and the chiral co-former tryptophan: Solid-state properties and molecular mobilities. Int J Pharm 2023; 636:122840. [PMID: 36921746 DOI: 10.1016/j.ijpharm.2023.122840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
In this study the influence of an enantiomeric co-former and the preparation method on the solid-state properties and physical stability of co-amorphous systems were investigated. Co-amorphous systems consisting of indomethacin (IND) and chiral tryptophan (TRP) as co-former in its two enantiomeric forms, as racemate, and as conglomerate (equimolar mixture of D- and L-TRP) were prepared. Co-amorphization was achieved by ball milling (BM) and spray drying (SD). The effects of chirality and preparation method on the solid-state properties and physical stabilities of the systems were investigated by XRPD, FTIR and mDSC. Differences in the BM process were caused by the enantiomeric properties of the co-former: The IND/TRP conglomerate (IND/TRPc) turned co-amorphous after 60 min. In contrast, co-amorphization of IND/L-TRP and IND/D-TRP required 80 min of ball milling, respectively, and the co-amorphous IND/TRP racemate (IND/TRPr) was obtained only after 90 min of ball milling. Although the intermolecular interactions of the co-amorphous systems prepared by BM and SD were similar (determined by FTIR), the Tg values differed (∼87 °C for the ball milled and ∼62 °C for the spray dried systems). The physical stabilities of the ball milled co-amorphous systems varied between 3 and 11 months if stored at elevated temperature and dry conditions, with the highest stability for the IND/TRPc system and the lowest stability for the IND/TRPr system, and these differences correlated with the calculated relaxation times. In contrast, all spray dried systems were stable only for 1 month and their relaxation times were similar. It could be shown that the chirality of a co-former and the preparation method influence the solid-state properties, thermal properties and physical stability of IND/TRP systems.
Collapse
Affiliation(s)
- Katharina Holzapfel
- University of Hamburg, Division of Pharmaceutical Technology, Bundesstr. 45, 20146 Hamburg, Germany
| | - Thomas Rades
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Claudia S Leopold
- University of Hamburg, Division of Pharmaceutical Technology, Bundesstr. 45, 20146 Hamburg, Germany.
| |
Collapse
|
9
|
Prediction of Co-amorphous Formation Using Non-bonded Interaction Energy: Molecular Dynamic Simulation and Experimental Validation. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
10
|
Guinet Y, Paccou L, Hédoux A. Mechanism for Stabilizing an Amorphous Drug Using Amino Acids within Co-Amorphous Blends. Pharmaceutics 2023; 15:pharmaceutics15020337. [PMID: 36839663 PMCID: PMC9964172 DOI: 10.3390/pharmaceutics15020337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Designing co-amorphous formulations is now recognized as a relevant strategy for improving the bioavailability of low-molecular-weight drugs. In order to determine the most suitable low-molecular-weight excipients for stabilizing the drug in the amorphous state, screening methods were developed mostly using amino acids as co-formers. The present study focused on the analysis of the thermal stability of co-amorphous blends prepared by cryo-milling indomethacin with several amino acids in order to understand the stabilization mechanism of the drug in the amorphous state. Combining low- and mid-frequency Raman investigations has provided information on the relation between the physical properties of the blends and those of the H-bond network of the amorphous drug. This study revealed the surprising capabilities of L-arginine to stiffen the H-bond network in amorphous indomethacin and to drastically improve the stability of its amorphous state. As a consequence, this study suggests that amino acids can be considered as stiffeners of the H-bond network of indomethacin, thereby improving the stability of the amorphous state.
Collapse
|
11
|
Polymeric solid dispersion Vs co-amorphous technology: A critical comparison. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Adhikari BR, Gordon KC, Das SC. Solid state of inhalable high dose powders. Adv Drug Deliv Rev 2022; 189:114468. [PMID: 35917868 DOI: 10.1016/j.addr.2022.114468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023]
Abstract
High dose inhaled powders have received increased attention for treating lung infections. These powders can be prepared using techniques such as spray drying, spray-freeze drying, crystallization, and milling. The selected preparation technique is known to influence the solid state of the powders, which in turn can potentially modulate aerosolization and aerosolization stability. This review focuses on how and to what extent the change in solid state of high dose powders can influence aerosolization. It also discusses the commonly used solid state characterization techniques and the application of potential strategies to improve the physical and chemical stability of the amorphous powders for high dose delivery.
Collapse
Affiliation(s)
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
13
|
Mechanical Activation by Ball Milling as a Strategy to Prepare Highly Soluble Pharmaceutical Formulations in the Form of Co-Amorphous, Co-Crystals, or Polymorphs. Pharmaceutics 2022; 14:pharmaceutics14102003. [PMID: 36297439 PMCID: PMC9607342 DOI: 10.3390/pharmaceutics14102003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Almost half of orally administered active pharmaceutical ingredients (APIs) have low solubility, which affects their bioavailability. In the last two decades, several alternatives have been proposed to modify the crystalline structure of APIs to improve their solubility; these strategies consist of inducing supramolecular structural changes in the active pharmaceutical ingredients, such as the amorphization and preparation of co-crystals or polymorphs. Since many APIs are thermosensitive, non-thermal emerging alternative techniques, such as mechanical activation by milling, have become increasingly common as a preparation method for drug formulations. This review summarizes the recent research in preparing pharmaceutical formulations (co-amorphous, co-crystals, and polymorphs) through ball milling to enhance the physicochemical properties of active pharmaceutical ingredients. This report includes detailed experimental milling conditions (instrumentation, temperature, time, solvent, etc.), as well as solubility, bioavailability, structural, and thermal stability data. The results and description of characterization techniques to determine the structural modifications resulting from transforming a pure crystalline API into a co-crystal, polymorph, or co-amorphous system are presented. Additionally, the characterization methodologies and results of intermolecular interactions induced by mechanical activation are discussed to explain the properties of the pharmaceutical formulations obtained after the ball milling process.
