1
|
Rakhshani A, Maghsoudian S, Ejarestaghi NM, Yousefi M, Yoosefi S, Asadzadeh N, Fatahi Y, Darbasizadeh B, Nouri Z, Bahadorikhalili S, Shaabani A, Farhadnejad H, Motasadizadeh H. Polyethylene oxide-chitosan-doxorubicin/polycaprolactone-chitosan-curcumin pH-sensitive core/shell nanofibrous mats for the treatment of breast cancer: Fabrication, characterization and in vitro and in vivo evaluation. Int J Biol Macromol 2025; 305:141191. [PMID: 39971028 DOI: 10.1016/j.ijbiomac.2025.141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The main objective of this study was to fabricate a pH-sensitive drug carrier based on coaxial electrospun nanofibrous mats for concurrent local delivery of hydrophilic and hydrophobic anti-cancer drugs to improve the anti-tumor efficacy on breast cancer. Therefore, co-axial electrospinning technique was applied to prepare polyethylene oxide-chitosan/polycaprolactone-chitosan (PEO-CS/PCL-CS) pH-sensitive core-shell nanofibers. Doxorubicin hydrochloride (DOX, hydrophilic anti-cancer) and curcumin (CUR, hydrophobic anticancer) were loaded into core and shell sections of the fabricated pH-sensitive coaxial nanofibers, respectively. Their structure and morphology were analyzed via SEM, TEM, TGA, and FTIR techniques. The results of in vitro release analysis indicated that the release of DOX and CUR from the fabricated nanofibers was strongly depended on pH. The combined effects of the two drugs on MCF-7 cell inhibition, as measured by the MTT assay, revealed that the 1:5 ratio of DOX to CUR resulted in a CI of 0.00492, showing the strongest synergistic effect. The results of in-vivo studies indicated that the PEO-CS-DOX/PCL-CS-CUR pH-sensitive core-shell nanofibers possessed remarkable anti-tumor efficacy. As a result, PEO-CS-DOX/PCL-CS-CUR pH-sensitive core-shell nanofibrous mats with pH-responsive and sustainable and controllable manner could improve the local anti-tumor efficacy on breast cancer via inhibiting the side effects of free DOX and CUR drugs.
Collapse
Affiliation(s)
- Amir Rakhshani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Mousavi Ejarestaghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahzad Yousefi
- Department of Healthcare Emergency Management, Faculty of Medicine, Boston University, Boston, MA, USA; Graduate, Veterinary Medicine School, Āzad University, Tehran, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Asadzadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
2
|
Luo H, Huang MF, Xu A, Wang D, Gingold JA, Tu J, Wang R, Huo Z, Chiang YT, Tsai KL, Su J, Bazer DA, Hung MC, Xie C, Guo Y, Lee DF, Yang H, Zhao R. Mutant p53 confers chemoresistance by activating KMT5B-mediated DNA repair pathway in nasopharyngeal carcinoma. Cancer Lett 2025; 625:217736. [PMID: 40316196 DOI: 10.1016/j.canlet.2025.217736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 05/04/2025]
Abstract
Nasopharyngeal carcinoma (NPC), a malignancy arising from the nasopharyngeal epithelium, is common in the east and southeast area of Asia. Treatments for locally advanced and recurrent NPC include chemotherapy (usually combined with 5-Fluorouracil, 5-FU) and radiotherapy, but response is limited due to chemo-resistance. p53 mutation is a critical factor for 5-FU resistance in some cancers, but its role in NPC chemo-resistance remains unclear. Here, we demonstrate that p53(R280T), a common p53 somatic mutation found in multiple NPC tumor samples, induces gain-of-function upregulation of DNA repair genes which leads to 5-FU resistance in NPC. p53(R280T) specifically upregulates the expression of DNA repair-associated gene KMT5B by binding to its promoter, which leads to 5-FU resistance. Depletion of KMT5B in NPCs restores 5-FU induced DNA damages and improve the efficacy of 5-FU. By screening compounds affecting KMT5B expression, we identify curcumin as an effective down-regulator of KMT5B in NPC cells. We therefore evaluate the therapeutic potential of a 5-FU/curcumin combination to treat NPC and discover that curcumin enhances the efficacy of 5-FU to suppress NPC tumor growth. In summary, our findings indicate that mutant p53 and its regulated DNA repair genes serve as potential therapeutic targets to reverse 5-FU resistance for NPC patients.
