1
|
Sun L, Ma B, Yang F, Zou H, Guo Y, Wang X, Han M. Anti-hepatoma effect of homologous delivery of doxorubicin by HepG2 cells. Int J Pharm 2025; 670:125113. [PMID: 39710309 DOI: 10.1016/j.ijpharm.2024.125113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Compared to conventional polymer-based and biomaterial carriers, cells as vehicles for delivering bioactive molecules in the treatment of tumor diseases offer characteristics such as non-toxicity, biocompatibility, low immunogenicity, and prolonged in vivo circulation. However, the focus of current cell drug delivery systems predominantly lies on live cells, such as red blood cells, white blood cells and others. Here, a drug delivery strategy targeting liver cancer utilizing cryo-shocked liver cancer cells (HepG2) as carriers was presented, and non-proliferative HepG2 cells particles loaded with DOX (HepG2-DOX) was effectively prepared, which has good homologous targeting. Subsequent in vitro and in vivo experiments demonstrated the non-proliferative and non-pathogenic nature of this drug delivery system. The outcomes of in vitro experiments revealed that the inhibitory effect of HepG2-DOX on HepG2 was approximately five times higher than that of free DOX, with the IC50 value of HepG2-DOX being 0.0739 µg/mL and free DOX being 0.3606 µg/mL. Furthermore, in comparison to the positive DOX group, the HepG2-DOX group has a very significant advantage in tumor inhibition rate (91.34 % vs. 64.20 %). Cell uptake experiments indicated significant HepG2-DOX uptake by HepG2 cells compared to 4T1, LO2, and Raw cell groups, highlighting the excellent cell specificity of HepG2-DOX. Fluorescence imaging conducted in mice following the administration of HepG2-DOX demonstrated prompt drug localization within the tumor region, highlighting exceptional in vivo targeting precision. To sum up, this study introduced a novel strategy utilizing cryo-shocked liver cancer cells as a drug delivery system, effectively treating liver tumor by enhancing tumor targeting specificity.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baonan Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Fangzhou Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hang Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
2
|
Feng L, Wang X, Gao Z, Tong Y, Yuan X, Wu T, Xia D, Hu Y. Enhancing Chemotherapy Efficacy via an Autologous Erythrocyte-Anchoring Strategy with a Closed-System Drug-Transfer Device. ACS Biomater Sci Eng 2025; 11:429-441. [PMID: 39696880 DOI: 10.1021/acsbiomaterials.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Chemotherapeutic drugs often fail to localize efficiently to tumors when administered intravenously, causing off-target effects. This study proposes an autologous erythrocyte (ER)-anchoring strategy to improve chemotherapy efficacy and reduce side effects. Utilizing a modified hemodialysis instrument, a closed-system drug-transfer device was developed for autologous ER procurement and immunogenicity mitigation. Doxorubicin (DOX) and indocyanine green (ICG) were encapsulated in autologous ERs and then modified with DSPE-PEG-FA. The final product, DOX-ICG@ER-D, was reintroduced into circulation to enhance chemotherapy. These obtained DOX-ICG@ER-D showed good stability, minimal cardiotoxicity, and extended circulation time. Compared to free DOX, DOX-ICG@ER-D had a higher accumulation of DOX in hepatocellular carcinoma and the release of DOX could be controlled by laser irradiation. Tumor-bearing rats treated by these DOX-ICG@ER-D demonstrated improved antitumor efficacy and reduced cardiotoxicity. Thus, this autologous ER-anchoring strategy offers a promising alternative to intravenous chemotherapy in the clinic.
Collapse
Affiliation(s)
- Lingzi Feng
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Xiangqian Wang
- Department of Radiotherapy, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong 226361, P. R. China
| | - Ziyi Gao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210029, China
| | - Yuqing Tong
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| | - Xiaopeng Yuan
- Department of Radiotherapy, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong 226361, P. R. China
| | - Ting Wu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210029, China
| | - Donglin Xia
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yong Hu
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| |
Collapse
|
3
|
Gao Q, He T, Chen L, Zhu S, Li C, Zeng Y, Luo S, Chen S, Chen X, Yu S, Ye Z, Wu ZS. Triangle-toothed gear occlude-guided universal nanotechnology constructs 3D symmetric DNA polyhedra with high assembly efficiency for precision cancer therapy. J Colloid Interface Sci 2025; 677:1045-1060. [PMID: 39178668 DOI: 10.1016/j.jcis.2024.08.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Chemotherapy is commonly used to treat malignant tumors. However, conventional chemotherapeutic drugs often cannot distinguish between tumor and healthy cells, resulting in adverse effects and reduced therapeutic efficacy. Therefore, zigzag-shaped gear-occlude-guided cymbal-closing (ZGC) DNA nanotechnology was developed based on the mirror-symmetry principle to efficiently construct symmetric DNA polyhedra. This nanotechnology employed simple mixing steps for efficient sequence design and assembly. A targeting aptamer was installed at a user-defined position using an octahedron as a model structure. Chemotherapeutic drug-loaded polyhedral objects were subsequently delivered into tumor cells. Furthermore, anticancer drug-loaded DNA octahedra were intravenously injected into a HeLa tumor-bearing mouse model. Assembly efficiency was almost 100 %, with no residual building blocks identified. Moreover, this nanotechnology required a few DNA oligonucleotides, even for complex polyhedrons. Symmetric DNA polyhedrons retained their structural integrity for 24 h in complex biological environments, guaranteeing prolonged circulation without drug leakage in the bloodstream and promoting efficient accumulation in tumor tissues. In addition, DNA octahedra were cleared relatively slowly from tumor tissues. Similarly, tumor growth was significantly inhibited in vivo, and a therapeutic outcome comparable to that of conventional gene-chemo combination therapy was observed. Moreover, no systemic toxicity was detected. These findings indicate the potential application of ZGC DNA nanotechnology in precision medicine.