Collapse
|
14
|
Shi Q, Wang Y, Moinuddin SM, Feng X, Ahsan F. Co-amorphous Drug Delivery Systems: a Review of Physical Stability, In Vitro and In Vivo Performance. AAPS PharmSciTech 2022; 23:259. [PMID: 36123515 DOI: 10.1208/s12249-022-02421-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past few decades, co-amorphous solids have been used as a promising approach for delivering poorly water-soluble drugs. Co-amorphous solids, comprising pharmacologically relevant drug substances or excipients, improve physical stability, solubility, dissolution, and bioavailability compared with single amorphous ingredients. In this review, we have summarized recent advances in physical stability and in vitro and in vivo performances of co-amorphous solids. We have highlighted the role of molar ratio, molecular interaction, and mobility that affects the physical stability of co-amorphous solids. This review delves deep as to how co-amorphous solids affect the physicochemical properties in vitro and in vivo. We also described the challenges to the formulation of co-amorphous solids. A better understanding of the mechanisms of the physical stability, in vitro and in vivo performance of co-amorphous solids, and proper selection of the co-former is likely to expedite the development of robust co-amorphous-based pharmaceutical formulations and can address the challenges associated with the delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Sakib M Moinuddin
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA.,East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Mather, California, 95655, USA
| | - Xiaodong Feng
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA
| | - Fakhrul Ahsan
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA. .,East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Mather, California, 95655, USA.
| |
Collapse
|
15
|
Thayumanasundaram S, Venkatesan TR, Ousset A, Van Hollebeke K, Aerts L, Wübbenhorst M, Van den Mooter G. Complementarity of mDSC, DMA, and DRS Techniques in the Study of Tg and Sub- Tg Transitions in Amorphous Solids: PVPVA, Indomethacin, and Amorphous Solid Dispersions Based on Indomethacin/PVPVA. Mol Pharm 2022; 19:2299-2315. [PMID: 35674392 DOI: 10.1021/acs.molpharmaceut.2c00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, glasses, a subset of amorphous solids, have gained attention in various fields, such as polymer chemistry, optical fibers, and pharmaceuticals. One of their characteristic features, the glass transition temperature (Tg) which is absent in 100% crystalline materials, influences several material properties, such as free volume, enthalpy, viscosity, thermodynamic transitions, molecular motions, physical stability, mechanical properties, etc. In addition to Tg, there may be several other temperature-dependent transitions known as sub-Tg transitions (or β-, γ-, and δ-relaxations) which are identified by specific analytical techniques. The study of Tg and sub-Tg transitions occurring in amorphous solids has gained much attention because of its importance in understanding molecular kinetics, and it requires the combination of conventional and novel characterization techniques. In the present study, three different analytical techniques [modulated differential scanning calorimetry (mDSC), dynamic mechanical analysis (DMA), and dielectric relaxation spectroscopy (DRS)] were used to perform comprehensive qualitative/quantitative characterization of molecular relaxations, miscibility, and molecular interactions present in an amorphous polymer (PVPVA), a model drug (indomethacin, IND), and IND/PVPVA-based amorphous solid dispersions (ASDs). This is the first ever reported DMA study on PVPVA in its powder form, which avoids the contribution of solvent to the mechanical properties when a self-standing polymer film is used. A good correlation between the techniques in determining the Tg value of PVPVA, IND, and IND/PVPVA-based ASDs is established, and the negligible difference (within 10 °C) is attributed to the different material properties assessed in each technique. However, the overall Tg behavior, the decrease in Tg with increase in drug loading in ASDs, is universally observed in all the above-mentioned techniques, which reveals their complementarity. DMA and DRS techniques are used to study the different sub-Tg transitions present in PVPVA, amorphous IND, and IND/PVPVA-based ASDs because these transitions are normally too weak or too broad for mDSC to detect. For IND/PVPVA-based ASDs, both techniques show a shift of sub-Tg transitions (or secondary relaxation peaks) toward the high-temperature region from -140 to -45 °C. Thus, this paper outlines the usage of different solid-state characterization techniques in understanding the different molecular dynamics present in the polymer, drug, and their interactions in ASDs with the integrated information obtained from individual techniques.
Collapse
Affiliation(s)
| | - Thulasinath Raman Venkatesan
- Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium.,Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Aymeric Ousset
- Department of Product Design and Performance, UCB Pharma, 1420 Braine-l'Alleud, Belgium
| | - Kim Van Hollebeke
- Department of Product Design and Performance, UCB Pharma, 1420 Braine-l'Alleud, Belgium
| | - Luc Aerts
- Department of Product Design and Performance, UCB Pharma, 1420 Braine-l'Alleud, Belgium
| | | | - Guy Van den Mooter
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium
| |
Collapse
|
16
|
Norfloxacin co-amorphous salt systems: Effects of molecular descriptors on the formation and physical stability of co-amorphous systems. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Minode M, Kadota K, Kawabata D, Yoshida M, Shirakawa Y. Enhancement in dissolution behavior and antioxidant capacity of quercetin with amino acids following radical formation via mechanochemical technique. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
18
|