Collapse
Affiliation(s)
- Haidan Luo
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Mo-Fan Huang
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - An Xu
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Donghui Wang
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Julian A Gingold
- Department of Obstetrics & Gynecology and Women's Health. Einstein/Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Jian Tu
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ruoyu Wang
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA; Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zijun Huo
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yen-Ting Chiang
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, and Office of the President, China Medical University, Taichung, 404, Taiwan
| | - Kuang-Lei Tsai
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA; Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jie Su
- Accutar Biotech, Brooklyn, NY, 11226, USA
| | - Danielle A Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University. Stony Brook, NY, 11794, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, and Office of the President, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Canmao Xie
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Dung-Fang Lee
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Huiling Yang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China.
| | - Ruiying Zhao
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Li W, Zhang P, Fu H, Yan S, Zhu D. Targeted therapeutic strategy for oral squamous carcinoma using celecoxib-loaded GABA/wheat gluten-alginate nanocarrier hydrogel with glutathione down-regulation and enhanced CCND2-mediated apoptosis. Int J Biol Macromol 2025; 303:140679. [PMID: 39909279 DOI: 10.1016/j.ijbiomac.2025.140679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/07/2025]
Abstract
The intricate architecture of the oral cavity results in insufficient surgical excision of oral squamous cell carcinoma (OSCC) potentially increasing the risk of metastasis and recurrence during treatment. In situ generating injectable hydrogels, characterized by minimally invasive methods, encapsulating stability, and pH-responsive breakdown have emerged as viable delivery systems. Herein, we aim to explore a particular therapeutic modality involving the use of celecoxib-loaded GABA/wheat gluten‑sodium alginate (SA/WG-GABA+COX(40)) nanocarriers in enhancing apoptosis of OSCC (HSC-3 & SCC-25). Eventually, drug release profiles show that loaded COX and GABA demonstrated 96.04% and 98.1% at 7.2 pH. Interestingly, crucial experimental techniques like MTT assay, AO/EB staining, DAPI labeling for SCC-25, and HSC-3 displayed the highest cell lysis percentages of 86.5% and 93.3%. Notably, OSCC cell proliferation and migration and cell multiplications were limited with formulated WG/SA-GABA+COX(40) which was evident from In vitro ROS assay, flow cytometry, and JC-1 analysis. In vivo histology, blood serum biochemistry, and tumor examination in xenograft nude mice demonstrated that SA/WG-GABA+COX(40) mice reduced HSC-3 tumor cell proliferation. Downregulation of glutathione and activation of CCND2 signaling pathway caused HSC-3 OSCC cell death. Henceforth, present findings offer an advanced drug delivery method for targeted chemotherapy in treating OSCC.
Collapse
Affiliation(s)
- Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| | - Peipei Zhang
- Department of Stomatology, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shunchao Yan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Dandan Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
5
|
Shakouripour F, Olad A, Bayramoglu G. Preparation of interpenetrating networks from chitosan and poly(hydroxypropyl methacrylate) or p(hydroxyethyl methacrylate) for controlled release of doxorubicin and curcumin: Investigation of potential use in wound dressing. Int J Biol Macromol 2025; 301:140929. [PMID: 39947546 DOI: 10.1016/j.ijbiomac.2025.140929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
The IPNs hydrogel films based on chitosan (CS), 2-hydroxyethyl methacrylate (HEMA), and 2-hydroxypropyl methacrylate (HPMA) were prepared, and their potential for drug delivery and wound dressing was evaluated. The characterizations of the IPNs were examined through swelling tests, FTIR, DSC, SEM, mechanical properties, and BET analyses. The percent swelling of the CS/p(HEMA)1 and CS/p(HPMA)1 were obtained as 240 % and 110 %, respectively. The release behavior of prepared hydrogel formulations was investigated in two different pH values for DOX and CUR at pH 5.5 and 7.4, respectively, at varying drug concentrations. In vitro, drug release profiles revealed a time-dependent release pattern, with a maximum release observed at 48 h for all formulations. Among the IPNs, CS/p(HEMA)1 formulation containing CS/HEMA in a 1:1 ratio showed the highest drug release rates of 76.0 % for doxorubicin and 75.5 % for curcumin. MTT assays revealed that the IPNs formulations exhibit enhanced interaction with drugs, leading to an improved drug release rate. A marked decrease in cell viability was observed as the concentration of both drugs increased for testing the ATCC-CRL 2451 leukemia cell line in the prepared formulations. These findings highlight the potential of these composite hydrogels as efficient drug delivery systems for wound dressing applications.