Collapse
Affiliation(s)
- Qian Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tenghang He
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shidan Zhu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Congcong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Zeng
- Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shu Chen
- Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Xiangru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Suhong Yu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zaisheng Ye
- Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
4
|
Wang J, Zhu X, Jiang H, Ji M, Wu Y, Chen J. Cancer cell-derived exosome based dual-targeted drug delivery system for non-small cell lung cancer therapy. Colloids Surf B Biointerfaces 2024; 244:114141. [PMID: 39216444 DOI: 10.1016/j.colsurfb.2024.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is among most prevalent cancers in the world, in which non-small cell lung cancer (NSCLC) accounts for more than 85 % of all subtypes of lung cancers. NSCLC is often diagnosed at an advanced stage with a high mortality rate. Despite the demonstrated efficacy of chemotherapy in the treatment of NSCLC, the main drawback of current therapy is the lack of an effective drug-targeted delivery system, which may result in undesirable side effects during the clinical treatment. In this study, we construct a "dual-targeting" anti-cancer drug delivery platform by combining superparamagnetic iron oxide nanoparticles (SPIONs) with exosomes derived from NSCLC cells. We successfully promoted the targeted delivery of anti-drug doxorubicin (DOX) at the cellular levels by combining the homing targeted ability of exosomes with the magnetic targeted ability of SPIONs. Moreover, non-small cell lung cancer cell (NCI-h1299) tumor models were established. It was found that exosome-SPIONs (Exo-SPIONs) loaded with DOX exhibited optimal tumor tissue delivery and tumor suppression in the presence of an external magnetic field, and reduced the toxicity of the DOX to normal tissues. The constructed "dual-targeting" anti-cancer drug delivery platform holds promise for targeted chemotherapy for NSCLC.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Exosomes/chemistry
- Exosomes/metabolism
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Doxorubicin/pharmacology
- Doxorubicin/chemistry
- Doxorubicin/administration & dosage
- Drug Delivery Systems
- Animals
- Cell Line, Tumor
- Mice
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/administration & dosage
- Cell Proliferation/drug effects
- Magnetic Iron Oxide Nanoparticles/chemistry
- Cell Survival/drug effects
- Mice, Nude
- Magnetite Nanoparticles/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Mice, Inbred BALB C
- Drug Screening Assays, Antitumor
Collapse
Affiliation(s)
- Jun Wang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Zhu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Jin Chen
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Hadi Barhaghtalab R, Tanimowo Aiyelabegan H, Maleki H, Mirzavi F, Gholizadeh Navashenaq J, Abdi F, Ghaffari F, Vakili-Ghartavol R. Recent advances with erythrocytes as therapeutics carriers. Int J Pharm 2024; 665:124658. [PMID: 39236775 DOI: 10.1016/j.ijpharm.2024.124658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Erythrocytes have gained popularity as a natural option for in vivo drug delivery due to their advantages, which include lengthy circulation times, biocompatibility, and biodegradability. Consequently, the drug's pharmacokinetics and pharmacodynamics in red blood cells can be considerably up the dosage. Here, we provide an overview of the erythrocyte membrane's structure and discuss the characteristics of erythrocytes that influence their suitability as carrier systems. We also cover current developments in the erythrocyte-based nanocarrier, which could be used for both active and passive targeting of disease tissues, particularly those of the reticuloendothelial system (RES) and cancer tissues. We also go over the most recent discoveries about the in vivo and in vitro uses of erythrocytes for medicinal and diagnostic purposes. Moreover, the clinical relevance of erythrocytes is discussed in order to improve comprehension and enable the potential use of erythrocyte carriers in the management of various disorders.
Collapse
Affiliation(s)
| | | | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Fereshteh Abdi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Faezeh Ghaffari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Javadi P, Derakhshan MA, Heidari R, Ashrafi H, Azarpira N, Shahbazi MA, Azadi A. A thermoresponsive chitosan-based in situ gel formulation incorporated with 5-FU loaded nanoerythrosomes for fibrosarcoma local chemotherapy. Int J Biol Macromol 2024; 278:134781. [PMID: 39151860 DOI: 10.1016/j.ijbiomac.2024.134781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Local administration of drugs at tumor sites over an extended period of time shows potential as a promising approach for cancer treatment. In the present study, the temperature-induced phase transition of chitosan and poloxamer 407 is used to construct an injectable hydrogel encapsulating 5-FU-loaded nanoerythrosome (5-FU-NER-gel). The 5-FU-NERs were found to be spherical, measuring approximately 115 ± 20 nm in diameter and having a surface potential of -7.06 ± 0.4. The drug loading efficiency was approximately 40 %. In situ gel formation took place within 15 s when the gel was exposed to body temperature or subcutaneous injection. A sustained release profile was observed at pH 7.4 and 6.8, with a total 5-FU release of 76.57 ± 4.4 and 98.07 ± 6.31 in 24 h, respectively. MTT, Live/dead, and migration assays confirmed the cytocompatibility of the drug carrier and its effectiveness as a chemotherapeutic formulation. After in vivo antitumor assessment in a subcutaneous autograft model, it was demonstrated that tumor growth inhibition in 14 days was 90 %. Therefore, the obtained injectable chitosan-based hydrogel containing 5-FU-loaded nanoerythrosomes illustrated promising potential as a candidate for local and enhanced delivery of chemotherapeutics at the tumor site.
Collapse
Affiliation(s)
- Parisa Javadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Derakhshan
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Azadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Srivastava G, Mukherjee E, Mittal R, Ganjewala D. Geraniol and citral: recent developments in their anticancer credentials opening new vistas in complementary cancer therapy. Z NATURFORSCH C 2024; 79:163-177. [PMID: 38635829 DOI: 10.1515/znc-2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
About 10 million people are diagnosed with cancer each year. Globally, it is the second leading cause of death after heart disease, and by 2035, the death toll could reach 14.6 million. Several drugs and treatments are available to treat cancer, but survival rates remain low. Many studies in recent years have shown that plant-derived monoterpenes, particularly geraniol and citral, are effective against various cancers, including breast, liver, melanoma, endometrial, colon, prostate, and skin cancers. This trend has opened new possibilities for the development of new therapeutics or adjuvants in the field of cancer therapy. These monoterpenes can improve the efficacy of chemotherapy by modulating many signaling molecules and pathways within tumors. Analysis of reports on the anticancer effects published in the past 5 years provided an overview of the most important results of these and related properties. Also, the molecular mechanisms by which they exert their anticancer effects in cell and animal studies have been explained. Therefore, this review aims to highlight the scope of geraniol and citral as complementary or alternative treatment options in cancer therapy.
Collapse
Affiliation(s)
- Gauri Srivastava
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Esha Mukherjee
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Ruchika Mittal
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
8
|
Siddique AR, Bhagwat GS. Erythrocytes Nanoparticle Delivery: A Boon for Targeting Tumor. Adv Pharm Bull 2024; 14:132-146. [PMID: 38585450 PMCID: PMC10997934 DOI: 10.34172/apb.2023.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/14/2023] [Accepted: 04/24/2023] [Indexed: 04/09/2024] Open
Abstract
Although nanoparticles (NPs) have many advantages as drug delivery systems, their poor stability in circulation, premature drug release, and nonspecific uptake in non-target organs have prompted biomimetic approaches to camouflage nano vehicles using natural cell membranes. Among them, which are extensively studied in erythrocytes, are the most abundant circulating blood cells. They are specially used for biomimetic coating on artificial NPs due to their excellent properties of good biocompatibility, biodegradability, non-immunogenicity, and long-term blood circulation. Erythrocyte-mimicking nanoparticles (EM-NPs) are prepared by combining nanoparticle cores with naturally derived erythrocyte (red blood cell or RBC) membranes. Compared with conventional nanosystems, EM-NPs hold the preferable characteristics of prolonged blood circulation time and immune evasion. In this review, the biomimetic platform of erythrocyte membrane-coated NPs is described in various aspects, with particular focus placed on the coating mechanism, preparation methods, characterization method, and recent advances in the biomedical applications of EM-NPs concerning cancer and targeted delivery.
Collapse
Affiliation(s)
| | - Geeta Sameer Bhagwat
- Pharmaceutics Department, DY Patil University School of Pharmacy, Sector-7, Nerul, Navi Mumbai 400706, India
| |
Collapse
|
9
|
Zhang J, Yu H, Li G. Engineered cell membrane-coated nanoparticles based cancer therapy: A robust weapon against the lethal and challenging hepatocellular carcinoma. Biointerphases 2024; 19:020801. [PMID: 38607255 DOI: 10.1116/6.0003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/05/2024] [Indexed: 04/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has become an important public health problem, and there are still challenges to overcome in clinical treatment. The nanodrug delivery system (NDDS) has developed tremendously in recent years, and many researchers have explored NDDS for the treatment of HCC. Engineered cell membrane-coated nanoparticles (ECNPs) have emerged, combining the unique functions of cell membranes with the engineering versatility of synthetic nanoparticles (NPs) to effectively deliver therapeutic drugs. It is designed to have the capabilities: specific active targeting, immune evasion, prolonging the circulation blood time, controlled drug release delivery, and reducing drugs systematic toxicity. Thus, ECNPs are a promising bionic tool in the treatment of HCC and have operability to achieve combination and integrated therapy. This review focuses on the mechanism and strategy of ECNPs for the treatment of HCC and summarizes its research progress in the treatment of HCC in recent years.