Alhajj N, O'Reilly NJ, Cathcart H. Development and Characterization of a Spray-Dried Inhalable Ciprofloxacin-Quercetin Co-Amorphous System. Int J Pharm 2022; 618:121657. [PMID: 35288220 DOI: 10.1016/j.ijpharm.2022.121657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Spray drying is an increasingly used particle engineering technique for the production of dry powders for inhalation. However, the amorphous nature of most spray-dried particles remains a big challenge affecting both the chemical and the physical stability of the dried particles. Here, we study the possibility of producing co-amorphous ciprofloxacin-quercetin inhalable particles with improved amorphous stability compared to the individual amorphous drugs. Ciprofloxacin (CIP), a broad-spectrum antibiotic, was co-spray dried with quercetin (QUE), a compound with antibiofilm properties, from an ethanol-water co-solvent system at 2:1, 1:1 and 1:2 molar ratios to investigate the formation of co-amorphous CIP-QUE particles. Differential scanning colorimetry (DSC) and X-ray powder diffraction (XRPD) were used for solid-state characterization; dynamic vapor sorption (DVS) was used for investigating the moisture sorption behaviour. The intermolecular interaction was studied via solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy; the miscibility of the drugs was predicted via free energy calculations based on the Flory-Huggins interaction parameter (χ). A next generation impactor (NGI) was used to study the in vitro aerosol performance of the spray-dried powders. The physicochemical characteristics such as particle size, density, morphology, cohesion, water content and saturation solubility of the spray-dried powders were also studied. The co-spray-dried CIP-QUE powders prepared at the three molar ratios were predominantly amorphous. However, differences were observed between sample types. It was found that at a molar ratio of 1:1, CIP and QUE form a single co-amorphous system. However, increasing the molar ratio of either drug results in the formation of an additional amorphous phase, formed from the excess of the corresponding drug. Despite these differences, DVS showed that elevated humidity had a much lower influence on all three co-amorphous systems compared with the individual amorphous drugs. In vitro aerosolization study showed co-deposition of the two drugs from CIP-QUE powders with a desirable aerosol performance (ED ∼ 72% - 94%; FPF ∼ 48% - 65%) whereas QUE-only amorphous powder had an ED of 36% and a FPF of 22%. In summary, spray-dried CIP-QUE combinations resulted in co-amorphous systems with boosted stability and improved aerosol performance with the 1:1 molar ratio exhibiting the greatest improvement.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
19
|
Liu J, Hwu E, Bannow J, Grohganz H, Rades T. Impact of Molecular Surface Diffusion on the Physical Stability of Co-Amorphous Systems. Mol Pharm 2022; 19:1183-1190. [PMID: 35230110 DOI: 10.1021/acs.molpharmaceut.1c00973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, surface diffusion of l-aspartic acid-carvedilol (ASP-CAR) co-amorphous systems at different ASP concentrations is measured and correlated with their physical stability. ASP-CAR films at ASP concentrations of 1-5% (w/w) were prepared by a newly developed method based on a vacuum compression molding process. Surface diffusion measurements were conducted on these systems based on the surface grating decay method using atomic force microscopy (AFM). The results demonstrate that a small amount of ASP (i.e., ≤ 5% w/w) in the co-amorphous systems could significantly slow down the grating decay process compared with that of pure amorphous CAR, indicating a reduced surface diffusion of CAR molecules. The decay time gradually increased in co-amorphous systems with increasing ASP concentration from 1 to 5% (w/w), with the longest observed decay time of around 800 h for the 5%ASP-CAR system, which was more than 200 times longer compared to the decay time of pure amorphous CAR (approximately 3 h). A good correlation between the decay constants of the pure amorphous CAR and co-amorphous films at ASP concentrations of 1-5% (w/w) and the physical stability of corresponding amorphous powder samples was found. Overall, this study provides a new method to prepare co-amorphous films for surface property measurements and reveals the impact of surface diffusion on the physical stability of co-amorphous systems.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - EnTe Hwu
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jacob Bannow
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Wang Y, Rades T, Grohganz H. Effects of polymer addition on the non-strongly interacting binary co-amorphous system carvedilol-tryptophan. Int J Pharm 2022; 617:121625. [DOI: 10.1016/j.ijpharm.2022.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
|
21
|
R Sá M, Sarraguça JMG, de Sousa FF, Sarraguça MSC, Lopes JA, Lima ADDSG, Lage MR, Ribeiro PRS. Structural, thermal, vibrational, solubility and DFT studies of a tolbutamide co-amorphous drug delivery system for treatment of diabetes. Int J Pharm 2022; 615:121500. [PMID: 35077862 DOI: 10.1016/j.ijpharm.2022.121500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Among the strategies for bioavailability improvement of poorly soluble drugs, co-amorphous systems have revealed to have a significant impact in the increase of the aqueous solubility of the drug, and at the same time increasing the amorphous state stability and dissolution rate when compared with the neat drug. Tolbutamide (TBM) is an oral hypoglycemic drug largely used in the treatment of type II Mellitus diabetes. TBM is a class II drug according to the Biopharmaceutical Classification System, meaning that it has low solubility and higher permeability. The aim of this study was to synthesize a co-amorphous material of tolbutamide (TBM) with tromethamine (TRIS). Density functional theory (DFT), allowed to study the structural, electronic, and thermodynamic properties, as well as solvation effects. In same theory level, several interactions tests were performed to obtain the most thermodynamically favorable drug-coformer intermolecular interactions. The vibrational spectra (mid infrared and Raman spectroscopy) are in accordance with the theoretical studies, showing that the main molecular interactions are due to the carbonyl, sulfonyl, and amide groups of TMB and the alcohol and amine groups of TRIS. X-ray powder diffraction was used to study the physical stability in dry condition at 25 °C of the co-amorphous system, indicating that the material remained in an amorphous state up to 90 days. Differential scanning calorimetry and thermogravimetric results showed a high increase of the Tg when compared with the amorphous neat drug, from 4.3 °C to 83.7 °C, which generally translated into good physical stability. Solubilities studies demonstrated an increase in the solubility of TBM by 2.5 fold when compared with its crystalline counterpart.
Collapse
Affiliation(s)
- Mônica R Sá
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Jorge M G Sarraguça
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Francisco F de Sousa
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Mafalda S C Sarraguça
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - João A Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Antonio Douglas da S G Lima
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Mateus R Lage
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Coordenação do Curso de Ciência e Tecnologia, Universidade Federal do Maranhão, 65800-000 Balsas, MA, Brazil
| | - Paulo R S Ribeiro
- Programa de Pós-Graduação em Ciências dos Materiais, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil.
