1
|
Chang X, Wang WX. Passing the Parcels: Intercellular Nanoplastics Transfer in Mussels Perna viridis with Activated Immunomodulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8177-8188. [PMID: 40238681 DOI: 10.1021/acs.est.4c14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nanoplastics (NPs) are generally considered to have a defined intracellular fate, being difficult to excrete or transport due to their stability. This study provides the first evidence of NPs intercellular transfer in the hemocytes of green mussels (Perna viridis), which subsequently activated the immunomodulation process. NPs were predominantly internalized by granulocytes, with a portion being translocated and deposited in lysosomes, whereas those retained in endosomes were subsequently transferred to new hemocytes (mainly granulocytes). The transfer direction was driven by the intracellular NP concentration gradients. Transfer kinetics was size-dependent, with smaller-sized NPs exhibiting greater potential but a lower rate, primarily due to their specific extracellular vesicle-mediated transfer pathway. Tunneling nanotubes provided the most efficient pathway for the intercellular transfer of NPs, as their continuous membrane structure allowed direct substance exchange. Crucially, NP redistribution was accompanied by a gradient-driven transfer of mitochondria to injured hemocytes. This process alleviated stress on the overburdened hemocytes and regulated reactive oxygen species production, subsequently enhancing phagocytic activity and promoting immune responses. These findings underscore that NPs exhibit far more active behavior in the immune system than previously understood and provide new insights into how immune cells maintain the health of marine organisms in the face of NP challenges.
Collapse
Affiliation(s)
- Xinyi Chang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Wang W, Zhang J, Pan L, Liu Z, Yi W, Xing X, Bai L, Liu Q, Chen Q, Mi L, Zhou Q, Pei D, Gao H. Plant extracellular vesicles contribute to the amplification of immune signals during systemic acquired resistance. PLANT CELL REPORTS 2024; 44:16. [PMID: 39738851 DOI: 10.1007/s00299-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
KEY MESSAGE Plant extracellular vesicles play a role in systemic acquired resistance by facilitating the transmission of immune signals between plant cells. Extracellular vesicles (EVs) play a critical role in facilitating the transfer of nucleic acids and proteins between plants and pathogens. However, the involvement of plant EVs in intercellular communication and their contribution to the regulation of physiological and pathological conditions in plants remains unclear. In this study, we isolated EVs from the apoplast of Arabidopsis plants induced by systemic acquired resistance (SAR) and conducted proteomic and physiological analyses to investigate the role of EVs in SAR. The results demonstrated that plant cells are capable of internalizing EVs, and EV secretion was enhanced in SAR-induced plants. EVs isolated from SAR-induced plants effectively inhibited the spore production of Botrytis cinerea, activated the transcription of several SAR marker genes, and improved plant resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Several proteins associated with defense responses were enriched in EVs upon SAR induction. Among these, the receptor-like kinase H2O2-Induced Ca2+ Increase 1 (HPCA1) was identified as a crucial component in SAR. In addition, plant EVs contained numerous proteins involved in the transmission of signals related to pathogen-associated molecular patterns-triggered immunity (PTI) and effector-triggered immunity (ETI). Our findings suggest that plant EVs are functionally involved in the propagation of SAR signals and may play diverse roles in plant immune responses.
Collapse
Affiliation(s)
- Wenjing Wang
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Junsong Zhang
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Liying Pan
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Zijia Liu
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Weiwei Yi
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Xiaolong Xing
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Linlin Bai
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qiao Liu
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qingbin Chen
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Lingyu Mi
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Qingfeng Zhou
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Dongli Pei
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Hang Gao
- Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
| |
Collapse
|
3
|
Khanicheragh P, Abbasi-Malati Z, Saghebasl S, Hassanpour P, Milani SZ, Rahbarghazi R, Hasani A. Exosomes and breast cancer angiogenesis; Highlights in intercellular communication. Cancer Cell Int 2024; 24:402. [PMID: 39696346 DOI: 10.1186/s12935-024-03606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
Breast cancer (BC) is a prevalent and highly lethal cancer in females. Like other cancer types, the intricate cellular and molecular heterogeneity leads to the variation of therapeutic outcomes. The development and progression of blood vessels increase the tumor cell expansion and metastasis to remote sites. Based on several pieces of scientific data, different mediators and cells are involved in the promotion of angiogenesis into the tumor parenchyma. Recent data have indicated the critical role of extracellular vesicles, especially exosomes (Exos), in the transfer of angiogenesis molecules between the BC cells. Due to unique physicochemical properties, and the transfer of certain signaling molecules, Exos are at the center of attention in terms of biomarkers and therapeutic bullets in cancer patients. Along with these statements, understanding the modulatory role of Exos in BC angiogenesis seems critical in the clinical setting. Here, the mechanisms by which BC cells can orchestrate the angiogenesis phenomenon via Exos are discussed in detail. The present study can help us to understand the pro-/anti-angiogenesis role of Exos in BC and to design better oncostatic strategies.
Collapse
Affiliation(s)
- Parisa Khanicheragh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5165687386, Iran
| | - Zahra Abbasi-Malati
- Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5165687386, Iran
| | - Soheil Zamen Milani
- Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Hasani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5165687386, Iran.