Collapse
Affiliation(s)
- Jiachen Zhang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Hongjuan Yu
- Shanghai Pudong New Area Caolu Community Health Service Center, Shanghai 201209, China
| | - Gang Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Lin Y, Guan X, Su J, Chen S, Fu X, Xu X, Deng X, Chang J, Qin A, Shen A, Zhang L. Cell Membrane-Camouflaged Nanoparticles Mediated Nucleic Acids Delivery. Int J Nanomedicine 2023; 18:8001-8021. [PMID: 38164266 PMCID: PMC10758188 DOI: 10.2147/ijn.s433737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024] Open
Abstract
Nucleic acids have emerged as promising therapeutic agents for many diseases because of their potential in modulating gene expression. However, the delivery of nucleic acids remains a significant challenge in gene therapy. Although viral vectors have shown high transfection efficiency, concerns regarding teratogenicity or carcinogenicity have been raised. Non-viral vehicles, including cationic polymers, liposomes, and inorganic materials possess advantages in terms of safety, ease of preparation, and low cost. Nevertheless, they also face limitations related to immunogenicity, quick clearance in vivo, and lack of targeting specificity. On the other hand, bioinspired strategies have shown increasing potential in the field of drug delivery, yet there is a lack of comprehensive reviews summarizing the rapid development of bioinspired nanoparticles based on the cell membrane camouflage to construct the nucleic acids vehicles. Herein, we enumerated the current difficulties in nucleic acid delivery with various non-viral vehicles and provided an overview of bioinspired strategies for nucleic acid delivery.
Collapse
Affiliation(s)
- Yinshan Lin
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaoling Guan
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jianfen Su
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Sheng Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xihua Fu
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Xiaowei Xu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaohua Deng
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jishuo Chang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Aiping Qin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Ao Shen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Lingmin Zhang
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| |
Collapse
|
11
|
Xie J, Wang H, Huang Q, Lin J, Wen H, Miao Y, Lv L, Ruan D, Yu X, Qin L, Zhou Y. Enhanced cytotoxicity to lung cancer cells by mitochondrial delivery of camptothecin. Eur J Pharm Sci 2023; 189:106561. [PMID: 37562549 DOI: 10.1016/j.ejps.2023.106561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Delivering traditional DNA-damaging anticancer drugs into mitochondria to damage mitochondria is a promising chemotherapy strategy. The impermeability of this mitochondrial inner membrane, however, impedes the delivery of drug molecules that could impact other important biological roles of mitochondria. Herein, the prodrug camptothecin (CPT)-triphenylphosphine (TPP) modified with hyaluronic acid (HA) via electrostatic adsorption (HA/CPT-TPP, HCT) was used to mediate the mitochondrial accumulation of CPT. These nanoparticles (NPs) showed enhanced drug accumulation in cancer cells through tumor targeting. HCT entered acidic lysosomes through endosomal transport, HA was degraded by hyaluronidase (HAase) in acidic lysosomes, and the positively charged CPT-TPP was exposed and accumulated fully in the mitochondria. Subsequently, CPT-TPP significantly disrupted the mitochondrial structure and damaged mitochondrial function, leading to increased reactive oxygen species (ROS) levels and energy depletion. Finally, HCT enhanced lung cancer cell apoptosis via the activation of caspase-3 and caspase-9. Furthermore, greatly increased tumor growth inhibition was observed in nude mice bearing A549 xenograft tumors after the administration of HCT via tail injection. This study demonstrated that the mitochondria-targeted delivery of CPT may be a promising antitumor therapeutic strategy.
Collapse
Affiliation(s)
- Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511260, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiachang Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Huaying Wen
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511260, China
| | - Yingling Miao
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Le Lv
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Dongxue Ruan
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
12
|
Zhou Y, Miao Y, Huang Q, Shi W, Xie J, Lin J, Huang P, Yue C, Qin Y, Yu X, Wang H, Qin L, Chen J. A redox-responsive self-assembling COA-4-arm PEG prodrug nanosystem for dual drug delivery suppresses cancer metastasis and drug resistance by downregulating hsp90 expression. Acta Pharm Sin B 2023; 13:3153-3167. [PMID: 37521875 PMCID: PMC10372829 DOI: 10.1016/j.apsb.2022.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
Metastasis and resistance are main causes to affect the outcome of the current anticancer therapies. Heat shock protein 90 (Hsp90) as an ATP-dependent molecular chaperone takes important role in the tumor metastasis and resistance. Targeting Hsp90 and downregulating its expression show promising in inhibiting tumor metastasis and resistance. In this study, a redox-responsive dual-drug nanocarrier was constructed for the effective delivery of a commonly used chemotherapeutic drug PTX, and a COA-modified 4-arm PEG polymer (4PSC) was synthesized. COA, an active component in oleanolic acid that exerts strong antitumor activity by downregulating Hsp90 expression, was used as a structural and functional element to endow 4PSC with redox responsiveness and Hsp90 inhibitory activity. Our results showed that 4PSC/PTX nanomicelles efficiently delivered PTX and COA to tumor locations without inducing systemic toxicity. By blocking the Hsp90 signaling pathway, 4PSC significantly enhanced the antitumor effect of PTX, inhibiting tumor proliferation and invasiveness as well as chemotherapy-induced resistance in vitro. Remarkable results were further confirmed in vivo with two preclinical tumor models. These findings demonstrate that the COA-modified 4PSC drug delivery nanosystem provides a potential platform for enhancing the efficacy of chemotherapies.
Collapse
Affiliation(s)
- Yi Zhou
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yingling Miao
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenwen Shi
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiachang Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Pei Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengfeng Yue
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yuan Qin
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease and the Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianhai Chen
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
A multi-bioresponsive self-assembled nano drug delivery system based on hyaluronic acid and geraniol against liver cancer. Carbohydr Polym 2023; 310:120695. [PMID: 36925236 DOI: 10.1016/j.carbpol.2023.120695] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Herein, a multi-bioresponsive self-assembled nano-drug delivery system (HSSG) was constructed by conjugating the anticancer drug Geraniol (GER) to hyaluronic acid (HA) via a disulfide bond. The HSSG NPs displayed a uniform spherical shape with an average diameter of ∼110 nm, maintained high stability, and realized controlled drug release in the tumor microenvironment (pH/glutathione/hyaluronidase). Results of fluorescence microscopy and flow cytometry verified that HSSG NPs were selectively uptaken by human hepatocellular carcinoma cell lines HepG2 and Huh7 via CD44 receptor-mediated internalization. Studies on H22 tumor-bearing mice demonstrate that HSSG NPs could effectively accumulate at the tumor site for a long period. In vitro and in vivo studies show that HSSG NPs significantly promoted the death of cancer cells while reducing the toxicity as compared to GER. Therefore, the HSSG NPs have great potential in the treatment of tumors.