| |
Collapse
|
22
|
Zhang J, Shi Q, Qu T, Zhou D, Cai T. Crystallization kinetics and molecular dynamics of binary coamorphous systems of nimesulide and profen analogs. Int J Pharm 2021; 610:121235. [PMID: 34743960 DOI: 10.1016/j.ijpharm.2021.121235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Coamorphous drug delivery systems have emerged as a promising formulation technique for improving the solubility and oral bioavailability of poorly soluble drugs. The selection of a suitable coformer is the key to obtaining a successful coamorphous formulation. This study aims to investigate the impacts of coformers with similar chemical structures but different physical properties on the crystallization behavior and molecular dynamics of binary amorphous systems. The addition of three profen analogs, ibuprofen (IBU), ketoprofen (KETO) and indoprofen (INDO) leads to significantly different effects on the crystallization kinetics of amorphous nimesulide (NIME). The crystal growth rates for amorphous NIME are substantially accelerated in the presence of IBU, but drastically reduced in the presence of INDO, while the incorporation of KETO results in a negligible effect. Broadband dielectric spectroscopy is employed to characterize the molecular dynamics of neat amorphous NIME and coamorphous systems. The addition of three structural analogs alters the molecular mobility of amorphous NIME in different ways, which is consistent with the trend observed for their impacts on the crystallization kinetics, suggesting that the relative mobility between the components of coamorphous mixtures governs the physical stability. In addition, it is found that the temperature dependence of the α-relaxation times for NIME with and without coformers is superimposed once the temperature is scaled by Tg/T, whereas the crystallization kinetics do not overlap on a Tg/T scale. This deviation can result from a complex interplay of thermodynamic and kinetic factors involved in multicomponent amorphous systems. This study provides insights into the crystallization kinetics and molecular dynamics of coamorphous systems containing drug analogs, which can potentially offer more flexibility for the control of physical stability without sacrificing therapeutic efficacy.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tengfei Qu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dongshan Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
23
|
Be Rziņš KR, Fraser-Miller SJ, Walker GF, Rades T, Gordon KC. Investigation on Formulation Strategies to Mitigate Compression-Induced Destabilization in Supersaturated Celecoxib Amorphous Solid Dispersions. Mol Pharm 2021; 18:3882-3893. [PMID: 34529437 DOI: 10.1021/acs.molpharmaceut.1c00540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Compression-induced destabilization was investigated in various celecoxib amorphous solid dispersions containing hydroxypropyl methylcellulose (HPMC), poly(vinylpyrrolidone)/vinyl acetate copolymer (PVP/VA), or poly(vinylpyrrolidone) (PVP) at a concentration range of 1-10% w/w. Pharmaceutically relevant (125 MPa pressure with a minimal dwell time) and extreme (500 MPa pressure with a 60 s dwell time) compression conditions were applied to these systems, and the changes in their physical stability were monitored retrospectively (i.e., in the supercooled state) using dynamic differential scanning calorimetry (DSC) and low-frequency Raman (LFR) measurements over a broad temperature range (-90 to 200 and -150 to 140 °C, respectively). Both techniques revealed similar changes in the crystallization behavior between samples, where the application of a higher compression force of 500 MPa resulted in a more pronounced destabilization effect that was progressively mitigated with increasing polymer content. However, other aspects such as more favorable intermolecular interactions did not appear to have any effect on reducing this undesirable effect. Additionally, for the first time, LFR spectroscopy was used as a viable technique to determine the secondary or local glass-transition temperature, Tg,β, a major indicator of the physical stability of neat amorphous pharmaceutical systems.
Collapse
Affiliation(s)
- Ka Rlis Be Rziņš
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Sara J Fraser-Miller
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Greg F Walker
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
24
|
Polymers in pharmaceutical additive manufacturing: A balancing act between printability and product performance. Adv Drug Deliv Rev 2021; 177:113923. [PMID: 34390775 DOI: 10.1016/j.addr.2021.113923] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Materials and manufacturing processes share a common purpose of enabling the pharmaceutical product to perform as intended. This review on the role of polymeric materials in additive manufacturing of oral dosage forms, focuses on the interface between the polymer and key stages of the additive manufacturing process, which determine printability. By systematically clarifying and comparing polymer functional roles and properties for a variety of AM technologies, together with current and emerging techniques to characterize these properties, suggestions are provided to stimulate the use of readily available and sometimes underutilized pharmaceutical polymers in additive manufacturing. We point to emerging characterization techniques and digital tools, which can be harnessed to manage existing trade-offs between the role of polymers in printer compatibility versus product performance. In a rapidly evolving technological space, this serves to trigger the continued development of 3D printers to suit a broader variety of polymers for widespread applications of pharmaceutical additive manufacturing.
Collapse
|
25
|
Recent Technologies for Amorphization of Poorly Water-Soluble Drugs. Pharmaceutics 2021; 13:pharmaceutics13081318. [PMID: 34452279 PMCID: PMC8399234 DOI: 10.3390/pharmaceutics13081318] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Amorphization technology has been the subject of continuous attention in the pharmaceutical industry, as a means to enhance the solubility of poorly water-soluble drugs. Being in a high energy state, amorphous formulations generally display significantly increased apparent solubility as compared to their crystalline counterparts, which may allow them to generate a supersaturated state in the gastrointestinal tract and in turn, improve the bioavailability. Conventionally, hydrophilic polymers have been used as carriers, in which the amorphous drugs were dispersed and stabilized to form polymeric amorphous solid dispersions. However, the technique had its limitations, some of which include the need for a large number of carriers, the tendency to recrystallize during storage, and the possibility of thermal decomposition of the drug during preparation. Therefore, emerging amorphization technologies have focused on the investigation of novel amorphous-stabilizing carriers and preparation methods that can improve the drug loading and the degree of amorphization. This review highlights the recent pharmaceutical approaches utilizing drug amorphization, such as co-amorphous systems, mesoporous particle-based techniques, and in situ amorphization. Recent updates on these technologies in the last five years are discussed with a focus on their characteristics and commercial potential.