Collapse
Affiliation(s)
- Fatemeh Shakouripour
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey.
| |
Collapse
|
6
|
Heremans J, Ballet S, Martin C. The versatility of peptide hydrogels: From self-assembly to drug delivery applications. J Pept Sci 2025; 31:e3662. [PMID: 39561971 DOI: 10.1002/psc.3662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Pharmaceuticals often suffer from limitations such as low solubility, low stability, and short half-life. To address these challenges and reduce the need for frequent drug administrations, a more efficient delivery is required. In this context, the development of controlled drug delivery systems, acting as a protective depot for the drug, has expanded significantly over the last decades. Among these, injectable hydrogels have emerged as a promising platform, especially in view of the rise of biologicals as therapeutics. Hydrogels are functional, solid-like biomaterials, composed of cross-linked hydrophilic polymers and high water content. Their physical properties, which closely mimic the extracellular matrix, make them suitable for various biomedical applications. This review discusses the different types of hydrogel systems and their self-assembly process, with an emphasis on peptide-based hydrogels. Due to their structural and functional diversity, biocompatibility, synthetic accessibility, and tunability, peptides are regarded as promising and versatile building blocks. A comprehensive overview of the variety of peptide hydrogels is outlined, with β-sheet forming sequences being highlighted. Key factors to consider when using peptide hydrogels as a controlled drug delivery system are reviewed, along with a discussion of the main drug release mechanisms and the emerging trend towards affinity-based systems to further refine drug release profiles.
Collapse
Affiliation(s)
- Julie Heremans
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
8
|
Wei W, Huang L, Chen L, He H, Liu Y, Feng Y, Lin F, Chen H, He Q, Zhao J, Li H. RGDSP-functionalized peptide hydrogel stimulates growth factor secretion via integrin αv/PI3K/AKT axis for improved wound healing by human amniotic mesenchymal stem cells. Front Bioeng Biotechnol 2024; 12:1385931. [PMID: 39469516 PMCID: PMC11513332 DOI: 10.3389/fbioe.2024.1385931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
The wound healing process involves communication among growth factors, cytokines, signaling pathways, and cells in the extracellular matrix, with growth factors acting as key regulators. Although stem cells can promote wound healing by secreting diverse growth factors, their therapeutic potential is hindered by poor survival and engraftment. Mimicking the stem cell-matrix interactions can improve stem cell survival, regulate their fate, and even enhance their paracrine effects. This study investigated the use of composite RGDmix hydrogel, which can support the survival and proliferation of human amniotic mesenchymal stem cells (hAMSCs), and effectively increase the expression of various growth factors, thereby promoting wound re-epithelialization, angiogenesis, and epidermal maturation. At last, the specific role of integrin αv and PI3K/AKT signaling pathways in the secretion of growth factors were examined by silencing them in vitro and in vivo. Results suggested that the RGDmix hydrogel improved the secretion of growth factors by hAMSCs through the RGDSP/integrin αv/PI3K/AKT axis, thereby enhancing the therapeutic effect in wound healing.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lei Huang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Luoying Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huanhuan He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan Feng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fengqin Lin
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hui Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qing He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
9
|
Zang C, Tian Y, Tang Y, Tang M, Yang D, Chen F, Ghaffarlou M, Tu Y, Ashrafizadeh M, Li Y. Hydrogel-based platforms for site-specific doxorubicin release in cancer therapy. J Transl Med 2024; 22:879. [PMID: 39350207 PMCID: PMC11440768 DOI: 10.1186/s12967-024-05490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/05/2024] [Indexed: 10/04/2024] Open
Abstract
Hydrogels are promising candidates for the delivery of therapeutics in the treatment of human cancers. Regarding to the biocomaptiiblity, high drug and encapsulation efficacy and adjustable physico-chemical features, the hydrogels have been widely utilized for the delivery of chemotherapy drugs. Doxorubicin (DOX) is one of the most common chemotherapy drugs used in cancer therapy through impairing topoisomerase II function and increasing oxidative damage. However, the tumor cells have developed resistance into DOX-mediated cytotoxic impacts, requiring the delivery systems to increase internalization and anti-cancer activity of this drug. The hydrogels can deliver DOX in a sustained manner to maximize its anti-cancer activity, improving cancer elimination and reduction in side effects and drug resistance. The natural-based hydrogels such as chitosan, alginate and gelatin hydrogels have shown favourable biocompatibility and degradability in DOX delivery for tumor suppression. The hydrogels are able to co-deliver DOX with other drugs or genes to enhance drug sensitivity and mediate polychemotherapy, synergistically suppressing cancer progression. The incorporation of nanoparticles in the structure of hydrogels can improve the sustained release of DOX and enhancing intracellular internalization, accelerating DOX's cytotoxicity. Furthermore, the stimuli-responsive hydrogels including pH-, redox- and thermo-sensitive platforms are able to improve the specific release of DOX at the tumor site. The DOX-loaded hydrogels can be further employed in the clinic for the treatment of cancer patients and improving efficacy of chemotherapy.