Collapse
|
14
|
Wu J, Deng R, Yan J, Zhu B, Wang J, Xu Y, Gui S, Jin X, Lu X. A cell transmembrane peptide chimeric M(27-39)-HTPP targeted therapy for hepatocellular carcinoma. iScience 2023; 26:106766. [PMID: 37234089 PMCID: PMC10205784 DOI: 10.1016/j.isci.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor, with a growing incidence and death rate worldwide. The aims and challenges of treating HCC include targeting the tumor, entering the tumor tissue, inhibiting the spread and growth of tumor cells. M27-39 is a small peptide isolated from the antimicrobial peptide Musca domestica cecropin (MDC), whereas HTPP is a liver-targeting, cell-penetrating peptide obtained from the circumsporozoite protein (CSP) of Plasmodium parasites. In this study, M27-39 was modified by HTPP to form M(27-39)-HTPP, which targeted tumor penetration to treat HCC. Here, we revealed that M(27-39)-HTPP had a good ability to target and penetrate the tumor, effectively limit the proliferation, migration, and invasion, and induce the apoptosis in HCC. Notably, M(27-39)-HTPP demonstrated good biosecurity when administered at therapeutic doses. Accordingly, M(27-39)-HTPP could be used as a new, safe, and efficient therapeutic peptide for HCC.
Collapse
Affiliation(s)
- Jibin Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Rui Deng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Jianling Yan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Baokang Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Jian Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102629, People’s Republic of China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People’s Republic of China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
15
|
Injectable hydroethanolic physical gels based on Codonopsis pilosula polysaccharide for sustained anticancer drug delivery. Int J Biol Macromol 2023; 230:123178. [PMID: 36623621 DOI: 10.1016/j.ijbiomac.2023.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The development of biocompatible carriers based on hydroethanolic physical gels for effectively encapsulating and delivering hydrophobic drug molecules is of particular interest. In this paper, we reported a novel hydroethanolic physical gel based on Codonopsis pilosula polysaccharide (CPP) prepared from the roots of C. pilosula. The gelation behaviors of the graded CPP fractions in a water-ethanol solvent system were evaluated, and the physicochemical and mechanical properties of the CPP-based gel (CPP-G) were characterized. The results indicated that CPP-G had consisted of a random physically crosslinked network formed by hydrophobic association of CPP chains and exhibited good mechanical strength, higher shear-thinning sensitivity and rapid, highly efficient self-recovering characteristics, ensuring superior performance in constructing injectable and self-recovering drug-loaded gels. Hydrophobic paclitaxel (PTX) and hydrophilic doxorubicin (DOX) were used as representative drugs to investigate the encapsulation and in vitro release behaviors of CPP-G, which exhibited long-term sustained release properties. Additionally, the evaluation of drug activity in drug-loaded gels further revealed the synergistic effect of CPP-G with the selected drugs on tumor inhibition against 4T1 and MCF-7 breast cancer cell lines. This work evaluated the feasibility of using the natural polysaccharide CPP to construct hydroethanolic physical gels and the applicability of the injectable drug-loaded gels for hydrophobic drug delivery.
Collapse
|
16
|
|
17
|
Zhang L, Huang P, Huang S, Wang T, Chen S, Chen Z, Zhou Y, Qin L. Development of ligand modified erythrocyte coated polydopamine nanomedicine to codeliver chemotherapeutic agent and oxygen for chemo-photothermal synergistic cancer therapy. Int J Pharm 2022; 626:122156. [PMID: 36058410 DOI: 10.1016/j.ijpharm.2022.122156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/27/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
The use of conventional chemotherapy often faces limitations such as severe side effects, weak tumor tissue specificity, and the development of multidrug resistance. To conquer these challenges, numerous novel drug carriers have been designed in recent years. However, due to the complex processes of tumor development, metastasis and recurrence, single chemotherapy cannot fulfill the goals of clinical diverse treatment. In this work, by utilizing the inherent characteristics of surface-modified erythrocyte and the outstanding photothermal conversion capability of polydopamine (PDA), we designed and constructed a biomimetic multifunctional nanomedicine DPPR NPs to codeliver chemotherapeutic agent doxorubicin (DOX) and oxygen. The results showed that DPPR NPs exhibited inspiring features including nanoscale droplet size, good physicochemical stability, and sustained, pH-, and NIR triggered drug release behavior. It can dramatically prolong the systematic circulation time and elevated the drug accumulated level in the tumor site. Moreover, DPPR NPs could be effectively internalized into tumor cells and destroyed the intracellular redox balance to mediate cell apoptosis. It exerted excellent in vivo tumor targeting effect, photothermal conversion efficiency, ultrasound imaging responses, antitumor efficacy, and good compatibility. In summary, DPPR NPs provide a biomimetic drug delivery platform to organically combine chemotherapy and photothermal therapy for precise cancer treatment.
Collapse
Affiliation(s)
- Liyao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Peijie Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shubin Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Tao Wang
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, PR China
| | - Shufeng Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
18
|
Imran M, Akhileshwar Jha L, Hasan N, Shrestha J, Pangeni R, Parvez N, Mohammed Y, Kumar Jha S, Raj Paudel K. “Nanodecoys”- Future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm 2022; 621:121790. [DOI: 10.1016/j.ijpharm.2022.121790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
|
19
|
Malhotra S, Dumoga S, Singh N. Red blood cells membrane-derived nanoparticles: Applications and key challenges in their clinical translation. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1776. [PMID: 35106966 DOI: 10.1002/wnan.1776] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Cellular membrane-derived nanoparticles, particularly of red blood cells (RBCs), represent an emerging class of drug delivery systems. The lack of nucleus and organelles in these cells makes them easy to process and empty out intracellular contents. The empty vesicle membranes can then be either used as a coating on nanoparticles or can be reassembled into a nanovesicle. Engineered RBCs membrane has unique ability to retain its lipid bilayer architecture with host's proteins during top-down approach, thus allowing it to form stable nanoformulations mimicking RBCs stealth properties. In addition, its core-shell structure allows loading of different drug molecules, and its surface chemistry can be manipulated by facile conjugation with ligands on the shell. The remarkable ability of RBCs membrane to fuse with membranes of other cells enables the formation of hybrid nanovesicles. In this review, we highlight the biomedical applications of such vesicles and discuss the potential challenges related to its clinical translation. Although nano-RBCs retain much of the host's proteins, which may give an edge over synthetic nanoparticles in terms of lower immunogenicity, its production at industrial level is more challenging. This review gives the critical analysis of barriers involved in the translation of RBCs-derived nanoparticles from preclinical to clinical level. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Sahil Malhotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shweta Dumoga
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.,Biomedical Engineering unit, All India Institute of Medical Sciences New Delhi, New Delhi, India
| |
Collapse
|
20
|
Zhang Y, Wang Y, Xin Q, Li M, Yu P, Luo J, Xu X, Chen X, Li J. Zwitterionic choline phosphate conjugated folate-poly (ethylene glycol): a general decoration of erythrocyte membrane-coated nanoparticles for enhanced tumor-targeting drug delivery. J Mater Chem B 2022; 10:2497-2503. [PMID: 35019930 DOI: 10.1039/d1tb02493k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erythrocyte membrane nanosystems have become one of the important research directions of disease treatment, especially for tumor treatment, and can enhance the long circulation time of anti-cancer drugs in vivo, and penetrate and accumulate in the tumor site effectively. However, erythrocyte membranes lack targeting properties and it is necessary to provide tumor-targeting function by modifying erythrocyte membranes. In this study, we report on a novel modification method of an erythrocyte membrane nanosystem to target tumors. Specifically, the tumor-targeting molecule folate-poly (ethylene glycol) (FA-PEG) was modified with a zwitterionic 2-(methyl acryloyoxy) ethyl choline phosphate (MCP) by the Michael addition reaction to obtain MCP-modified FA-PEG (MCP-PEG-FA). Based on the strong "N-P" tetravalent electrostatic interaction between MCP and phosphatidyl choline on the erythrocyte membranes, MCP-PEG-FA can be modified on the erythrocyte membrane encapsulated doxorubicin (DOX) loaded poly(lactic-co-glycolic acid) (PLGA) nanosystem to form a tumor-targeting erythrocyte membrane nanosystem (FA-RBC@PLGA-DOX). The results show that MCP-PEG-FA was synthesized and successfully bonded to the erythrocyte membrane nanosystem, and the FA-RBC@PLGA-DOX nanosystem had a better tumor-targeting function and tumor killing effect compared with those of the nanosystems without FA ligand modification. The universal modification method of erythrocyte membranes is successfully provided and can be applied to the treatment of various diseases.