| |
Collapse
|
4
|
Wang X, Zhang Z, Qi Y, Zhang Z, Zhang Y, Meng K, Yuan J, Quan F. Study of the uptake mechanism of two small extracellular vesicle subtypes by granulosa cells. Anim Reprod Sci 2024; 270:107576. [PMID: 39178587 DOI: 10.1016/j.anireprosci.2024.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
As a new mechanism of intercellular communication, the uptake of extracellular vesicles (EVs) by receptor cells has become a hot topic in the field. Previously, research on the uptake of EVs has focused on the mechanism of small EVs (sEVs, also known as exosomes). As sEVs represent a mixed heterogeneous population, the issue of whether there are different uptake mechanisms for different subsets of sEVs by recipient cells urgently need to be addressed. There are EVs in follicular fluid, which play an important role in the communication between follicular cells and the development of oocytes. Previously, we isolated two subtypes of sEVs in follicular fluid: low density-sEVs (LD-sEVs) and high density-sEVs (HD-sEVs). The current study aimed to explore the uptake characteristics of these two subtypes of sEVs by granulosa cells. First, PKH67 was used to label the two sEVs subtypes, and we observed their uptake by granulosa cells using confocal microscopy and flow cytometry. We then explored the specific mechanisms underlying uptake of these two sEV subtypes by granulosa cells using specific inhibitors and RNA interference. The results showed that granulosa cells took up both kinds of sEVs through a clathrin-independent pathway. In addition to requiring caveolin, cholesterol, and Na+/H+ exchange, the uptake of HD-sEVs also depended on the activity of tyrosine kinase and phosphoinositide 3-kinase. A better understanding of the mechanism of granulosa cell uptake of different subtypes of sEVs in follicular fluid is of considerable significance leading to more accurate use of EVs for targeted treatment of infertility and other related diseases.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining 272000, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zihan Zhang
- College of Second Clinical Medical, Jining Medical University, Jining 272000, China
| | - Yuanmin Qi
- College of Clinical Medicine, Jining Medical University, Jining 272000, China
| | - Zhimin Zhang
- College of Clinical Medicine, Jining Medical University, Jining 272000, China
| | - Yixin Zhang
- College of Second Clinical Medical, Jining Medical University, Jining 272000, China
| | - Kai Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining 272000, China
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining 272000, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Coly P, Chatterjee S, Mezine F, Jekmek CE, Devue C, Nipoti T, Mazlan S, Corona ML, Dingli F, Loew D, van Niel G, Loyer X, Boulanger CM. Low fluid shear stress stimulates the uptake of noxious endothelial extracellular vesicles via MCAM and PECAM-1 cell adhesion molecules. J Extracell Vesicles 2024; 13:e12414. [PMID: 39400522 PMCID: PMC11472237 DOI: 10.1002/jev2.12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/19/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerotic lesions mainly form in arterial areas exposed to low shear stress (LSS), where endothelial cells express a senescent and inflammatory phenotype. Conversely, areas exposed to high shear stress (HSS) are protected from plaque development. Endothelial extracellular vesicles (EVs) have been shown to regulate inflammation and senescence, and therefore play a crucial role in vascular homeostasis. Whilst previous studies have shown links between hemodynamic forces and EV release, the effects of shear stress on the release and uptake of endothelial EVs remains elusive. We aim to decipher the interplay between these processes in endothelial cells exposed to atheroprone or atheroprotective shear stress. Confluent HUVECs were exposed to LSS or HSS for 24 h. Large and small EVs were isolated from conditioned medium by centrifugation and size exclusion chromatography. They were characterised by TEM, Western blot, tunable resistive pulse sensing, flow cytometry and proteomics. Uptake experiments were performed using fluorescently-labelled EVs and differences between groups were assessed by flow cytometry and confocal microscopy. We found that levels of large and small EVs in conditioned media were fifty and five times higher in HSS than in LSS conditions, respectively. In vivo and in vitro uptake experiments revealed greater EV incorporation by cells exposed to LSS conditions. Additionally, endothelial LSS-EVs have a greater affinity for HUVECs than HSS-EVs or EVs derived from platelets, erythrocytes and leukocytes. Proteomic analysis revealed that LSS-EVs were enriched in adhesion proteins (PECAM1, MCAM), participating in EV uptake by endothelial cells. LSS-EVs also carried mitochondrial material, which may be implicated in elevating ROS levels in recipient cells. These findings suggest that shear stress influences EV biogenesis and uptake. Given the major role of EVs and shear stress in vascular health, deciphering the relation between these processes may yield innovative strategies for the early detection and treatment of endothelial dysfunction.
Collapse
Affiliation(s)
- Pierre‐Michaël Coly
- Université Paris‐Cité, PARCCINSERMParisFrance
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERMParisFrance
| | | | | | | | | | | | | | - Maribel Lara Corona
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERMParisFrance
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse ProtéomiqueParisFrance
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Spectrométrie de Masse ProtéomiqueParisFrance
| | - Guillaume van Niel
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, INSERMParisFrance
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte AnneParisFrance
| | | | | |
Collapse
|
6
|
Xiang H, Bao C, Chen Q, Gao Q, Wang N, Gao Q, Mao L. Extracellular vesicles (EVs)' journey in recipient cells: from recognition to cargo release. J Zhejiang Univ Sci B 2024; 25:633-655. [PMID: 39155778 PMCID: PMC11337091 DOI: 10.1631/jzus.b2300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 08/20/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules, including proteins, lipids, coding and non-coding RNAs, and mitochondrial DNA, can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells, leading to alterations in the recipient cells, suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present, although the mechanisms of exosome biogenesis and secretion in donor cells are well understood, the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs' biological journey in recipient cells, from recognition to uptake and cargo release. Furthermore, we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo, which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.
Collapse
Affiliation(s)
- Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Nan Wang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China.
| |
Collapse
|
7
|
Adamo G, Santonicola P, Picciotto S, Gargano P, Nicosia A, Longo V, Aloi N, Romancino DP, Paterna A, Rao E, Raccosta S, Noto R, Salamone M, Deidda I, Costa S, Di Sano C, Zampi G, Morsbach S, Landfester K, Colombo P, Wei M, Bergese P, Touzet N, Manno M, Di Schiavi E, Bongiovanni A. Extracellular vesicles from the microalga Tetraselmis chuii are biocompatible and exhibit unique bone tropism along with antioxidant and anti-inflammatory properties. Commun Biol 2024; 7:941. [PMID: 39097626 PMCID: PMC11297973 DOI: 10.1038/s42003-024-06612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed bio-nanoparticles secreted by cells and naturally evolved to transport various bioactive molecules between cells and even organisms. These cellular objects are considered one of the most promising bio-nanovehicles for the delivery of native and exogenous molecular cargo. However, many challenges with state-of-the-art EV-based candidates as drug carriers still exist, including issues with scalability, batch-to-batch reproducibility, and cost-sustainability of the final therapeutic formulation. Microalgal extracellular vesicles, which we named nanoalgosomes, are naturally released by various microalgal species. Here, we evaluate the innate biological properties of nanoalgosomes derived from cultures of the marine microalgae Tetraselmis chuii, using an optimized manufacturing protocol. Our investigation of nanoalgosome biocompatibility in preclinical models includes toxicological analyses, using the invertebrate model organism Caenorhabditis elegans, hematological and immunological evaluations ex vivo and in mice. We evaluate nanoalgosome cellular uptake mechanisms in C. elegans at cellular and subcellular levels, and study their biodistribution in mice with accurate space-time resolution. Further examination highlights the antioxidant and anti-inflammatory bioactivities of nanoalgosomes. This holistic approach to nanoalgosome functional characterization demonstrates that they are biocompatible and innate bioactive effectors with unique bone tropism. These findings suggest that nanoalgosomes have significant potential for future therapeutic applications.
Collapse
Affiliation(s)
- Giorgia Adamo
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Sabrina Picciotto
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Paola Gargano
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Aldo Nicosia
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Valeria Longo
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Noemi Aloi
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Daniele P Romancino
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Angela Paterna
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Estella Rao
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Samuele Raccosta
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Rosina Noto
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Monica Salamone
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Irene Deidda
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Caterina Di Sano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Palermo, Italy
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research (MPIP), Mainz, Germany
| | | | - Paolo Colombo
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Mingxing Wei
- Cellvax SAS, Villejuif Bio Park, 1 Mail du Professeur Georges Mathé, Villejuif, France
| | - Paolo Bergese
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Center for Colloid and Surface Science (CSGI), Florence, Italy
| | - Nicolas Touzet
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| | - Mauro Manno
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Antonella Bongiovanni
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy.
| |
Collapse
|
8
|
li W, Pang Y, He Q, Song Z, Xie X, Zeng J, Guo J. Exosome-derived microRNAs: emerging players in vitiligo. Front Immunol 2024; 15:1419660. [PMID: 39040109 PMCID: PMC11260631 DOI: 10.3389/fimmu.2024.1419660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are biomacromolecules and nanoscale extracellular vesicles originating from intracellular compartments that are secreted by most cells into the extracellular space. This review examines the formation and function of exosomal miRNAs in biological information transfer, explores the pathogenesis of vitiligo, and highlights the relationship between exosomal miRNAs and vitiligo. The aim is to deepen the understanding of how exosomal miRNAs influence immune imbalance, oxidative stress damage, melanocyte-keratinocyte interactions, and melanogenesis disorders in the development of vitiligo. This enhanced understanding may contribute to the development of potential diagnostic and therapeutic options for vitiligo.