Collapse
Affiliation(s)
- Chunbao Zang
- Department of Radiation Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yu Tian
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, USA
| | - Yujing Tang
- Department of General Surgery, Southwest Jiaotong University Affiliated Chengdu Third People's Hospital, Chengdu, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Dingyi Yang
- Department of Radiation Oncology, Chonging University Cancer Hospital; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Fangfang Chen
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Mohammadreza Ghaffarlou
- Bioengineering Division, Institute of Science and Engineering, Hacettepe University, Ankara, 06800, Turkey
| | - Yanyang Tu
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China.
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
| | - Yan Li
- Department of Gastrointestinal Surgery, Changzhou Cancer Hospital, No.1 Huaide North Road, Changzhou, Chin, China.
| |
Collapse
|
10
|
Bojarska J, Wolf WM. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers (Basel) 2024; 16:3254. [PMID: 39409876 PMCID: PMC11476321 DOI: 10.3390/cancers16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Short peptides have been coming around as a strong weapon in the fight against cancer on all fronts-in immuno-, chemo-, and radiotherapy, and also in combinatorial approaches. Moreover, short peptides have relevance in cancer imaging or 3D culture. Thanks to the natural 'smart' nature of short peptides, their unique structural features, as well as recent progress in biotechnological and bioinformatics development, short peptides are playing an enormous role in evolving cutting-edge strategies. Self-assembling short peptides may create excellent structures to stimulate cytotoxic immune responses, which is essential for cancer immunotherapy. Short peptides can help establish versatile strategies with high biosafety and effectiveness. Supramolecular short peptide-based cancer vaccines entered clinical trials. Peptide assemblies can be platforms for the delivery of antigens, adjuvants, immune cells, and/or drugs. Short peptides have been unappreciated, especially in the vaccine aspect. Meanwhile, they still hide the undiscovered unlimited potential. Here, we provide a timely update on this highly active and fast-evolving field.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Inorganic and Ecological Chemistry, Łódź University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland;
| | | |
Collapse
|
11
|
El Oirdi M, Farhan M. Clinical Trial Findings and Drug Development Challenges for Curcumin in Infectious Disease Prevention and Treatment. Life (Basel) 2024; 14:1138. [PMID: 39337921 PMCID: PMC11432846 DOI: 10.3390/life14091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Since ancient times, turmeric, scientifically known as Curcuma longa, has been renowned for its therapeutic properties. Recently, extensive documentation has highlighted the prevalence of microbial diseases without effective treatments, the increased expense of certain antimicrobial medications, and the growing occurrence of antimicrobial drug resistance. Experts predict that drug resistance will emerge as a significant global cause of death by the middle of this century, thereby necessitating intervention. Curcumin, a major curcuminoid molecule, has shown extensive antimicrobial action. Improving and altering the use of natural antimicrobial agents is the most effective approach to addressing issues of targeted specificity and drug resistance in chemically synthesized medicines. Further research is required to explore the efficacy of curcumin and other natural antimicrobial substances in combating microbial infections. The solubility and bioavailability of curcumin impede its antimicrobial capability. To enhance curcumin's antimicrobial effectiveness, researchers have recently employed several methods, including the development of curcumin-based nanoformulations. This review seeks to compile the latest available literature to assess the advantages of curcumin as a natural antimicrobial agent (particularly antiviral and antibacterial) and strategies to enhance its medical efficacy. The future application of curcumin will help to alleviate microbial infections, thereby promoting the sustainability of the world's population.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Chemistry, College of Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
12
|