Collapse
Affiliation(s)
- Yuyue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yuemin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Mingjing Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xingyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China. .,College of Medicine, Southwest Jiaotong University, Chengdu, 610003, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
21
|
|
22
|
Wang Y, Xu X, Chen X, Li J. Multifunctional Biomedical Materials Derived from Biological Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107406. [PMID: 34739155 DOI: 10.1002/adma.202107406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Indexed: 02/06/2023]
Abstract
The delicate structure and fantastic functions of biological membranes are the successful evolutionary results of a long-term natural selection process. Their excellent biocompatibility and biofunctionality are widely utilized to construct multifunctional biomedical materials mainly by directly camouflaging materials with single or mixed biological membranes, decorating or incorporating materials with membrane-derived vesicles (e.g., exosomes), and designing multifunctional materials with the structure/functions of biological membranes. Here, the structure-function relationship of some important biological membranes and biomimetic membranes are discussed, such as various cell membranes, extracellular vesicles, and membranes from bacteria and organelles. Selected literature examples of multifunctional biomaterials derived from biological membranes for biomedical applications, such as drug- and gene-delivery systems, tissue-repair scaffolds, bioimaging, biosensors, and biological detection, are also highlighted. These designed materials show excellent properties, such as long circulation time, disease-targeted therapy, excellent biocompatibility, and selective recognition. Finally, perspectives and challenges associated with the clinical applications of biological-membrane-derived materials are discussed.
Collapse
Affiliation(s)
- Yuemin Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xingyu Chen
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
- College of Medicine Southwest Jiaotong University Chengdu 610003 China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Med‐X Center for Materials Sichuan University Chengdu 610041 China
| |
Collapse
|
23
|
Wang N, Liu C, Yao W, Zhou H, Yu S, Chen H, Qiao W. Endogenous reactive oxygen species burst induced and spatiotemporally controlled multiple drug release by traceable nanoparticles for enhancing antitumor efficacy. Biomater Sci 2021; 9:4968-4983. [PMID: 34085682 DOI: 10.1039/d1bm00668a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) are not only used as a therapeutic reagent in chemodynamic therapy (CDT), to stimulate the release of antineoplastic drugs, they can also be used to achieve a combined effect of CDT and chemotherapy to enhance anticancer effects. Herein, we synthesized a pH-responsive prodrug (PEG2k-NH-N-DOX), ROS-responsive prodrug (PEG2k-S-S-CPT-ROS), organic CDT agents (TPP-PEG2k-LND, TPP-PEG2k-TOS), and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), and used them to encapsulate combrestatinA4 (CA4) to prepare traceable pH/ROS dual-responsive multifunctional nanoparticles (TLDCAG NPs) with endogenous ROS burst and spatiotemporally controlled multiple drug release ability. Firstly, TLDCAG NPs were accumulated in the tumor cell microenvironment via an enhanced permeability and retention (EPR) effect. Secondly, CA4 was released and specifically destroyed angiogenesis to facilitate the interaction between the tumor and the remaining TLDCG NPs. After accumulating in tumor cells, the TLDCG NPs could be destroyed under acidic conditions to quickly release doxorubicin (DOX), TPP-PEG2k-LND, and TPP-PEG2k-TOS. Thirdly, TPP-PEG2k-LND and TPP-PEG2k-TOS quickly targeted mitochondria, induced endogenous ROS bursts, reduced the mitochondrial membrane potential, and induced tumor cell apoptosis. Endogenous ROS can not only be used as a therapeutic reagent for CDT, but also can cut off the thioketal bond in PEG2k-S-S-CPT-ROS and release camptothecin (CPT). Finally, TLDCAG NPs were traced by magnetic resonance imaging (MRI). Furthermore, in vitro and vivo results indicate that the TLDCAG NPs have vigorous antitumor activity and negligible systemic toxicity. Therefore, the TLDCAG NPs provide an efficient strategy for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
24
|
Wang D, Yao Y, Xiao Y, Chen X, Hu J, Yang X. Ultrasound responsive erythrocyte membrane-derived hybrid nanovesicles with controlled drug release for tumor therapy. NANOSCALE 2021; 13:9945-9951. [PMID: 34057169 DOI: 10.1039/d1nr01916c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An ultrasound responsive erythrocyte membrane-derived hybrid nanovesicle drug delivery system (DOX/HMME@FA-NL) is constructed by the membrane fusion functionalization strategy for controlled drug release and enhanced tumor therapy. The reliability and effectiveness of the membrane fusion strategy are confirmed through characterization of the particle size and zeta potential, Förster energy resonance transfer and fluorescence co-localization analyses. The DOX/HMME@FA-NL could be triggered for reactive oxygen species (ROS) generation under ultrasound stimulation. And the unsaturated phospholipids in DOX/HMME@FA-NL can be oxidized by ROS, leading to the destruction of the structure of the hybrid membrane to achieve the controlled release of drugs, thereby enhancing their tumor cell killing effect. Besides, the linkage of the folate targeting group also enhances the tumor targeting ability of DOX/HMME@FA-NL. H22 tumor-bearing mice were intravenously injected with DOX/HMME@FA-NL and treated with ultrasound, they achieved better than expected tumor sonodynamic response treatment effects.