Collapse
|
26
|
Newman A, Zografi G. What Are the Important Factors That Influence API Crystallization in Miscible Amorphous API-Excipient Mixtures during Long-Term Storage in the Glassy State? Mol Pharm 2021; 19:378-391. [PMID: 34378939 DOI: 10.1021/acs.molpharmaceut.1c00519] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this Perspective, the authors examine the various factors that should be considered when attempting to use miscible amorphous API-excipient mixtures (amorphous solid dispersions and coamorphous systems) to prevent the solid-state crystallization of API molecules when isothermally stored for long periods of time (a year or more) in the glassy state. After presenting an overview of a variety of studies designed to obtain a better understanding of possible mechanisms by which amorphous API undergo physical instability and by which excipients generally appear to inhibit API crystallization from the amorphous state, we examined 78 studies that reported acceptable physical stability of such systems, stored below Tg under "dry" conditions for one year or more. These results were examined more closely in terms of two major contributing factors: the degree to which a reduction in diffusional molecular mobility and API-excipient molecular interactions operates to inhibit crystallization. These two parameters were chosen because the data are readily available in early development to help compare amorphous systems. Since Tg - T = 50 K is often used as a rule of thumb for the establishing the minimum value below Tg required to reduce diffusional mobility to a period of years, it was interesting to observe that 30 of the 78 studies still produced significant physical stability at values of Tg - T < 50 K (3-47 °C), suggesting that factors besides diffusive molecular mobility likely contribute. A closer look at the Tg - T < 50 systems shows that hydrogen bonding, proton transfer, disruption of API-API self-associations (such as dimers), and possible π-π stacking were reported for most of the systems. In contrast, five crystallized systems that were monitored for a year or more were also examined. These systems exhibited Tg - T values of 9-79, with three of them exhibiting Tg - T < 50. For these three samples, none displayed molecular interactions by infrared spectroscopy. A discussion on the impact of relative humidity on long-term crystallization in the glass was included, with attention paid to the relative water vapor sorption by various excipients and effects on diffusive mobility and molecular interactions between API and excipient.
Collapse
Affiliation(s)
- Ann Newman
- Seventh Street Development Group, Kure Beach, North Carolina 28449, United States
| | - George Zografi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Liu J, Rades T, Grohganz H. The influence of moisture on the storage stability of co-amorphous systems. Int J Pharm 2021; 605:120802. [PMID: 34144131 DOI: 10.1016/j.ijpharm.2021.120802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/03/2023]
Abstract
Co-amorphization has been utilized to improve the physical stability of the respective neat amorphous drugs. However, physical stability of co-amorphous systems is mostly investigated under dry conditions, leaving the potential influence of moisture on storage stability unclear. In this study, carvedilol-L-aspartic acid (CAR-ASP) co-amorphous systems at CAR to ASP molar ratios from 3:1 to 1:3 were investigated under non-dry conditions at two temperatures, i.e., 25 °C 55 %RH and 40 °C 55 %RH. Under these conditions, the highest physical stability of CAR-ASP systems was observed at the 1:1 M ratio. This finding differed from the optimal molar ratio previously obtained under dry conditions (CAR-ASP 1:1.5). Molecular interactions between CAR and ASP were affected by moisture, and salt disproportionation occurred during storage. Morphological differences of systems at different molar ratios could be observed already after one week of storage. Furthermore, variable temperature X-ray powder diffraction measurements showed that excess CAR or excess ASP, existing in the binary systems, resulted in a faster recrystallization compared to equimolar system. Overall, this study emphasizes the influence of moisture on co-amorphous systems during storage, and provides options to determine the optimal ratio of co-amorphous systems in presence of moisture at comparatively short storage times.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
28
|
Effect of mechanochemical grinding conditions on the formation of pharmaceutical cocrystals and co-amorphous solid forms of ketoconazole – Dicarboxylic acid. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Yarlagadda DL, Sai Krishna Anand V, Nair AR, Navya Sree KS, Dengale SJ, Bhat K. Considerations for the selection of co-formers in the preparation of co-amorphous formulations. Int J Pharm 2021; 602:120649. [PMID: 33915186 DOI: 10.1016/j.ijpharm.2021.120649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Co-amorphous drug delivery systems are evolving as a credible alternative to amorphous solid dispersions technology. In Co-amorphous systems (CAMs), a drug is stabilized in amorphous form using small molecular weight compounds called as co-formers. A wide variety of small molecular weight co-formers have been leveraged in the preparation of CAMs. The stability and supersaturation potential of prepared co-amorphous phases largely depend on the type of co-former employed in the CAMs. However, the rationality behind the co-former selection in co-amorphous systems is poorly understood and scarcely compiled in the literature. There are various facets to the rational selection of co-former for CAMs. In this context, the present review compiles various factors affecting the co-former selection. The factors have been broadly classified under Thermodynamic, Kinetic and Pharmacokinetic-Pharmacologically relevant parameters. In particular, the importance of Glass transition, Miscibility, Liquid-Liquid phase separation (LLPS), Crystallization inhibition has been deliberated in detail.
Collapse
Affiliation(s)
- Dani Lakshman Yarlagadda
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Vullendula Sai Krishna Anand
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Athira R Nair
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - K S Navya Sree
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Swapnil J Dengale
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
30
|
Co-Amorphous Drug Formulations in Numbers: Recent Advances in Co-Amorphous Drug Formulations with Focus on Co-Formability, Molar Ratio, Preparation Methods, Physical Stability, In Vitro and In Vivo Performance, and New Formulation Strategies. Pharmaceutics 2021; 13:pharmaceutics13030389. [PMID: 33804159 PMCID: PMC7999207 DOI: 10.3390/pharmaceutics13030389] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Co-amorphous drug delivery systems (CAMS) are characterized by the combination of two or more (initially crystalline) low molecular weight components that form a homogeneous single-phase amorphous system. Over the past decades, CAMS have been widely investigated as a promising approach to address the challenge of low water solubility of many active pharmaceutical ingredients. Most of the studies on CAMS were performed on a case-by-case basis, and only a few systematic studies are available. A quantitative analysis of the literature on CAMS under certain aspects highlights not only which aspects have been of great interest, but also which future developments are necessary to expand this research field. This review provides a comprehensive updated overview on the current published work on CAMS using a quantitative approach, focusing on three critical quality attributes of CAMS, i.e., co-formability, physical stability, and dissolution performance. Specifically, co-formability, molar ratio of drug and co-former, preparation methods, physical stability, and in vitro and in vivo performance were covered. For each aspect, a quantitative assessment on the current status was performed, allowing both recent advances and remaining research gaps to be identified. Furthermore, novel research aspects such as the design of ternary CAMS are discussed.