Ahuja R, Shivhare V, Konar AD. Recent Advances in Smart Self-Assembled Bioinspired Hydrogels: A Bridging Weapon for Emerging Health Care Applications from Bench to Bedside. Macromol Rapid Commun 2024; 45:e2400255. [PMID: 38802265 DOI: 10.1002/marc.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Stimuli-responsive low molecular weight hydrogel interventions for Biomedical challenges are a rapidly evolving paradigm in the bottom-up approach recently. Peptide-based self-assembled nano biomaterials present safer alternatives to their non-degradable counterparts as demanded for today's most urged clinical needs.Although a plethora of work has already been accomplished, programming hydrogelators with appropriate functionalities requires a better understanding as the impact of the macromolecular structure of the peptides and subsequently, their self-assembled nanostructures remain unidentified. Henceforth this review focuses on two aspects: Firstly, the underlying guidelines for building biomimetic strategies to tailor scaffolds leading to hydrogelation along with the role of non-covalent interactions that are the key components of various self-assembly processes. In the second section, it is aimed to bring together the recent achievements with designer assembly concerning their self-aggregation behaviour and applications mainly in the biomedical arena like drug delivery carrier design, antimicrobial, anti-inflammatory as well as wound healing materials. Furthermore, it is anticipated that this article will provide a conceptual demonstration of the different approaches taken towards the construction of these task-specific designer hydrogels. Finally, a collective effort among the material scientists is required to pave the path for the entrance of these intelligent materials into medicine from bench to bedside.
Collapse
Affiliation(s)
- Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- University Grants Commission, New Delhi, 110002, India
| |
Collapse
|
13
|
Mahato R, Behera DK, Patra B, Das S, Lakra K, Pradhan SN, Abbas SJ, Ali SI. Plant-based natural products in cancer therapeutics. J Drug Target 2024; 32:365-380. [PMID: 38315449 DOI: 10.1080/1061186x.2024.2315474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Various cells in our body regularly divide to replace old cells and dead cells. For a living cell to be growing, cell division and differentiation is highly essential. Cancer is characterised by uncontrollable cell division and invasion of other tissues due to dysregulation in the cell cycle. An accumulation of genetic changes or mutations develops through different physical (UV and other radiations), chemical (chewing and smoking of tobacco, chemical pollutants/mutagens), biological (viruses) and hereditary factors that can lead to cancer. Now, cancer is considered as a major death-causing factor worldwide. Due to advancements in technology, treatment like chemotherapy, radiation therapy, bone marrow transplant, immunotherapy, hormone therapy and many more in the rows. Although, it also has some side effects like fatigue, hair fall, anaemia, nausea and vomiting, constipation. Modern improved drug therapies come with severe side effects. There is need for safer, more effective, low-cost treatment with lesser side-effects. Biologically active natural products derived from plants are the emerging strategy to deal with cancer proliferation. Moreover, they possess anti-carcinogenic, anti-proliferative and anti-mutagenic properties with reduced side effects. They also detoxify and remove reactive substances formed by carcinogenic agents. In this article, we discuss different plant-based products and their mechanism of action against cancer.
Collapse
Affiliation(s)
- Rohini Mahato
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
| | - Dillip Kumar Behera
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
| | - Biswajit Patra
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
- P.G. Department of Botany, Fakir Mohan University, Balasore, Odisha, India
| | - Shradhanjali Das
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
| | - Kulwant Lakra
- Department of Community Medicine, Veer Surendra Sai Institute of Medical Sciences and Research, Sambalpur, Odisha, India
| | | | - Sk Jahir Abbas
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| |
Collapse
|
14
|
Chen H, Liu Z, Li L, Cai X, Xiang L, Wang S. Peptide Supramolecular Self-Assembly: Regulatory Mechanism, Functional Properties, and Its Application in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5526-5541. [PMID: 38457666 DOI: 10.1021/acs.jafc.3c09237] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Peptide self-assembly, due to its diverse supramolecular nanostructures, excellent biocompatibility, and bright application prospects, has received wide interest from researchers in the fields of biomedicine and green life technology and the food industry. Driven by thermodynamics and regulated by dynamics, peptides spontaneously assemble into supramolecular structures with different functional properties. According to the functional properties derived from peptide self-assembly, applications and development directions in foods can be found and explored. Therefore, in this review, the regulatory mechanism is elucidated from the perspective of self-assembly thermodynamics and dynamics, and the functional properties and application progress of peptide self-assembly in foods are summarized, with a view to more adaptive application scenarios of peptide self-assembly in the food industry.