Collapse
Affiliation(s)
- Wenquan li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobin Pang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingying He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongzou Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Miyamoto S, Hirakawa T, Noguchi Y, Urushiyama D, Miyata K, Baba T, Yotsumoto F, Yasunaga S, Nakabayashi K, Hata K, Nakagawa W, Otsuka T, Nozawa Y, Furuhata I, Mikasa J. Physical Properties of Ultrafine Bubbles Generated Using a Generator System. In Vivo 2023; 37:2555-2563. [PMID: 37905634 PMCID: PMC10621414 DOI: 10.21873/invivo.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Ultrafine bubbles (UFBs) have been extensively researched owing to their promising physical and biological properties. However, determining the lifespan or ideal concentration of UFBs for various biological events is challenging. This study aimed to determine the maximum concentration and longest lifespan of UFBs and to verify the validity of UFBs for assessing cell properties. MATERIALS AND METHODS A generator system (HMB-H0150+P001, TOSSLEC Corporation Limited, Kyoto, Japan) generated UFBs using various gases. The size and concentration of UFBs in ultrapure water and cell culture medium were measured through a nanoparticle tracking analysis method. RESULTS The UFB concentration increased when the generator operated in a time dependent manner. The mean size of UFBs was approximately 120 nm. In the UFB lifespan, the concentration decreased by approximately 30% within the first two weeks of generation and was stable for up to 6 months. The UFB size increased by approximately 20% within the first two weeks of generation and demonstrated minor changes until the 6th month. The number of cells differed significantly with various concentrations of nitrogen gas UFBs. CONCLUSION The generator system can generate UFBs with multiple concentrations within a suitable temperature. Consequently, the solution containing UFBs could be widely acceptable in cell culture systems.
Collapse
Affiliation(s)
- Shingo Miyamoto
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan;
| | - Toyofumi Hirakawa
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan;
| | - Yukiko Noguchi
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Daichi Urushiyama
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kohei Miyata
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tsukasa Baba
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Fusanori Yotsumoto
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Abdolalian M, Zarif MN, Javan M. The role of extracellular vesicles on the occurrence of clinical complications in β-thalassemia. Exp Hematol 2023; 127:28-39. [PMID: 37652128 DOI: 10.1016/j.exphem.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Thalassemia is the most common monogenic disorder of red blood cells (RBCs) caused by defects in the synthesis of globin chains. Thalassemia phenotypes have a wide spectrum of clinical manifestations and vary from severe anemia requiring regular blood transfusions to clinically asymptomatic states. Ineffective erythropoiesis and toxicity caused by iron overload are major factors responsible for various complications in thalassemia patients, especially patients with β-thalassemia major (β-TM). Common complications in patients with thalassemia include iron overload, thrombosis, cardiac morbidity, vascular dysfunction, inflammation, and organ dysfunction. Extracellular vesicles (EVs) are small membrane vesicles released from various cells' plasma membranes due to activation and apoptosis. Based on studies, EVs play a role in various processes, including clot formation, vascular damage, and proinflammatory processes. In recent years, they have also been studied as biomarkers in the diagnosis and prognosis of diseases. Considering the high concentration of EVs in thalassemia and their role in cellular processes, this study reviews the role of EVs in the common complications of patients with β-thalassemia for the first time.
Collapse
Affiliation(s)
- Mehrnaz Abdolalian
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran; Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Mahin Nikogouftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran; Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
11
|
Sigdel S, Swenson S, Wang J. Extracellular Vesicles in Neurodegenerative Diseases: An Update. Int J Mol Sci 2023; 24:13161. [PMID: 37685965 PMCID: PMC10487947 DOI: 10.3390/ijms241713161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. The likelihood of developing a neurodegenerative disease rises dramatically as life expectancy increases. Although it has drawn significant attention, there is still a lack of proper effective treatments for neurodegenerative disease because the mechanisms of its development and progression are largely unknown. Extracellular vesicles (EVs) are small bi-lipid layer-enclosed nanosized particles in tissues and biological fluids. EVs are emerging as novel intercellular messengers and regulate a series of biological responses. Increasing evidence suggests that EVs are involved in the pathogenesis of neurodegenerative disorders. In this review, we summarize the recent findings of EVs in neurodegenerative diseases and bring up the limitations in the field.
Collapse
Affiliation(s)
| | | | - Jinju Wang
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.S.); (S.S.)
| |
Collapse
|
12
|
Pantazopoulou M, Lamprokostopoulou A, Karampela DS, Alexaki A, Delis A, Coens A, Samiotaki M, Kriebardis AG, Melki R, Pagakis SN, Stefanis L, Vekrellis K. Differential intracellular trafficking of extracellular vesicles in microglia and astrocytes. Cell Mol Life Sci 2023; 80:193. [PMID: 37391572 DOI: 10.1007/s00018-023-04841-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
Extracellular vesicles (EVs) have emerged as key players in cell-to-cell communication in both physiological and pathological processes in the Central Nervous System. Thus far, the intracellular pathways involved in uptake and trafficking of EVs within different cell types of the brain are poorly understood. In our study, the endocytic processes and subcellular sorting of EVs were investigated in primary glial cells, particularly linked with the EV-associated α-synuclein (α-syn) transmission. Mouse microglia and astrocytic primary cultures were incubated with DiI-stained mouse brain-derived EVs. The internalization and trafficking pathways were analyzed in cells treated with pharmacological reagents that block the major endocytic pathways. Brain-derived EVs were internalized by both glial cell types; however, uptake was more efficient in microglia than in astrocytes. Colocalization of EVs with early and late endocytic markers (Rab5, Lamp1) indicated that EVs are sorted to endo-lysosomes for subsequent processing. Blocking actin-dependent phagocytosis and/or macropinocytosis with Cytochalasin D or EIPA inhibited EV entry into glial cells, whereas treatment with inhibitors that strip cholesterol off the plasma membrane, induced uptake, however differentially altered endosomal sorting. EV-associated fibrillar α-Syn was efficiently internalized and detected in Rab5- and Lamp1-positive compartments within microglia. Our study strongly suggests that EVs enter glial cells through phagocytosis and/or macropinocytosis and are sorted to endo-lysosomes for subsequent processing. Further, brain-derived EVs serve as scavengers and mediate cell-to-glia transfer of pathological α-Syn which is also targeted to the endolysosomal pathway, suggesting a beneficial role in microglia-mediated clearance of toxic protein aggregates, present in numerous neurodegenerative diseases.