Collapse
Affiliation(s)
- Dongdong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
25
|
Wang N, Liu C, Yao W, Zhou H, Yu S, Chen H, Qiao W. A traceable, GSH/pH dual-responsive nanoparticles with spatiotemporally controlled multiple drugs release ability to enhance antitumor efficacy. Colloids Surf B Biointerfaces 2021; 205:111866. [PMID: 34044333 DOI: 10.1016/j.colsurfb.2021.111866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Constructing highly efficient and multifunctional nanoparticles to overcome the multiple challenges of targeted drug delivery is a new strategy urgently needed in tumor therapy. Here, we synthesized pH-responsive prodrug (PEG2K-NH-N-DOX), GSH-responsive prodrug (PEG2K-S-S-CPT), folate-receptor targeting polymers (FA-PEG2K-L8, FA-PEG2K-TOS) and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), used to encapsulate combrestatinA4 (CA4) to prepare multifunctional nanoparticles (FTDCAG NPs). Unlike other nanoparticles, FTDCAG NPs contains three drugs with the ability to control the release in time and space, which can maximize the effectiveness of precise cancer chemotherapy. We first confirmed that specific binding between FTDCAG NPs and overexpressed folate-receptor cells by flow cytometry and confocal laser scanning microscopy. We then investigated the spatiotemporally controlled release ability of FTDCAG NPs loaded with doxorubicin (DOX), CA4 and camptothecin (CPT). Relative to pH = 7.4, the release efficiency of CA4 in the pH = 6.5 increased by 63.4 %. The first released CA4 is able to destroy the angiogenesis and help tumor cells to be exposed to the remaining FTDCG NPs. After being internalized into the tumor cells, FTDCG NPs is disassembled and the CPT and DOX were released due to the increase of intracellular GSH concentration and the decrease of pH value. Besides, the relaxation time of FTDCAG NPs is 3.86 times that of clinical Gd-DTPA, and the in vitro and vivo T1-weighted imaging is brighter, which can be used to trace the nanoparticles by MRI. Therefore, FTDCAG NPs provide an efficient strategy for the design of multifunctional drug delivery systems for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
26
|
Javed S, Alshehri S, Shoaib A, Ahsan W, Sultan MH, Alqahtani SS, Kazi M, Shakeel F. Chronicles of Nanoerythrosomes: An Erythrocyte-Based Biomimetic Smart Drug Delivery System as a Therapeutic and Diagnostic Tool in Cancer Therapy. Pharmaceutics 2021; 13:368. [PMID: 33802156 PMCID: PMC7998655 DOI: 10.3390/pharmaceutics13030368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, drug delivery using natural biological carriers has emerged as one of the most widely investigated topics of research. Erythrocytes, or red blood cells, can act as potential carriers for a wide variety of drugs, including anticancer, antibacterial, antiviral, and anti-inflammatory, along with various proteins, peptides, enzymes, and other macromolecules. The red blood cell-based nanocarrier systems, also called nanoerythrosomes, are nanovesicles poised with extraordinary features such as long blood circulation times, the ability to escape immune system, the ability to release the drug gradually, the protection of drugs from various endogenous factors, targeted and specified delivery of drugs, as well as possessing both therapeutic and diagnostic applications in various fields of biomedical sciences. Their journey over the last two decades is escalating with fast pace, ranging from in vivo to preclinical and clinical studies by encapsulating a number of drugs into these carriers. Being biomimetic nanoparticles, they have enhanced the stability profile of drugs and their excellent site-specific targeting ability makes them potential carrier systems in the diagnosis and therapy of wide variety of tumors including gliomas, lung cancers, breast cancers, colon cancers, gastric cancers, and other solid tumors. This review focuses on the most recent advancements in the field of nanoerythrosomes, as an excellent and promising nanoplatform for the novel drug delivery of various drugs particularly antineoplastic drugs along with their potential as a promising diagnostic tool for the identification of different tumors.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (S.J.); (M.H.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.S.A.)
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (S.J.); (M.H.S.)
| | - Saad Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (A.S.); (S.S.A.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (M.K.)
| |
Collapse
|
27
|
Abstract
Nano-delivery systems represent one of the most studied fields, thanks to the associated improvement in the treatment of human diseases. The functionality of nanostructures is a crucial point, which the effectiveness of nanodrugs depends on. A hybrid approach strategy using synthetic nanoparticles (NPs) and erythrocytes offers an optimal blend of natural and synthetic materials. This, in turn, allows medical practitioners to exploit the combined advantages of erythrocytes and NPs. Erythrocyte-based drug delivery systems have been investigated for their biocompatibility, as well as the long circulation time allowed by specific surface receptors that inhibit immune clearance. In this review, we will discuss several methods—whole erythrocytes as drug carriers, red blood cell membrane-camouflaged nanoparticles and nano-erythrosomes (NERs)—while paying attention to their application and specific preparation methods. The ability to target cells makes erythrocytes excellent drug delivery systems. They can carry a wide range of therapeutic molecules while also acting as bioreactors; thus, they have many applications in therapy and in the diagnosis of many diseases.
Collapse
|
28
|
Castro F, Martins C, Silveira MJ, Moura RP, Pereira CL, Sarmento B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Adv Drug Deliv Rev 2021; 170:312-339. [PMID: 32946921 DOI: 10.1016/j.addr.2020.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Although nanocarriers offer many advantages as drug delivery systems, their poor stability in circulation, premature drug release and nonspecific uptake in non-target organs have prompted biomimetic approaches using natural cell membranes to camouflage nanovehicles. Among them, erythrocytes, representing the most abundant blood circulating cells, have been extensively investigated for biomimetic coating on artificial nanocarriers due to their upgraded biocompatibility, biodegradability, non-immunogenicity and long-term blood circulation. Due to the cell surface mimetic properties combined with customized core material, erythrocyte-mimicking nanovehicles (EM-NVs) have a wide variety of applications, including drug delivery, imaging, phototherapy, immunomodulation, sensing and detection, that foresee a huge potential for therapeutic and diagnostic applications in several diseases. In this review, we summarize the recent advances in the biomedical applications of EM-NVs in cancer, infection, heart-, autoimmune- and CNS-related disorders and discuss the major challenges and opportunities in this research area.
Collapse
Affiliation(s)
- Flávia Castro
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria José Silveira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Pedro Moura
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Leite Pereira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
29
|
Song C, Zhang X, Wei W, Ma G. Principles of regulating particle multiscale structures for controlling particle-cell interaction process. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Li LS, Ren B, Yang X, Cai ZC, Zhao XJ, Zhao MX. Hyaluronic Acid-Modified and Doxorubicin-Loaded Gold Nanoparticles and Evaluation of Their Bioactivity. Pharmaceuticals (Basel) 2021; 14:ph14020101. [PMID: 33525717 PMCID: PMC7911392 DOI: 10.3390/ph14020101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Functionalized gold nanoparticles (AuNPs) have been successfully used in many fields as a result of having low cytotoxicity, good biocompatibility, excellent optical properties, and their ability to target cancer cells. Here, we synthesized AuNP carriers that were modified by hyaluronic acid (HA), polyethylene glycol (PEG), and adipic dihydrazide (ADH). The antitumor drug doxorubicin (Dox) was loaded into AuNP carriers and attached chemically. The Au nanocomposite AuNPs@MPA-PEG-HA-ADH-Dox was able to disperse uniformly in aqueous solution, with a diameter of 15 nm. The results of a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that AuNP carriers displayed very little toxicity toward cells in high doses, although the antitumor properties of Au nanocomposites were significantly enhanced. Cellular uptake experiments demonstrated that AuNPs modified with hyaluronic acid were more readily ingested by HepG2 and HCT-116 cells, as they have a large number of CD44 receptors. A series of experiments measuring apoptosis such as Rh123 and annexin V-FITC staining, and analysis of mitochondrial membrane potential (MMP) analysis, indicated that apoptosis played a role in the inhibition of cell proliferation by AuNPs@MPA-PEG-HA-ADH-Dox. Excessive production of reactive oxygen species (ROS) was the principal mechanism by which the Au nanocomposites inhibited cell proliferation, leading to apoptosis. Thus, the Au nanocomposites, which allowed cell imaging in real-time and induced apoptosis in specific cell types, represent theragnostic agents with potential for future clinical applications in bowel cancer.