Collapse
Affiliation(s)
- Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Zhiyu Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liheng Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Leiwen Xiang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
15
|
Falcone N, Ermis M, Gangrade A, Choroomi A, Young P, Mathes TG, Monirizad M, Zehtabi F, Mecwan M, Rodriguez M, Zhu Y, Byun Y, Khademhosseini A, de Barros NR, Kim H. Drug‐Eluting Shear‐Thinning Hydrogel for the Delivery of Chemo‐ and Immunotherapeutic Agents for the Treatment of Hepatocellular Carcinoma. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202309069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Indexed: 01/06/2025]
Abstract
AbstractHepatocellular carcinoma (HCC) is a malignant and deadly form of liver cancer with limited treatment options. Transcatheter arterial chemoembolization, a procedure that delivers embolic and chemotherapeutic agents through blood vessels, is a promising cancer treatment strategy. However, it still faces limitations, such as inefficient agent delivery and the inability to address tumor‐induced immunosuppression. Here, a drug‐eluting shear‐thinning hydrogel (DESTH) loaded with chemotherapeutic and immunotherapeutic agents in nanocomposite hydrogels composed of gelatin and nanoclays is presented as a therapeutic strategy for a catheter‐based endovascular anticancer approach. DESTH is manually deliverable using a conventional needle and catheter. In addition, drug release studies show a sustained and pH‐dependent co‐delivery of the chemotherapy doxorubicin (acidic pH) and the immune‐checkpoint inhibitor aPD‐1 (neutral pH). In a mouse liver tumor model, the DESTH‐based chemo/immunotherapy combination has the highest survival rate and smallest residual tumor size. Finally, immunofluorescence analysis confirms that DESTH application enhances cell death and increases intratumoral infiltration of cytotoxic T‐cells. In conclusion, the results show that DESTH, which enables efficient ischemic tumor cell death and effective co‐delivery of chemo‐ and immunotherapeutic agents, may have the potential to be an effective therapeutic modality in the treatment of HCC.
Collapse
Affiliation(s)
- Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Tess G. Mathes
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Marco Rodriguez
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | - Youngjoo Byun
- Department of Pathophysiology and Preclinical Science College of Pharmacy Korea University 30019 Sejong Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
| | | | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI) Los Angeles CA 90024 USA
- Department of Pathophysiology and Preclinical Science College of Pharmacy Korea University 30019 Sejong Republic of Korea
- Vellore Institute of Technology (VIT) Vellore 632014 India
| |
Collapse
|
16
|
Pandey G, Phatale V, Khairnar P, Kolipaka T, Shah S, Famta P, Jain N, Srinivasarao DA, Rajinikanth PS, Raghuvanshi RS, Srivastava S. Supramolecular self-assembled peptide-engineered nanofibers: A propitious proposition for cancer therapy. Int J Biol Macromol 2024; 256:128452. [PMID: 38042321 DOI: 10.1016/j.ijbiomac.2023.128452] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Cancer is a devastating disease that causes a substantial number of deaths worldwide. Current therapeutic interventions for cancer include chemotherapy, radiation therapy, or surgery. These conventional therapeutic approaches are associated with disadvantages such as multidrug resistance, destruction of healthy tissues, and tissue toxicity. Therefore, there is a paradigm shift in cancer management wherein nanomedicine-based novel therapeutic interventions are being explored to overcome the aforementioned disadvantages. Supramolecular self-assembled peptide nanofibers are emerging drug delivery vehicles that have gained much attention in cancer management owing to their biocompatibility, biodegradability, biomimetic property, stimuli-responsiveness, transformability, and inherent therapeutic property. Supramolecules form well-organized structures via non-covalent linkages, the intricate molecular arrangement helps to improve tissue permeation, pharmacokinetic profile and chemical stability of therapeutic agents while enabling targeted delivery and allowing efficient tumor imaging. In this review, we present fundamental aspects of peptide-based self-assembled nanofiber fabrication their applications in monotherapy/combinatorial chemo- and/or immuno-therapy to overcome multi-drug resistance. The role of self-assembled structures in targeted/stimuli-responsive (pH, enzyme and photo-responsive) drug delivery has been discussed along with the case studies. Further, recent advancements in peptide nanofibers in cancer diagnosis, imaging, gene therapy, and immune therapy along with regulatory obstacles towards clinical translation have been deliberated.