Collapse
Affiliation(s)
- Marina Pantazopoulou
- Biomedical Research Foundation Academy of Athens-BRFAA, Clinical-Experimental Surgery & Translational Research, 4, Soranou Tou Efesiou Street, 11527, Athens, Greece.
| | | | | | - Anastasia Alexaki
- Biomedical Research Foundation Academy of Athens-BRFAA, Centre of Basic Research, Athens, Greece
| | - Anastasios Delis
- Biomedical Research Foundation Academy of Athens-BRFAA, Centre of Basic Research, Athens, Greece
| | - Audrey Coens
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses Cedex, France
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Fleming 34, 16672, Vari, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses Cedex, France
| | - Stamatis N Pagakis
- Biomedical Research Foundation Academy of Athens-BRFAA, Centre of Basic Research, Athens, Greece
| | - Leonidas Stefanis
- Biomedical Research Foundation Academy of Athens-BRFAA, Clinical-Experimental Surgery & Translational Research, 4, Soranou Tou Efesiou Street, 11527, Athens, Greece
| | - Kostas Vekrellis
- Biomedical Research Foundation Academy of Athens-BRFAA, Centre of Basic Research, Athens, Greece
| |
Collapse
|
13
|
Zhang H, Hu Z, Wang J, Xu J, Wang X, Zang G, Qiu J, Wang G. Shear stress regulation of nanoparticle uptake in vascular endothelial cells. Regen Biomater 2023; 10:rbad047. [PMID: 37351014 PMCID: PMC10281962 DOI: 10.1093/rb/rbad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 06/24/2023] Open
Abstract
Nanoparticles (NPs) hold tremendous targeting potential in cardiovascular disease and regenerative medicine, and exciting clinical applications are coming into light. Vascular endothelial cells (ECs) exposure to different magnitudes and patterns of shear stress (SS) generated by blood flow could engulf NPs in the blood. However, an unclear understanding of the role of SS on NP uptake is hindering the progress in improving the targeting of NP therapies. Here, the temporal and spatial distribution of SS in vascular ECs and the effect of different SS on NP uptake in ECs are highlighted. The mechanism of SS affecting NP uptake through regulating the cellular ROS level, endothelial glycocalyx and membrane fluidity is summarized, and the molecules containing clathrin and caveolin in the engulfment process are elucidated. SS targeting NPs are expected to overcome the current bottlenecks and change the field of targeting nanomedicine. This assessment on how SS affects the cell uptake of NPs and the marginalization of NPs in blood vessels could guide future research in cell biology and vascular targeting drugs.
Collapse
Affiliation(s)
- Hongping Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Ziqiu Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jianxiong Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guangchao Zang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Juhui Qiu
- Correspondence address: E-mail: (G.W.); (J.Q.)
| | - Guixue Wang
- Correspondence address: E-mail: (G.W.); (J.Q.)
| |
Collapse
|
14
|
Pan J, Peng J, Li X, Wang H, Rong X, Peng Y. Transmission of NLRP3-IL-1β Signals in Cerebral Ischemia and Reperfusion Injury: from Microglia to Adjacent Neuron and Endothelial Cells via IL-1β/IL-1R1/TRAF6. Mol Neurobiol 2023; 60:2749-2766. [PMID: 36717480 DOI: 10.1007/s12035-023-03232-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023]
Abstract
The pyrin domain-containing protein 3 (NLRP3) inflammasome drives the profound cerebral ischemia and reperfusion injury (I/R) and mediates the secretion of IL-1β (interleukin-1β), which exerts a subsequent cascade of inflammatory injury. The NLRP3-activated-microglial manipulation in adjacent neuronal and endothelial NLRP3 activation has been confirmed in our previous studies. In the present study, we extended the cognition of how microglia mediated neuronal and endothelial NLRP3-IL-1β signaling during cerebral ischemia and reperfusion injury. In vitro, Neuro-2a and bEND3 cells were cultured alone or co-cultured with BV2 cells and oxygen-glucose deprivation/reoxygenation (OGD/R) was performed. In vivo, transient middle cerebral artery occlusion (tMCAO) rat models and lentiviral silencing targeting IL-1R1 were performed. The NLRP3 inflammasome activation was evaluated by enzyme-linked immunosorbent assay, western blotting, immunoprecipitation, immunohistochemistry, and immunofluorescence. In the co-culture system after OGD/R treatment, NLRP3 inflammasomes in neurons and endothelial cells were activated by microglial IL-1β via IL-1β/IL-1R1/TRAF6 signaling pathway, with the basal protein level of NLRP3. In addition, ruptured lysosomes engulfing ASC specks which were possibly secreted from microglia triggered the enhanced NLRP3 expression. In cortices of tMCAO rats at 24 h of reperfusion, silencing IL-1R1, mainly presented in neurons and endothelial cells, was efficient to block the subsequent inflammatory damage and leukocyte brain infiltration, leading to better neurological outcome. Neuronal and endothelial NLRP3 inflammasomes were activated by microglia in cerebral ischemia and reperfusion injury mainly via IL-1β/IL-1R1/TRAF6 signaling, which might be therapeutically targetable.
Collapse
Affiliation(s)
- Jingrui Pan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Jialing Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiangpen Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023; 52:1068-1102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Aryan Saini
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Afton Martin LaMere
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Padilha CS, Antunes BM, Jiménez-Maldonado A, St-Pierre DH, Lira FS. Impact of Breaking up of Sitting Time on Anti-inflammatory Response Induced by Extracellular Vesicles. Curr Pharm Des 2023; 29:2524-2533. [PMID: 37921133 DOI: 10.2174/0113816128244442231018070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023]
Abstract
Physical inactivity and sedentary behaviors (SB) have promoted a dramatic increase in the incidence of a host of chronic disorders over the last century. The breaking up of sitting time (i.e., sitting to standing up transition) has been proposed as a promising solution in several epidemiological and clinical studies. In parallel to the large interest it initially created, there is a growing body of evidence indicating that breaking up prolonged sedentary time (i.e., > 7 h in sitting time) could reduce overall mortality risks by normalizing the inflammatory profile and cardiometabolic functions. Recent advances suggest that the latter health benefits, may be mediated through the immunomodulatory properties of extracellular vesicles. Primarily composed of miRNA, lipids, mRNA and proteins, these vesicles would influence metabolism and immune system functions by promoting M1 to M2 macrophage polarization (i.e., from a pro-inflammatory to anti-inflammatory phenotype) and improving endothelial function. The outcomes of interrupting prolonged sitting time may be attributed to molecular mechanisms induced by circulating angiogenic cells. Functionally, circulating angiogenic cells contribute to repair and remodel the vasculature. This effect is proposed to be mediated through the secretion of paracrine factors. The present review article intends to clarify the beneficial contributions of breaking up sitting time on extracellular vesicles formation and macrophage polarization (M1 and M2 phenotypes). Hence, it will highlight key mechanistic information regarding how breaking up sitting time protocols improves endothelial health by promoting antioxidant and anti-inflammatory responses in human organs and tissues.
Collapse
Affiliation(s)
- Camila S Padilha
- Exercise and Immunometabolism Research Group, Post-graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Bárbara M Antunes
- Facultad de Deportes Campus Ensenada, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - David H St-Pierre
- Department of Kinesiology, Université du Québec à Montréal (UQAM), Montreal QC, Canada
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Post-graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
17
|
Shi Y, Qiu B, Huang L, Lin J, Li Y, Ze Y, Huang C, Yao Y. Exosomes and ferroptosis: roles in tumour regulation and new cancer therapies. PeerJ 2022; 10:e13238. [PMID: 35497192 PMCID: PMC9053300 DOI: 10.7717/peerj.13238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Research on the biological role of exosomes is rapidly developing, and recent evidence suggests that exosomal effects involve ferroptosis. Exosomes derived from different tissues inhibit ferroptosis, which increases tumour cell chemoresistance. Therefore, exosome-mediated regulation of ferroptosis may be leveraged to design anticancer drugs. This review discusses three pathways of exosome-mediated inhibition of ferroptosis: (1) the Fenton reaction; (2) the ferroptosis defence system, including the Xc-GSH-GPX4 axis and the FSP1/CoQ10/NAD(P)H axis; and (3) lipid peroxidation. We also summarize three recent approaches for combining exosomes and ferroptosis in oncology therapy: (1) promoting exosome-inhibited ferroptosis to enhance chemotherapy; (2) encapsulating exosomes with ferroptosis inducers to inhibit cancers; and (3) developing therapies that combine exosomal inhibitors and ferroptosis inducers. This review will contribute toward establishing effective cancer therapies.