Collapse
Affiliation(s)
- Lin-Song Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Bin Ren
- School of Mathematics and Statistics, Henan University, Jinming Campus, Kaifeng 475004, China;
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Zhong-Chao Cai
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Xue-Jie Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng 475004, China; (L.-S.L.); (X.Y.); (Z.-C.C.); (X.-J.Z.)
- Correspondence:
| |
Collapse
|
31
|
Wang Y, Zhang P, Wei Y, Shen K, Xiao L, Miron RJ, Zhang Y. Cell-Membrane-Display Nanotechnology. Adv Healthc Mater 2021; 10:e2001014. [PMID: 33000917 DOI: 10.1002/adhm.202001014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Indexed: 12/19/2022]
Abstract
Advances in material science have set the stage for nanoparticle-based research with potent applications for the diagnosis, bioimaging, and precise treatment of diseases. Despite the wide range of biomaterials developed, the rational design of biomaterials with predictable bioactivity and safety remains a critical challenge. In recent years, the field of cell-membrane-based therapeutics has emerged as a promising platform for addressing unmet medical needs. The utilization of natural cell membranes endows biomaterials with a remarkable ability to serve as biointerfaces that interact with the host environment. To improve the function and efficacy of cell-membrane-based therapeutics, a series of novel strategies is developed as cell-membrane-display nanotechnology, which utilizes various methods to selectively display therapeutic molecules of cell membranes on nanoparticles. Although cell-membrane-display nanotechnology remains in the early phases, considerable work is currently being conducted in the field. This review discusses details of innovative strategies for displaying cell-membrane molecules, including the following: 1) displaying molecules of cell membranes on biomaterials, 2) pretreating cell membranes to induce increased expression of inherent molecules of cell membranes and enhance their function, and 3) inserting additional functional molecules on cell membranes. For each area, the theoretical basis, application scenarios, and potential development are highlighted.
Collapse
Affiliation(s)
- Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Peng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Yan Wei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Kailun Shen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Leyi Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
- Medical Research Institute School of Medicine Wuhan University Wuhan 430071 China
| |
Collapse
|
32
|
Chen Z, Wang W, Li Y, Wei C, Zhong P, He D, Liu H, Wang P, Huang Z, Zhu W, Zhou Y, Qin L. Folic Acid-Modified Erythrocyte Membrane Loading Dual Drug for Targeted and Chemo-Photothermal Synergistic Cancer Therapy. Mol Pharm 2020; 18:386-402. [PMID: 33296217 DOI: 10.1021/acs.molpharmaceut.0c01008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To overcome the challenges of systemic toxicity and weak tumor selectivity caused by traditional antitumor drugs, numerous nanocarrier systems have been developed in recent decades, and their therapeutic effect has been improved to varying degrees. However, because of the drug resistance effect and metastasis involved in tumor recurrence, a single chemotherapy can no longer satisfy the diversified treatment needs. Recently, the application of chemotherapy in combination with thermotherapy as a synergistic approach has been proven to be more effective, and it provides a new strategy for cancer therapy. In this work, by utilizing the unique properties of erythrocytes, a surface-modified erythrocyte membrane was constructed as a novel nanocarrier system (DOX and ICG-PLGA@RBC nanoparticles, DIRNPs for short) for the simultaneous transportation of chemotherapeutic drugs (doxorubicin, DOX) and photothermal agents (indocyanine green, ICG) to achieve the effects of long-term circulation, active tumor targeting, and triggered drug release. The results indicated that DIRNPs have a nanoscale particle size of 158.4 nm with a narrow size distribution and a negative surface charge of -5.79 mV. No particle aggregation or remarkable drug leakage was observed during the 30 day storage test, and because of the excellent photothermal conversion ability of ICG, the local temperature of DIRNPs could dramatically increase from 33.7 to 49.8 °C in 10 min under near-infrared (NIR) laser irradiation. The in vitro drug dissolution data demonstrated that the DOX release from the DIRNPs was pH-dependent and NIR-triggered. Folic acid modifications of the erythrocyte membrane effectively facilitated the intracellular uptake of DIRNPs by HepG2 cells and, as a result, it significantly inhibited tumor cell growth, promoted reactive oxygen species levels, induced cell apoptosis, and restricted cell recovery and migration. In vivo pharmacokinetics and biodistribution studies indicated that the DIRNPs prolonged the half-life of DOX from 6.03 to 17.6 h and remarkably reduced the DOX level in the heart to avoid drug-related cardiotoxicity. More importantly, the DIRNPs exerted excellent in vivo antitumor efficacy against H22 tumors with superior safety. In conclusion, utilizing the advantageous properties of erythrocytes to construct a tumor-targeted biomimetic nanocarrier for codelivery of chemotherapeutics and photothermal agents to produce synergistic effects is considered an effective method for cancer therapy.
Collapse
Affiliation(s)
- Zhihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanting Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yusheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cui Wei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ping Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dahua He
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou 510010, China
| | - Huan Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pengfei Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenpeng Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanye Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Zhou
- School of Pharmacy, Guangzhou Medical University, Guangzhou 510436, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
33
|
Xiang Y, Huang W, Huang C, Long J, Zhou Y, Liu Y, Tang S, He DX, Tan XW, Wei H, Yu CY. Facile Fabrication of Nanoparticles with Dual-Targeting Ligands for Precise Hepatocellular Carcinoma Therapy In Vitro and In Vivo. Mol Pharm 2020; 17:3223-3235. [PMID: 32658485 DOI: 10.1021/acs.molpharmaceut.0c00327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Efficient hepatocellular carcinoma (HCC) therapy remains a significant challenge due to the unsatisfactory targeting efficiency of nanoparticles (NPs) with either a passive targeting or a single active targeting property. Although a dual-targeting mechanism-based strategy can promote the partial targeting efficiency, most of the reported NPs with dual-targeting properties generally suffer from sophisticated chemical design, multistep synthesis, and purification procedures, leading to batch-to-batch variation and difficulties in scalable production. To develop a facile yet efficient strategy toward dual-targeting ligand-functionalized NPs for precise HCC therapy and potential clinical translation, folic acid (FA) was readily introduced as a hydrophobic and targeting component to a hydrophilic macromolecular prodrug, galactosylated chitosan-5-fluorouracil acetic acid (GC-FU), to afford FA-GC-FU formulation that can self-assemble into NPs driven by the solubility variation of FA and GC-FU without the necessity of previously used physical cross-linking. The resulting nanoparticles of FA-GC-FU can target the overexpressed asialoglycoprotein receptors (ASGPRs) and folate receptors (FRs) on the surface of HCC cells, respectively, via the FA and lactobionic acid (LA) residues exposed on the surface of the NPs, leading to the maximized targeting efficiency of HCC and minimized nonspecific uptake by normal hepatocytes in vitro and in vivo. Therefore, this study not only developed a simple yet efficient strategy toward a facile fabrication of NPs with dual-targeting ligands but also presented a precise therapeutic platform for HCC with great potential for clinical translation.