Collapse
Affiliation(s)
- Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
17
|
Katsamenis OL, Basford PJ, Robinson SK, Boardman RP, Konstantinopoulou E, Lackie PM, Page A, Ratnayaka JA, Goggin PM, Thomas GJ, Cox SJ, Sinclair I, Schneider P. A high-throughput 3D X-ray histology facility for biomedical research and preclinical applications. Wellcome Open Res 2023; 8:366. [PMID: 37928208 PMCID: PMC10620852 DOI: 10.12688/wellcomeopenres.19666.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 11/07/2023] Open
Abstract
Background The University of Southampton, in collaboration with the University Hospital Southampton (UHS) NHS Foundation Trust and industrial partners, has been at the forefront of developing three-dimensional (3D) imaging workflows using X-ray microfocus computed tomography (μCT) -based technology. This article presents the outcomes of these endeavours and highlights the distinctive characteristics of a μCT facility tailored explicitly for 3D X-ray Histology, with a primary focus on applications in biomedical research and preclinical and clinical studies. Methods The UHS houses a unique 3D X-ray Histology (XRH) facility, offering a range of services to national and international clients. The facility employs specialised μCT equipment explicitly designed for histology applications, allowing whole-block XRH imaging of formalin-fixed and paraffin-embedded tissue specimens. It also enables correlative imaging by combining μCT imaging with other microscopy techniques, such as immunohistochemistry (IHC) and serial block-face scanning electron microscopy, as well as data visualisation, image quantification, and bespoke analysis. Results Over the past seven years, the XRH facility has successfully completed over 120 projects in collaboration with researchers from 60 affiliations, resulting in numerous published manuscripts and conference proceedings. The facility has streamlined the μCT imaging process, improving productivity and enabling efficient acquisition of 3D datasets. Discussion & Conclusions The 3D X-ray Histology (XRH) facility at UHS is a pioneering platform in the field of histology and biomedical imaging. To the best of our knowledge, it stands out as the world's first dedicated XRH facility, encompassing every aspect of the imaging process, from user support to data generation, analysis, training, archiving, and metadata generation. This article serves as a comprehensive guide for establishing similar XRH facilities, covering key aspects of facility setup and operation. Researchers and institutions interested in developing state-of-the-art histology and imaging facilities can utilise this resource to explore new frontiers in their research and discoveries.
Collapse
Affiliation(s)
- Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Philip J. Basford
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Computational Engineering and Design, Faculty of Engineering and Physical Sciences,, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Stephanie K. Robinson
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Richard P. Boardman
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Elena Konstantinopoulou
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Peter M. Lackie
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Anton Page
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Patricia M. Goggin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Gareth J. Thomas
- Institute for Life Sciences, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Simon J. Cox
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Computational Engineering and Design, Faculty of Engineering and Physical Sciences,, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Ian Sinclair
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Philipp Schneider
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- High-Performance Vision Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
18
|
Katsamenis OL, Basford PJ, Robinson SK, Boardman RP, Konstantinopoulou E, Lackie PM, Page A, Ratnayaka JA, Goggin PM, Thomas GJ, Cox SJ, Sinclair I, Schneider P. A high-throughput 3D X-ray histology facility for biomedical research and preclinical applications. Wellcome Open Res 2023; 8:366. [PMID: 37928208 PMCID: PMC10620852 DOI: 10.12688/wellcomeopenres.19666.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The University of Southampton, in collaboration with the University Hospital Southampton (UHS) NHS Foundation Trust and industrial partners, has been at the forefront of developing three-dimensional (3D) imaging workflows using X-ray microfocus computed tomography (μCT) -based technology. This article presents the outcomes of these endeavours and highlights the distinctive characteristics of a μCT facility tailored explicitly for 3D X-ray Histology, with a primary focus on applications in biomedical research and preclinical and clinical studies. METHODS The UHS houses a unique 3D X-ray Histology (XRH) facility, offering a range of services to national and international clients. The facility employs specialised μCT equipment explicitly designed for histology applications, allowing whole-block XRH imaging of formalin-fixed and paraffin-embedded tissue specimens. It also enables correlative imaging by