Collapse
Affiliation(s)
- Yixin Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingrun Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglong Huang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Jiang H, Zhao H, Zhang M, He Y, Li X, Xu Y, Liu X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front Immunol 2022; 13:824188. [PMID: 35444652 PMCID: PMC9013908 DOI: 10.3389/fimmu.2022.824188] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Exosomes are small extracellular vesicles that are secreted by almost all types of cells and exist in almost all extracellular spaces. As an important mediator of intercellular communication, exosomes encapsulate the miRNA, lncRNA, cirRNA, mRNA, cytokine, enzyme, lipid, and other components from the cytoplasm into its closed single membrane structure and transfer them to recipient units in an autocrine, paracrine, or endocrine manner. Hypoxia is a state of low oxygen tension and is involved in many pathological processes. Hypoxia influences the size, quantity, and expression of exosome cargos. Exosomes derived from hypoxic tumor cells transfer genetics, proteins, and lipids to the recipient units to exert pleiotropic effects. Different donor cells produce different cargo contents, target different recipient units and lead to different biological effects. Hypoxic exosomes derived from tumor cells uptaken by normoxic tumor cells lead to promoted proliferation, migration, and invasion; uptaken by extracellular space or liver lead to promoted metastasis; uptaken by endothelial cells lead to promoted angiogenesis; uptaken by immune cells lead to promoted macrophage polarization and changed tumor immune microenvironment. In addition to various types of tumors, hypoxic exosomes also participate in the development of diseases in the cardiovascular system, neuron system, respiratory system, hematology system, endocrine system, urinary system, reproduction system, and skeletomuscular system. Understanding the special characteristics of hypoxic exosomes provide new insight into elaborating the pathogenesis of hypoxia related disease. This review summarizes hypoxia induced cargo changes and the biological effects of hypoxic exosomes in tumors and non-malignant diseases in different systems.
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Hanqiu Zhao
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Mengzhe Zhang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| |
Collapse
|
19
|
Ginini L, Billan S, Fridman E, Gil Z. Insight into Extracellular Vesicle-Cell Communication: From Cell Recognition to Intracellular Fate. Cells 2022; 11:1375. [PMID: 35563681 PMCID: PMC9101098 DOI: 10.3390/cells11091375] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogamous lipid bilayer-enclosed membranous structures secreted by cells. They are comprised of apoptotic bodies, microvesicles, and exosomes, and carry a range of nucleic acids and proteins that are necessary for cell-to-cell communication via interaction on the cells surface. They initiate intracellular signaling pathways or the transference of cargo molecules, which elicit pleiotropic responses in recipient cells in physiological processes, as well as pathological processes, such as cancer. It is therefore important to understand the molecular means by which EVs are taken up into cells. Accordingly, this review summarizes the underlying mechanisms involved in EV targeting and uptake. The primary method of entry by EVs appears to be endocytosis, where clathrin-mediated, caveolae-dependent, macropinocytotic, phagocytotic, and lipid raft-mediated uptake have been variously described as being prevalent. EV uptake mechanisms may depend on proteins and lipids found on the surfaces of both vesicles and target cells. As EVs have been shown to contribute to cancer growth and progression, further exploration and targeting of the gateways utilized by EVs to internalize into tumor cells may assist in the prevention or deceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Salem Billan
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
- Medical Oncology and Radiation Therapy Program, Oncology Section, Rambam Health Care Campus, HaAliya HaShniya Street 8, Haifa 3109601, Israel
| | - Eran Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
| |
Collapse
|
20
|
Panigrahi S, Ghosh SK, Ferrari B, Wyrick JM, Podrez EA, Weinberg A, Sieg SF. Human β-Defensin-3 is Associated With Platelet-Derived Extracellular Vesicles and is a Potential Contributor to Endothelial Dysfunction. Front Mol Biosci 2022; 9:824954. [PMID: 35355507 PMCID: PMC8959671 DOI: 10.3389/fmolb.2022.824954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
While platelets are the essential mediators of hemostasis, they are being increasingly recognized for their potential of contributing to host defenses. Here, using immunofluorescent microscopy, western blot, and ELISA, we found that human β-defensin 3 (hBD-3), an important antimicrobial peptide produced by epithelial cells, can be detected in human platelets and megakaryocytes. Flow cytometry and immuno-electron microscopy revealed hBD-3 on the surface of thrombin activated platelets. Moreover, hBD-3 was also found in platelet derived extracellular vesicles (p-EVs), isolated from platelet poor plasma and from platelet supernatants following thrombin stimulation. Incubation of platelets with hBD-3 peptide resulted in modest platelet activation and pre-incubation of platelets with synthetic hBD-3 prior to exposure to thrombin appeared to increase hBD-3 content in platelet lysates as well as in p-EVs, suggesting that hBD-3 can be initially taken up by platelets, perhaps via their open canalicular system. Interestingly, in vitro exposure of primary human endothelial cells to either hBD-3 peptide or purified p-EVs, caused significant endothelial dysfunction as documented by diminished levels of phosphorylated endothelial nitric oxide synthase (eNOS), Krüppel like factor-2 (KLF-2), and elevated relative expression of von Willebrand Factor (vWF). Pre-incubation of platelets with hBD-3 appeared to augment endothelial dysfunction caused by p-EVs. Overall, the current study provides evidence that hBD-3 enriched EVs can be released by activated platelets and may play a role in positive feedback of platelet activation as well as in endothelial dysfunction. Theoretically, these effects could contribute to both cellular recruitment to the endothelium creating a pro-thrombotic vascular microenvironment which serve as a bridge between innate immunity and hemostasis.
Collapse
Affiliation(s)
- Soumya Panigrahi
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, OH, United States
- *Correspondence: Soumya Panigrahi, ; Scott F. Sieg,
| | - Santosh K. Ghosh
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Brian Ferrari
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, OH, United States
| | - Jonathan M. Wyrick
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, OH, United States
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Eugene A Podrez
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Scott F. Sieg
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, OH, United States
- *Correspondence: Soumya Panigrahi, ; Scott F. Sieg,
| |
Collapse
|
21
|
Ledreux A, Thomas S, Hamlett ED, Trautman C, Gilmore A, Rickman Hager E, Paredes DA, Margittai M, Fortea J, Granholm AC. Small Neuron-Derived Extracellular Vesicles from Individuals with Down Syndrome Propagate Tau Pathology in the Wildtype Mouse Brain. J Clin Med 2021; 10:3931. [PMID: 34501378 PMCID: PMC8432237 DOI: 10.3390/jcm10173931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) pathology at a young age, including amyloid plaques and neurofibrillary tangles (NFTs). Tau pathology can spread via extracellular vesicles, such as exosomes. The cargo of neuron-derived small extracellular vesicles (NDEVs) from individuals with DS contains p-Tau at an early age. The goal of the study was to investigate whether NDEVs isolated from the blood of individuals with DS can spread Tau pathology in the brain of wildtype mice. We purified NDEVs from the plasma of patients with DS-AD and controls and injected small quantities using stereotaxic surgery into the dorsal hippocampus of adult wildtype mice. Seeding competent Tau conformers were amplified in vitro from DS-AD NDEVs but not NDEVs from controls. One month or 4 months post-injection, we examined Tau pathology in mouse brains. We found abundant p-Tau immunostaining in the hippocampus of the mice injected with DS-AD NDEVs compared to injections of age-matched control NDEVs. Double labeling with neuronal and glial markers showed that p-Tau staining was largely found in neurons and, to a lesser extent, in glial cells and that p-Tau immunostaining was spreading along the corpus callosum and the medio-lateral axis of the hippocampus. These studies demonstrate that NDEVs from DS-AD patients exhibit Tau seeding capacity and give rise to tangle-like intracellular inclusions.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Sarah Thomas
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Camille Trautman
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Emily Rickman Hager
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (E.R.H.); (M.M.)