Collapse
Affiliation(s)
- Ya Xiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Wen Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cong Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jinrong Long
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yangchun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yufeng Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Siyue Tang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dong-Xiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Xiang-Wen Tan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, and Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| |
Collapse
|
34
|
Qi Q, Zeng X, Peng L, Zhang H, Zhou M, Fu J, Yuan J. Tumor-targeting and imaging micelles for pH-triggered anticancer drug release and combined photodynamic therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1385-1404. [PMID: 32345136 DOI: 10.1080/09205063.2020.1760698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we construct a charge - switchable polymer nano micelles poly (2-(hexamethyl eneimino) ethyl methacrylate) - b - poly (ethylene glycol) monomethyl ether methacrylate) - b - poly (diethyl enetriaminepentaacetic acid methacrylate) - b - poly (1-vinyl imidazole) - b - poly (4-vinyl phenylboronic acid) (PC7A-PEG-DTPA-VI-PBA) in different pH solutions. DOX released faster from micelles in a weakly acidic environment (pH 5.0) than at pH 7.4. In order to enhance the anti-tumor effect, the imidazole functional groups in the polymer were used to coordinate CdSeTe quantum dots (QDs) for photodynamic treatment (PDT). In addition, the surfaces of the micelles were further decorated with phenylboronic acidas a targeting group, using DTPA chelating 99mTc for SPECT imaging.It has been successfully demonstrated that the nanoparticles have a good cumulative effect on the tumor site.The structure of the polymer was characterized by 1HNMR. The morphology and particle size of the micelles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The drug loading capacity (DLC) and drug loading efficiency (DLE) of the micelles were analyzed by ultraviolet visible spectroscopy. And the pH-sensitive drug release and cytotoxicity of the micelles were verified in vitro. In vitro experiments showed that the nano micelles were noncytotoxic to different cell lines, while DOX@CdSeTe@PC7A-PEG-DTPA-VI-PBA inhibited the proliferation and promoted the apoptosis of B16F10 cells. An in vivo study with C57BL tumor-bearing mice indicated that DOX@CdSeTe@PC7A-PEG-DTPA-VI-PBA nano micelles efficiently inhibited tumor growth. Results showed that the nano micelles had good pH responsibility and biocompatibility, and the loaded DOX could be released in the weak acidic environment of tumor cells, and it was expected to be a good drug delivery system.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Xianwu Zeng
- Department of Nuclear Medicine, Gansu Academy of Medical Sciences, Gansu Provincial Tumor Hospital, Lanzhou, China
| | - Licong Peng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Hailiang Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Miao Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jingping Fu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Jianchao Yuan
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materialsof Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| |
Collapse
|
35
|
Zhong P, Chen X, Guo R, Chen X, Chen Z, Wei C, Li Y, Wang W, Zhou Y, Qin L. Folic Acid-Modified Nanoerythrocyte for Codelivery of Paclitaxel and Tariquidar to Overcome Breast Cancer Multidrug Resistance. Mol Pharm 2020; 17:1114-1126. [PMID: 32176509 DOI: 10.1021/acs.molpharmaceut.9b01148] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The efflux of anticancer agents mediated by P-glycoprotein (P-gp) is one of the main causes of multidrug resistance (MDR) and eventually leads to chemotherapy failure. To overcome this problem, the delivery of anticancer agents in combination with a P-gp inhibitor using nanocarrier systems is considered an effective strategy. On the basis of the physiological compatibility and excellent drug loading ability of erythrocytes, we hypothesized that nanoerythrocytes could be used for the codelivery of an anticancer agent and a P-gp inhibitor to overcome MDR in breast cancer. Herein, a folic acid-modified nanoerythrocyte system (PTX/TQR NPs@NanoRBC-PEG/FA) was prepared to simultaneously transport paclitaxel and tariquidar, and the in vitro and in vivo characteristics of this delivery system were evaluated through several experiments. The results indicated that the average diameter and surface potential of this nanocarrier system were 159.8 ± 1.4 nm and -10.98 mV, respectively. Within 120 h, sustained release of paclitaxel was observed in both pH 6.5 media and pH 7.4 media. Tariquidar release from this nanocarrier suppressed the P-gp function of MCF-7/Taxol cells and significantly increased the intracellular paclitaxel level (p < 0.01 versus the PTX group). The results of the MTT assay indicated that the simultaneous transportation of paclitaxel and tariquidar could significantly inhibit the growth of MCF-7 cells or MCF-7/Taxol cells. After 48 h of incubation with PTX/TQR NPs@NanoRBC-PEG/FA, the viability of MCF-7 cells and MCF-7/Taxol cells decreased to 7.37% and 30.2%, respectively, and the IC50 values were 2.49 μM and 6.30 μM. Pharmacokinetic results illustrated that, compared with free paclitaxel, all test paclitaxel nanoformulations prolonged the drug release time and showed similar plasma concentration-time profiles. The peak concentration (Cmax), area under the curve (AUC0-∞), and half-life (t1/2) of PTX/TQR NPs@NanoRBC-PEG/FA were 3.33 mg/L, 6.02 mg/L·h, and 5.84 h, respectively. Moreover, this active targeting nanocarrier dramatically increased the paclitaxel level in tumor tissues. Furthermore, compared with those of the other paclitaxel formulations, the cellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels of the PTX/TQR NPs@NanoRBC-PEG/FA group increased by 1.38-fold (p < 0.01) and 1.36-fold (p < 0.01), respectively, and the activities of superoxide dismutase (SOD) and catalase (CAT) decreased to 67.8% (p < 0.01) and 65.4% (p < 0.001), respectively. More importantly, in vivo antitumor efficacy results proved that the PTX/TQR NPs@NanoRBC-PEG/FA group exerted an outstanding tumor inhibition effect with no marked body weight loss and fewer adverse effects. In conclusion, by utilizing the inherent and advantageous properties of erythrocytes and surface modification strategies, this biomimetic targeted drug delivery system provides a promising platform for the codelivery of an anticancer agent and a P-gp inhibitor to treat MDR in breast cancer.
Collapse
Affiliation(s)
- Ping Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuehong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rishuo Guo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaomei Chen
- Department of Pharmacy, Puning People's Hospital, Puning 515300, China
| | - Zhihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cui Wei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yusheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanting Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Zhou
- School of Pharmacy, Guangzhou Medical University, Guangzhou 510436, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
36
|
Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as Carriers: From Drug Delivery to Biosensors. Pharmaceutics 2020; 12:E276. [PMID: 32197542 PMCID: PMC7151026 DOI: 10.3390/pharmaceutics12030276] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Such erythrocytes can act as carriers that prolong the drug's action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g. magnetic resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations of their application. Particular attention is paid to in vivo studies, opening-up the potential for the clinical use of drugs encapsulated into erythrocytes.
Collapse
Affiliation(s)
- Larisa Koleva
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Elizaveta Bovt
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Fazoil Ataullakhanov
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Elena Sinauridze
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| |
Collapse
|
37
|
Cao A, Ma P, Yang T, Lan Y, Yu S, Liu L, Sun Y, Liu Y. Multifunctionalized Micelles Facilitate Intracellular Doxorubicin Delivery for Reversing Multidrug Resistance of Breast Cancer. Mol Pharm 2019; 16:2502-2510. [DOI: 10.1021/acs.molpharmaceut.9b00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aichen Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Panqin Ma
- Kangya of Ningxia Pharmaceuticals Corporation Limited, Yinchuan 750002, China
| | - Tong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yang Lan
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Shuangyu Yu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Lu Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yue Sun
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|