Collapse
|
31
|
Abstract
Co-amorphous (CAM) systems are promising drug-delivery systems in the arena of therapeutic drug delivery, addressing the poor aqueous solubility of drugs by enhancing solubility and thereby improving the oral bioavailability and therapeutic effect of the drug. A CAM system is a single-phase homogeneous blend of two or more low molecular weight molecules that can be drug–drug or drug–co-former, stabilized via intermolecular interactions, adding the benefit of thermodynamic stability. This review covers the fundamentals of CAM systems and recent advances in formulation development. In particular, we strive to address the theoretical, molecular, technical and biopharmaceutical aspects, advantages over polymeric amorphous solid dispersions, mechanisms of stabilization of amorphous forms, insights into unexplored in silico tools in excipient selection and regulatory viewpoints.
Collapse
|
32
|
A Multivariate Approach for the Determination of the Optimal Mixing Ratio of the Non-Strong Interacting Co-Amorphous System Carvedilol-Tryptophan. Molecules 2021; 26:molecules26040801. [PMID: 33557164 PMCID: PMC7913994 DOI: 10.3390/molecules26040801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Converting crystalline compounds into co-amorphous systems is an effective way to improve the solubility of poorly water-soluble drugs. It is, however, of critical importance for the physical stability of co-amorphous systems to find the optimal mixing ratio of the drug with the co-former. In this study, a novel approach for this challenge is presented, exemplified with the co-amorphous system carvedilol–tryptophan (CAR–TRP). Following X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) of the ball-milled samples to confirm their amorphous form, Fourier-transform infrared spectroscopy (FTIR) and principal component analysis (PCA) were applied to investigate intermolecular interactions. A clear deviation from a purely additive spectrum of CAR and TRP was visualized in the PCA score plot, with a maximum at around 30% drug (mol/mol). This deviation was attributed to hydrogen bonds of CAR with TRP ether groups. The sample containing 30% drug (mol/mol) was also the most stable sample during a stability test. Using the combination of FTIR with PCA is an effective approach to investigate the optimal mixing ratio of non-strong interacting co-amorphous systems.
Collapse
|
33
|
Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, Qian S. Co-amorphous systems for the delivery of poorly water-soluble drugs: recent advances and an update. Expert Opin Drug Deliv 2020; 17:1411-1435. [DOI: 10.1080/17425247.2020.1796631] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yan Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Runze Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
34
|
Functionalised calcium carbonate as a coformer to stabilize amorphous drugs by mechanochemical activation. Eur J Pharm Biopharm 2020; 155:22-28. [PMID: 32768607 DOI: 10.1016/j.ejpb.2020.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the amorphization, physical stability and drug release of a model drug, carvedilol (CAR), when loaded onto functionalised calcium carbonate (FCC) using mechanochemical activation (vibrational ball milling). The solid-state characteristics and physical stability of CAR-FCC samples, prepared at different weight ratios and for different milling times, were determined using differential scanning calorimetry and X-ray powder diffraction. Upon milling CAR-FCC samples containing 50% CAR, amorphization of CAR was observed after 10 min. For CAR-FCC samples milled for either 30 or 90 min, it was found that CAR was amorphised at all ratios (10-90% CAR), but FCC remained crystalline. The glass transition temperature (Tgα) of the various CAR-FCC samples milled for 90 min was found to be similar (38 °C) for all ratios containing 20% CAR and above. The similar Tgαs for the different drug ratios indicate deposition of amorphous CAR onto the surface of FCC. For CAR-FCC samples containing 10% CAR, a Tgα of 49 °C was found, which is 11 °C higher compared with other CAR-FCC samples. This may indicate restricted molecular mobility resulting from CAR molecules that are in close contact with the FCC surface. The physical stability, under both stress (100 °C) and non-stress conditions (25 °C at dry conditions), showed that drug concentrations up to 30% CAR can be stabilized in the amorphous form for at least 19 weeks under non-stress conditions when deposited onto FCC, compared to less than a week physical stability of neat amorphous CAR. In vitro drug release showed that CAR-FCC samples containing 60% CAR and below can improve the drug release and generate supersaturated systems compared to neat amorphous and crystalline CAR. Samples with lower drug concentrations (40% CAR and below) can maintain supersaturation during 360 min of dissolution testing. This study indicates that the crystalline inorganic material, FCC, can facilitate amorphization of drugs, provide stabilization against drug crystallization, and improve dissolution properties of amorphous drugs upon mechanochemical activation.
Collapse
|
35
|
Adhikari BR, Bērziņš K, Fraser-Miller SJ, Gordon KC, Das SC. Co-Amorphization of Kanamycin with Amino Acids Improves Aerosolization. Pharmaceutics 2020; 12:pharmaceutics12080715. [PMID: 32751553 PMCID: PMC7465208 DOI: 10.3390/pharmaceutics12080715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Different formulation techniques have been investigated to prepare highly aerosolizable dry powders to deliver a high dose of antibiotics to the lung for treating local infections. In this study, we investigated the influence of the co-amorphization of a model drug, kanamycin, with selected amino acids (valine, methionine, phenylalanine, and tryptophan) by co-spray drying on its aerosolization. The co-amorphicity was confirmed by thermal technique. The physical stability was monitored using low-frequency Raman spectroscopy coupled with principal component analysis. Except for the kanamycin-valine formulation, all the formulations offered improved fine particle fraction (FPF) with the highest FPF of 84% achieved for the kanamycin-methionine formulation. All the co-amorphous formulations were physically stable for 28 days at low relative humidity (25 °C/<15% RH) and exhibited stable aerosolization. At higher RH (53%), even though methionine transformed into its crystalline counterpart, the kanamycin-methionine formulation offered the best aerosolization stability without any decrease in FPF. While further studies are warranted to reveal the underlying mechanism, this study reports that the co-amorphization of kanamycin with amino acids, especially with methionine, has the potential to be developed as a high dose kanamycin dry powder formulation.