| | - Daniel A. Paredes
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (E.R.H.); (M.M.)
| | - Juan Fortea
- Hospital de la Santa Creu i Sant Pau and Catalan Down Syndrome Foundation, 08041 Barcelona, Spain;
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| |
Collapse
|
22
|
Mathiesen A, Hamilton T, Carter N, Brown M, McPheat W, Dobrian A. Endothelial Extracellular Vesicles: From Keepers of Health to Messengers of Disease. Int J Mol Sci 2021; 22:ijms22094640. [PMID: 33924982 PMCID: PMC8125116 DOI: 10.3390/ijms22094640] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelium has a rich vesicular network that allows the exchange of macromolecules between blood and parenchymal cells. This feature of endothelial cells, along with their polarized secretory machinery, makes them the second major contributor, after platelets, to the particulate secretome in circulation. Extracellular vesicles (EVs) produced by the endothelial cells mirror the remarkable molecular heterogeneity of their parent cells. Cargo molecules carried by EVs were shown to contribute to the physiological functions of endothelium and may support the plasticity and adaptation of endothelial cells in a paracrine manner. Endothelium-derived vesicles can also contribute to the pathogenesis of cardiovascular disease or can serve as prognostic or diagnostic biomarkers. Finally, endothelium-derived EVs can be used as therapeutic tools to target endothelium for drug delivery or target stromal cells via the endothelial cells. In this review we revisit the recent evidence on the heterogeneity and plasticity of endothelial cells and their EVs. We discuss the role of endothelial EVs in the maintenance of vascular homeostasis along with their contributions to endothelial adaptation and dysfunction. Finally, we evaluate the potential of endothelial EVs as disease biomarkers and their leverage as therapeutic tools.
Collapse
|
23
|
Kovács OT, Soltész-Katona E, Marton N, Baricza E, Hunyady L, Turu G, Nagy G. Impact of Medium-Sized Extracellular Vesicles on the Transduction Efficiency of Adeno-Associated Viruses in Neuronal and Primary Astrocyte Cell Cultures. Int J Mol Sci 2021; 22:ijms22084221. [PMID: 33921740 PMCID: PMC8073863 DOI: 10.3390/ijms22084221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Adeno-associated viruses (AAV) are safe and efficient gene therapy vectors with promising results in the treatment of several diseases. Extracellular vesicles (EV) are phospholipid bilayer-surrounded structures carrying several types of lipids, proteins, and nucleic acids with the ability to cross biological barriers. EV-associated AAVs might serve as new and efficient gene therapy vectors considering that they carry the benefits of both AAVs and EVs. (2) We tested vesicle-associated AAVs and vesicles mixed with AAVs on two major cell types of the central nervous system: a neural cell line (N2A) and primary astrocyte cells. (3) In contrast to previously published in vivo observations, the extracellular vesicle packaging did not improve but, in the case of primary astrocyte cells, even inhibited the infection capacity of the AAV particles. The observed effect was not due to the inhibitory effects of the vesicles themselves, since mixing the AAVs with extracellular vesicles did not change the effectiveness. (4) Our results suggest that improvement of the in vivo efficacy of the EV-associated AAV particles is not due to the enhanced interaction between the AAV and the target cells, but most likely to the improved delivery of the AAVs through tissue barriers and to the shielding of AAVs from neutralizing antibodies.
Collapse
Affiliation(s)
- Orsolya Tünde Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (O.T.K.); (E.B.)
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
| | - Eszter Soltész-Katona
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
| | - Nikolett Marton
- Jahn Ferenc Dél-pesti Hospital, Department of Radiology, Köves street 1, 1204 Budapest, Hungary;
| | - Eszter Baricza
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (O.T.K.); (E.B.)
| | - László Hunyady
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, 1085 Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, 1085 Budapest, Hungary
- Correspondence: (G.T.); (G.N.)
| | - György Nagy
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (O.T.K.); (E.B.)
- Department of Rheumatology & Clinical Immunology, Semmelweis University, Árpád fejedelem street 7, 1023 Budapest, Hungary
- Correspondence: (G.T.); (G.N.)
| |
Collapse
|
24
|
Jiao Y, Xu P, Shi H, Chen D, Shi H. Advances on liver cell-derived exosomes in liver diseases. J Cell Mol Med 2020; 25:15-26. [PMID: 33247543 PMCID: PMC7810930 DOI: 10.1111/jcmm.16123] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, which contain several donor cell‐associated proteins as well as mRNA, miRNA, and lipids and coordinate multiple physiological and pathological functions through horizontal communication between cells. Almost all types of liver cells, such as hepatocytes and Kupffer cells, are exosome‐releasing and/or exosome‐targeted cells. Exosomes secreted by liver cells play an important role in regulating general physiological functions and also participate in the onset and development of liver diseases, including liver cancer, liver injury, liver fibrosis and viral hepatitis. Liver cell‐derived exosomes carry liver cell‐specific proteins and miRNAs, which can be used as diagnostic biomarkers and treatment targets of liver disease. This review discusses the functions of exosomes derived from different liver cells and provides novel insights based on the latest developments regarding the roles of exosomes in the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Yan Jiao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Ping Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Honglin Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Hongbo Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| |
Collapse
|
25
|
Donoso-Quezada J, Guajardo-Flores D, González-Valdez J. Enhanced exosome-mediated delivery of black bean phytochemicals (Phaseolus vulgaris L.) for cancer treatment applications. Biomed Pharmacother 2020; 131:110771. [PMID: 33152932 DOI: 10.1016/j.biopha.2020.110771] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Exosomes are a subpopulation of membrane-derived cellular vesicles (30-150 nm) that play an important role in intercellular communication. Because of their natural function as nanocarriers, several applications have been developed for these nanovesicles, including drug delivery. Here we loaded saponins and flavonoids obtained from a black bean extract (Phaseolus vulgaris L.) with antiproliferative activity into exosomes extracted from different cell lines to induce an enhanced response in vitro. We demonstrated that exosomes can be loaded with at least three different phytochemicals in a one-step process to deliver these compounds to recipient cells. Moreover, we found that the bioactivity of the exosomal extract is greater than those observed in other formulations of the same extract. Our results suggest that exosomes are a promising alternative for improved delivery of complex mixtures of bioactive compounds, such as plant extracts. Therefore, future applications for these nanovesicles may include the development of new products for human use with enhanced nutraceutical properties.