Collapse
Affiliation(s)
| | - Kārlis Bērziņš
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (K.B.); (S.J.F.-M.); (K.C.G.)
| | - Sara J. Fraser-Miller
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (K.B.); (S.J.F.-M.); (K.C.G.)
| | - Keith C. Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (K.B.); (S.J.F.-M.); (K.C.G.)
| | - Shyamal C. Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand;
- Correspondence: ; Tel.: +64-34794262
| |
Collapse
|
36
|
Luo Z, Liu C, Quan P, Yang D, Zhao H, Wan X, Fang L. Mechanistic insights of the controlled release capacity of polar functional group in transdermal drug delivery system: the relationship of hydrogen bonding strength and controlled release capacity. Acta Pharm Sin B 2020; 10:928-945. [PMID: 32528838 PMCID: PMC7280149 DOI: 10.1016/j.apsb.2019.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Hydrogen bonding interaction was considered to play a critical role in controlling drug release from transdermal patch. However, the quantitative evaluation of hydrogen bonding strength between drug and polar functional group was rarely reported, and the relationship between hydrogen bonding strength and controlled release capacity of pressure sensitive adhesive (PSA) was not well understood. The present study shed light on this relationship. METHODS Acrylate PSAs with amide group were synthesized by a free radical-initiated solution polymerization. Six drugs, i.e., etodolac, ketoprofen, gemfibrozil, zolmitriptan, propranolol and lidocaine, were selected as model drugs. In vitro drug release and skin permeation experiments and in vivo pharmacokinetic experiment were performed. Partial correlation analysis, fourier-transform infrared spectroscopy and molecular simulation were conducted to provide molecular details of drug-PSA interactions. Mechanical test, rheology study, and modulated differential scanning calorimetry study were performed to scrutinize the free volume and molecular mobility of PSAs. RESULTS Release rate of all six drugs from amide PSAs decreased with the increase of amide group concentrations; however, only zolmitriptan and propranolol showed decreased skin permeation rate. It was found that drug release was controlled by amide group through hydrogen bonding, and controlled release extent was positively correlated with hydrogen bonding strength. CONCLUSION From these results, we concluded that drugs with strong hydrogen bond forming ability and high skin permeation were suitable to use amide PSAs to regulate their release rate from patch.
Collapse
Affiliation(s)
| | | | - Peng Quan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Degong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hanqing Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaocao Wan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
37
|
Liu J, Guan J, Wan X, Shang R, Shi X, Fang L, Liu C. The Improved Cargo Loading and Physical Stability of Ibuprofen Orodispersible Film: Molecular Mechanism of Ion-Pair Complexes on Drug-Polymer Miscibility. J Pharm Sci 2020; 109:1356-1364. [DOI: 10.1016/j.xphs.2019.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
38
|
Determination of Stable Co-Amorphous Drug-Drug Ratios from the Eutectic Behavior of Crystalline Physical Mixtures. Pharmaceutics 2019; 11:pharmaceutics11120628. [PMID: 31771255 PMCID: PMC6956160 DOI: 10.3390/pharmaceutics11120628] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Co-amorphous drug–drug systems have been developed with the overall aim of improving the physical stability of two or more amorphous drugs. Co-amorphous systems often show good physical stability, and higher solubility and dissolution rates compared to their crystalline counterparts. The aim of this study is to determine if eutectic mixtures of two drugs can form stable co-amorphous systems. Three drug–drug mixtures, indomethacin–naproxen (IND−NAP), nifedipine–paracetamol (NIF−PAR), and paracetamol–celecoxib (PAR−CCX), were investigated for their eutectic and co-amorphization behavior as well as their physical stability in the co-amorphous form. The phase diagrams of the crystalline mixtures and the thermal behavior of the co-amorphous systems were analyzed by differential scanning calorimetry. The solid-state form and physical stability of the co-amorphous systems were analyzed using X-ray powder diffractometry during storage at room temperature at dry conditions. Initial eutectic screening using nifedipine (NIF), paracetamol (PAR), and celecoxib (CCX) indicated that IND−NAP, NIF−PAR, and PAR−CCX can form eutectic mixtures. Phase diagrams were then constructed using theoretical and experimental values. These systems, at different drug-to-drug ratios, were melted and cooled to form binary mixtures. Most mixtures were found to be co-amorphous systems, as they were amorphous and exhibited a single glass transition temperature. The stability study of the co-amorphous systems indicated differences in their physical stability. Comparing the phase diagrams with the physical stability of the co-amorphous mixtures, it was evident that the respective drug–drug ratio that forms the eutectic point also forms the most stable co-amorphous system. The eutectic behavior of drug–drug systems can thus be used to predict drug ratios that form the most stable co-amorphous systems.
Collapse
|
39
|
Mechanistic Insights of the Critical Role of Hydrogen Donor in Controlling Drug Release From Acrylate Adhesive. J Pharm Sci 2019; 109:1096-1104. [PMID: 31682832 DOI: 10.1016/j.xphs.2019.10.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 11/20/2022]
Abstract
In the present study, a pyrrolidone adhesive and an amide adhesive were synthesized, and their molecular mechanisms of controlled drug release were described. Using zolmitriptan as model drug, in vitro drug release and skin permeation experiments were performed. Adhesive properties were evaluated using modulated differential scanning calorimetry and rheology study. Free volume of polymer was directly obtained by positron annihilation lifetime spectroscopy. Intermolecular interactions between drugs and adhesives were determined by FTIR spectroscopic analysis and molecular simulation. Release percent (24 h) of zolmitriptan from pyrrolidone adhesive was about 55.8 ± 3.1% (w/w), while from amide adhesive, the release percent (24 h) was about 40.1 ± 1.6% (w/w). The free volume sizes of pyrrolidone adhesive and amide adhesive were about 2309.6 Å3 and 2854.5 Å3, respectively, which were much larger than molecular volume of zolmitriptan (about 285.7 Å3). Thus, the polymer networks might not hinder drug diffusion from the view of free volume. Comparing chemical structures of pyrrolidone group and primary amide group, the main difference was that primary amide group of amide adhesive possessed 2 hydrogen donors. It was proved that hydrogen bonding between zolmitriptan and hydrogen donor of primary amide group played a critical role in controlling drug release.