Collapse
Affiliation(s)
- Javier Donoso-Quezada
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| |
Collapse
|
26
|
Colombo F, Norton EG, Cocucci E. Microscopy approaches to study extracellular vesicles. Biochim Biophys Acta Gen Subj 2020; 1865:129752. [PMID: 32991970 DOI: 10.1016/j.bbagen.2020.129752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) have drawn the attention of both biological researchers and clinical physicians due to their function in mediating cell-to-cell communication and relevance as potential diagnostic markers. Since their discovery, the small size and heterogeneity of EVs has posed a hindrance to their characterization as well as to the definition of their biological significance. SCOPE OF THE REVIEW Recent technological advances have considerably expanded the tools available for EV studies. In particular, the combination of novel microscope setups with high resolution imaging and the flexibility in EV labelling allows for the precise detection and characterization of the molecular composition of single EVs. Here we will review the microscopy techniques that have been applied to unravel the mechanism of EV-mediated intercellular communication and to study their molecular composition. MAJOR CONCLUSIONS Microscopy technologies have largely contributed to our understanding of molecular processes, including EV biology. As we discuss in this review, careful experimental planning is necessary to identify the most appropriate technique to use to answer a specific question. GENERAL SIGNIFICANCE The considerations regarding microscopy and experimental planning that are discussed here are applicable to the characterization of other small structures, including synthetic nanovectors and viruses.
Collapse
Affiliation(s)
- Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Erienne G Norton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Graykowski DR, Wang YZ, Upadhyay A, Savas JN. The Dichotomous Role of Extracellular Vesicles in the Central Nervous System. iScience 2020; 23:101456. [PMID: 32835924 PMCID: PMC7452271 DOI: 10.1016/j.isci.2020.101456] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/20/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication. Interest in the role of central nervous system (CNS)-derived EVs has been increasing; however, some skepticism of their importance has persisted because many aspects of their biology remain elusive. This ambiguity is largely due to technical barriers that hamper our ability to achieve a comprehensive understanding of their molecular components and mechanisms responsible for their transmission and uptake. However, accumulating evidence supports the notion that EVs play important roles in basic physiological processes within the CNS during neurodevelopment and synaptic plasticity. Interestingly, EVs also act to spread toxic polypeptides in neurodegenerative diseases. Developing a more profound understanding of the role that EVs play in the CNS could lead to the identification of biomarkers and potential vehicles for drug delivery. Here we highlight our current understanding of CNS EVs and summarize our current understanding of their complex role in the CNS.
Collapse
Affiliation(s)
- David R. Graykowski
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
28
|
Sun H, Burrola S, Wu J, Ding WQ. Extracellular Vesicles in the Development of Cancer Therapeutics. Int J Mol Sci 2020; 21:ijms21176097. [PMID: 32847103 PMCID: PMC7504131 DOI: 10.3390/ijms21176097] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-delimited nanoparticles released from all types of cells examined thus far. Several groups of EVs, including exosomes, microvesicles, and apoptotic bodies, have been identified according to their size and biogenesis. With extensive investigations on EVs over the last decade, it is now recognized that EVs play a pleiotropic role in various physiological processes as well as pathological conditions through mediating intercellular communication. Most notably, EVs have been shown to be involved in cancer initiation and progression and EV signaling in cancer are viewed as potential therapeutic targets. Furthermore, as membrane nanoparticles, EVs are natural products with some of them, such as tumor exosomes, possessing tumor homing propensity, thus leading to strategies utilizing EVs as drug carriers to effectively deliver cancer therapeutics. In this review, we summarize recent reports on exploring EVs signaling as potential therapeutic targets in cancer as well as on developing EVs as therapeutic delivery carriers for cancer therapy. Findings from preclinical studies are primarily discussed, with early phase clinical trials reviewed. We hope to provide readers updated information on the development of EVs as cancer therapeutic targets or therapeutic carriers.
Collapse
Affiliation(s)
- Haoyao Sun
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Stephanie Burrola
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
| | - Jinchang Wu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
- Section of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
- Correspondence: (J.W.); (W.-Q.D.); Tel.: +86-1377-604-8328 (J.W.); +1-405-271-1605 (W.-Q.D.)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (H.S.); (S.B.)
- Correspondence: (J.W.); (W.-Q.D.); Tel.: +86-1377-604-8328 (J.W.); +1-405-271-1605 (W.-Q.D.)
| |
Collapse
|
29
|
Wang HY, Chi C, Xu YQ, Wang C, Wang TY, Lv D, Li X. Occludin endocytosis is involved in the disruption of the intestinal epithelial barrier in a mouse model of alcoholic steatohepatitis. J Dig Dis 2019; 20:476-485. [PMID: 31298798 DOI: 10.1111/1751-2980.12800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We aimed to investigate the involvement of the endocytosis of occludin, a key component of tight junction (TJ), in the ethanol-induced disassembly of TJ in a model of alcoholic steatohepatitis. METHODS Wild-type mice were fed an ethanol-containing or isocaloric liquid diet for 8 weeks and then assessed for liver injury (histopathology and measurement of serum enzymes), gut permeability (in vivo lactulose/mannitol and ex vivo dye leakage assays), intestinal epithelium ultrastructure (transmission electron microscopy), and intestinal occludin localization (immunofluorescence microscopy). The human intestinal epithelial cell line Caco-2 was also analyzed in vitro for the effects of ethanol on the barrier function (transepithelial electrical resistance), occludin localization (immunofluorescence microscopy and Western blotting), and endocytosis pathways (double-labeling immunofluorescence microscopy with selective pathway inhibitors). RESULTS The ethanol-fed mice developed steatohepatitis and displayed intestinal barrier dysfunction, the disruption of intestinal TJ, and enhanced intestinal endocytosis of occluding compared with the control mice. In the Caco-2 monolayers, ethanol treatment decreased transepithelial electrical resistance, disrupted TJ formation, and enhanced occludin endocytosis in a dose- and time-dependent manner. These deleterious events were reversed by pretreating the Caco-2 cells with a selective pharmacological inhibitor of macropinocytosis, but not with the inhibitors of clathrin or caveolin-mediated endocytic pathways. CONCLUSION Chronic ethanol exposure may increase intestinal permeability by inducing the micropinocytosis of occludin, resulting in the disruption of intestinal TJ.