Collapse
|
40
|
Spray-drying of inhalable, multifunctional formulations for the treatment of biofilms formed in cystic fibrosis. J Control Release 2019; 314:62-71. [DOI: 10.1016/j.jconrel.2019.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/19/2019] [Accepted: 10/19/2019] [Indexed: 12/22/2022]
|
41
|
Mizoguchi R, Waraya H, Hirakura Y. Application of Co-Amorphous Technology for Improving the Physicochemical Properties of Amorphous Formulations. Mol Pharm 2019; 16:2142-2152. [PMID: 30946778 DOI: 10.1021/acs.molpharmaceut.9b00105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Co-amorphous technology was recently introduced to stabilize drugs in the amorphous state for drug development. We examined the predictability of the formation of co-amorphous systems and identified two reliable indicators of successful formation: (1) a negative Δ Hmix value and (2) small Δlog P between components. Moreover, we found that the stability of co-amorphous systems was improved when (1) Δ Hmix was negative and (2) amorphous forms of the constituent compounds were stable. Furthermore, we concluded that co-amorphous systems with small (negatively large) Δ Hmix values had lower hygroscopicity. Typically, amorphous solid dispersions exhibit hygroscopicity because polymers exhibit large hygroscopicity. We proved the superiority of co-amorphous technology over amorphous solid dispersion in this respect. Our results provide methods for (1) establishing a screening method and (2) improving hygroscopicity, which may make co-amorphous technology more useful than amorphous solid dispersion technology.
Collapse
Affiliation(s)
- Ryo Mizoguchi
- Analytical Research Labs. , Astellas Pharma Inc. , 180, Ozumi , Yaizu-shi , Shizuoka 425-0072 , Japan
| | - Haruka Waraya
- Analytical Research Labs. , Astellas Pharma Inc. , 180, Ozumi , Yaizu-shi , Shizuoka 425-0072 , Japan
| | - Yutaka Hirakura
- Pharmaceutical Science & Technology Labs. , Astellas Pharma Inc. , 21, Miyukigaoka , Tsukuba-shi , Ibaraki 305-8585 , Japan
| |
Collapse
|
42
|
Leng D, Kissi EO, Löbmann K, Thanki K, Fattal E, Rades T, Foged C, Yang M. Design of Inhalable Solid Dosage Forms of Budesonide and Theophylline for Pulmonary Combination Therapy. AAPS PharmSciTech 2019; 20:137. [PMID: 30847607 DOI: 10.1208/s12249-019-1344-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/14/2019] [Indexed: 11/30/2022] Open
Abstract
Corticosteroid resistance poses a major challenge to effective treatment of chronic obstructive pulmonary diseases. However, corticosteroid resistance can be overcome by co-administration of theophylline. The aim of this study was to formulate the corticosteroid budesonide with theophylline into inhalable dry powders intended for pulmonary combination therapy. Four types of spray-dried powders were prepared: (i) budesonide and theophylline co-dissolved and processed using a 2-fluid nozzle spray drier, (ii) budesonide nanocrystals and dissolved theophylline co-dispersed and processed using a 2-fluid nozzle spray drier, (iii) dissolved budesonide and dissolved theophylline processed using a 3-fluid nozzle spray drier, and (iv) budesonide nanocrystals and dissolved theophylline processed using a 3-fluid nozzle spray drier. Spray drying from the solutions resulted in co-amorphous (i) and partially amorphous powders (iii), whereas spray drying of the nanosuspensions resulted in crystalline products (ii and iv). Even though budesonide was amorphous in (i) and (iii), it failed to exhibit any dissolution advantage over the unprocessed budesonide. In contrast, the dissolution of budesonide from its nanocrystalline formulations, i.e., (ii) and (iv), was significantly higher compared to a physical mixture or unprocessed budesonide. Furthermore, the spray-dried powders obtained from the 2-fluid nozzle spray drier, i.e., (i) and (ii), exhibited co-deposition of budesonide and theophylline at the same weight ratio in the aerodynamic assessment using the New Generation Impactor. In contrast, the depositions of budesonide and theophylline deviated from the starting weight ratio in the aerodynamic assessment of spray-dried powders obtained from the 3-fluid nozzle spray drier, i.e., (iii) and (iv). Based on these results, the powders spray-dried from the suspension by using the 2-fluid nozzle spray drier, i.e., (ii), offered the best formulation properties given the physically stable crystalline solid-state properties and the co-deposition profile.
Collapse
|
43
|
Petry I, Löbmann K, Grohganz H, Rades T, Leopold CS. In situ co-amorphisation in coated tablets – The combination of carvedilol with aspartic acid during immersion in an acidic medium. Int J Pharm 2019; 558:357-366. [DOI: 10.1016/j.ijpharm.2018.12.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 11/17/2022]
|
44
|
Kissi EO, Ruggiero MT, Hempel NJ, Song Z, Grohganz H, Rades T, Löbmann K. Characterising glass transition temperatures and glass dynamics in mesoporous silica-based amorphous drugs. Phys Chem Chem Phys 2019; 21:19686-19694. [DOI: 10.1039/c9cp01764j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amorphous drug molecules bound to MPS surface are restricted in mobility, but they exhibit a primary glass transition temperature.
Collapse
Affiliation(s)
- Eric Ofosu Kissi
- Department of Pharmacy
- University of Oslo
- Oslo
- Norway
- Department of Pharmacy
| | | | | | - Zihui Song
- Department of Chemistry
- University of Vermont
- Vermont
- USA
| | - Holger Grohganz
- Department of Pharmacy
- University of Copenhagen
- Copenhagen
- Denmark
| | - Thomas Rades
- Department of Pharmacy
- University of Copenhagen
- Copenhagen
- Denmark
- Department of Pharmacy
| | | |
Collapse
|