Collapse
Affiliation(s)
- Hong Yan Wang
- Department of International Physical Examination and Health Center, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Cheng Chi
- Department of Gastroenterology and Hepatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - You Qing Xu
- Department of Gastroenterology and Hepatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Wang
- Department of Gastroenterology and Hepatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tian Yi Wang
- Department of Gastroenterology and Hepatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong Lv
- Department of Gastroenterology and Hepatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Li
- Department of Gastroenterology and Hepatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Shen Y, Li M, Liu T, Liu J, Xie Y, Zhang J, Xu S, Liu H. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Int J Nanomedicine 2019; 14:4029-4044. [PMID: 31213813 PMCID: PMC6549788 DOI: 10.2147/ijn.s201688] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose: As well as functioning as a ligand that is selectively internalized by cells overexpressing human epidermal growth factor receptor-2 (HER2), HApt can exert cytotoxic effects by inducing cross-linking and subsequent translocation of HER2 to cytoplasmic vesicles, such downregulation of HER2 inhibits cell proliferation and induces apoptosis. We aimed to exploit the potential of HApt as both a targeting agent and antagonist to maximize the efficacy of mesoporous silica nanoparticle (MSN)-based drug release systems for HER2-positive breast cancer. Materials and methods: We fabricated novel HApt aptamer-functionalized pH-sensitive β-cyclodextrin (β-CD)-capped doxorubicin (DOX)-loaded mesoporous silica nanoparticles (termed MSN-BM/CD-HApt@DOX) for targeted delivery and selective targeting of HER2-positive cells. MSN-functionalized benzimidazole (MSN-BM) was used to load and achieve pH stimuli-responsive release of the chemotherapeutic agent doxorubicin (DOX). β-cyclodextrin was introduced as a gatekeeper for encapsulated DOX and HApt as a selective HER2-targeting moiety and biotherapeutic agent. Results: Physical and chemical characterizations (FT-IR, XRD, TEM and BET) confirmed successful construction of MSN-BM/CD-HApt@DOX nanoparticles. In vitro release assays verified pH-sensitive DOX release. MSN-BM/CD-HApt@DOX (relative DOX concentration, 3.6 μg/mL) underwent HER2-mediated endocytosis and was more cytotoxic to HER2-positive SKBR3 cells than HER2-negative MCF7 cells. MSN-BM/CD-HApt@DOX also exhibited better uptake and stronger growth inhibition in SKBR3 cells than the control MSN-BM/CD-NCApt@DOX functionalized with a scrambled nucleotide sequence on CD. Overall, intracellular delivery of DOX and the biotherapeutic agent HApt resulted in synergistic cytotoxic effects in HER2-positive cancer cells in comparison to either DOX or HApt alone. Conclusion: MSN-BM/CD-HApt@DOX enables HER2-mediated targeting and biotherapeutic effects as well as pH-responsive DOX drug release, resulting in synergistic cytotoxic effects in HER2-overexpressing cells in vitro. This novel nanocarrier could potentially enable specific targeting to improve the efficacy of chemotherapy for HER2-positive cancer.
Collapse
Affiliation(s)
- Yinxing Shen
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Mengya Li
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Tianqi Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Junqi Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
31
|
Kikuchi S, Yoshioka Y, Prieto-Vila M, Ochiya T. Involvement of Extracellular Vesicles in Vascular-Related Functions in Cancer Progression and Metastasis. Int J Mol Sci 2019; 20:ijms20102584. [PMID: 31130715 PMCID: PMC6566766 DOI: 10.3390/ijms20102584] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023] Open
Abstract
The primary cause of mortality among patients with cancer is the progression of the tumor, better known as cancer invasion and metastasis. Cancer progression involves a series of biologically important steps in which the cross-talk between cancer cells and the cells in the surrounding environment is positioned as an important issue. Notably, angiogenesis is a key tumorigenic phenomenon for cancer progression. Cancer-related extracellular vesicles (EVs) commonly contribute to the modulation of a microenvironment favorable to cancer cells through their function of cell-to-cell communication. Vascular-related cells such as endothelial cells (ECs) and platelets activated by cancer cells and cancer-derived EVs develop procoagulant and proinflammatory statuses, which help excite the tumor environment, and play major roles in tumor progression, including in tumor extravasation, tumor cell microthrombi formation, platelet aggregation, and metastasis. In particular, cancer-derived EVs influence ECs, which then play multiple roles such as contributing to tumor angiogenesis, loss of endothelial vascular barrier by binding to ECs, and the subsequent endothelial-to-mesenchymal transition, i.e., extracellular matrix remodeling. Thus, cell-to-cell communication between cancer cells and ECs via EVs may be an important target for controlling cancer progression. This review describes the current knowledge regarding the involvement of EVs, especially exosomes derived from cancer cells, in EC-related cancer progression.
Collapse
Affiliation(s)
- Shinsuke Kikuchi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan.
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Molecular and Cellular Medicine, Institute of Medical Science Tokyo Medical University, Tokyo 160-0023, Japan.
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Molecular and Cellular Medicine, Institute of Medical Science Tokyo Medical University, Tokyo 160-0023, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Molecular and Cellular Medicine, Institute of Medical Science Tokyo Medical University, Tokyo 160-0023, Japan.
| |
Collapse
|
32
|
Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019; 8:307. [PMID: 30987213 PMCID: PMC6523673 DOI: 10.3390/cells8040307] [Citation(s) in RCA: 760] [Impact Index Per Article: 126.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
Exosomes are extracellular vesicles that contain a specific composition of proteins, lipids, RNA, and DNA. They are derived from endocytic membranes and can transfer signals to recipient cells, thus mediating a novel mechanism of cell-to-cell communication. They are also thought to be involved in cellular waste disposal. Exosomes play significant roles in various biological functions, including the transfer of biomolecules such as RNA, proteins, enzymes, and lipids and the regulation of numerous physiological and pathological processes in various diseases. Because of these properties, they are considered to be promising biomarkers for the diagnosis and prognosis of various diseases and may contribute to the development of minimally invasive diagnostics and next generation therapies. The biocompatible nature of exosomes could enhance the stability and efficacy of imaging probes and therapeutics. Due to their potential use in clinical applications, exosomes have attracted much research attention on their roles in health and disease. To explore the use of exosomes in the biomedical arena, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are well-understood. Herein, we discuss the history, biogenesis, release, isolation, characterization, and biological functions of exosomes, as well as the factors influencing their biogenesis and their technical and biological challenges. We conclude this review with a discussion on the future perspectives of exosomes.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu, Seoul 05029, Korea.
| | - Muniyandi Jeyaraj
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu, Seoul 05029, Korea.
| | - Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu, Seoul 05029, Korea.
| |
Collapse
|
33
|
Harryman WL, Warfel NA, Nagle RB, Cress AE. The Tumor Microenvironments of Lethal Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:149-170. [PMID: 31900909 DOI: 10.1007/978-3-030-32656-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Localized prostate cancer (confined to the gland) generally is considered curable, with nearly a 100% 5-year-survival rate. When the tumor escapes the prostate capsule, leading to metastasis, there is a poorer prognosis and higher mortality rate, with 5-year survival dropping to less than 30%. A major research question has been to understand the transition from indolent (low risk) disease to aggressive (high risk) disease. In this chapter, we provide details of the changing tumor microenvironments during prostate cancer invasion and their role in the progression and metastasis of lethal prostate cancer. Four microenvironments covered here include the muscle stroma, perineural invasion, hypoxia, and the role of microvesicles in altering the extracellular matrix environment. The adaptability of prostate cancer to these varied microenvironments and the cues for phenotypic changes are currently understudied areas. Model systems for understanding smooth muscle invasion both in vitro and in vivo are highlighted. Invasive human needle biopsy tissue and mouse xenograft tumors both contain smooth muscle invasion. In combination, the models can be used in an iterative process to validate molecular events for smooth muscle invasion in human tissue. Understanding the complex and interacting microenvironments in the prostate holds the key to early detection of high-risk disease and preventing tumor invasion through escape from the prostate capsule.
Collapse
Affiliation(s)
| | - Noel A Warfel
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Anne E Cress
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|