combining μCT imaging with other microscopy techniques, such as immunohistochemistry (IHC) and serial block-face scanning electron microscopy, as well as data visualisation, image quantification, and bespoke analysis. RESULTS Over the past seven years, the XRH facility has successfully completed over 120 projects in collaboration with researchers from 60 affiliations, resulting in numerous published manuscripts and conference proceedings. The facility has streamlined the μCT imaging process, improving productivity and enabling efficient acquisition of 3D datasets. DISCUSSION & CONCLUSIONS The 3D X-ray Histology (XRH) facility at UHS is a pioneering platform in the field of histology and biomedical imaging. To the best of our knowledge, it stands out as the world's first dedicated XRH facility, encompassing every aspect of the imaging process, from user support to data generation, analysis, training, archiving, and metadata generation. This article serves as a comprehensive guide for establishing similar XRH facilities, covering key aspects of facility setup and operation. Researchers and institutions interested in developing state-of-the-art histology and imaging facilities can utilise this resource to explore new frontiers in their research and discoveries.
Collapse
Affiliation(s)
- Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Philip J. Basford
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Computational Engineering and Design, Faculty of Engineering and Physical Sciences,, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Stephanie K. Robinson
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Richard P. Boardman
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Elena Konstantinopoulou
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Peter M. Lackie
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Anton Page
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Patricia M. Goggin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Gareth J. Thomas
- Institute for Life Sciences, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Simon J. Cox
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Computational Engineering and Design, Faculty of Engineering and Physical Sciences,, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Ian Sinclair
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Philipp Schneider
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- High-Performance Vision Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
19
|
Ni H, Qian S, Lu J, Feng J, Mou XZ, Zhang J. Natural Polysaccharide Delivery Platforms with Multiscale Structure Used for Cancer Chemoimmunotherapy. Mol Pharm 2023; 20:5778-5789. [PMID: 37752866 DOI: 10.1021/acs.molpharmaceut.3c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Chemoimmunotherapy is an effective cancer treatment method. Drugs are always combined and used in treating cancer. However, the characteristic of drugs varies, making it challenging to control their release kinetics utilizing delivery devices with a single microstructure. In this study, we attempted to uniformly size drugs of varying molecular weights and confine them in a compartment where immune cells may be recruited and moved freely. Dextran microgels were created as modular drug libraries to address the cryogel burst release of small molecule drugs. Then, modular drug libraries and granulocyte-macrophage colony-stimulating factor (GM-CSF) were integrated into cryogels for a combined treatment. Herein, alginate was zwitterion modified to avoid the immune reaction generated by the material. Because of its macroporous structure, the cryogel could be injected into the body, eliminating invasive surgical procedures. Results demonstrated that multiscale delivery platforms could improve the synergistic effect of various medications on tumor treatment.
Collapse
Affiliation(s)
- Haifeng Ni
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Sunxiang Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jie Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P. R. China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
20
|
Zhao C, Zhou X, Cao Z, Ye L, Cao Y, Pan J. Curcumin and analogues against head and neck cancer: From drug delivery to molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154986. [PMID: 37506572 DOI: 10.1016/j.phymed.2023.154986] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most life-threatening diseases which also causes economic burden worldwide. To overcome the limitations of traditional therapies, investigation into alternative adjuvant treatments is crucial. PURPOSE Curcumin, a turmeric-derived compound, demonstrates significant therapeutic potential in diverse diseases, including cancer. Furthermore, research focuses on curcumin analogues and novel drug delivery systems, offering approaches for improved efficacy. This review aims to provide a comprehensive overview of curcumin's current findings, emphasizing its mechanisms of anti-HNSCC effects and potential for clinical application. METHOD An electronic search of Web of Science, MEDLINE, and Embase was conducted to identify literature about the application of curcumin or analogues in HNSCC. Titles and abstracts were screened to identify potentially eligible studies. Full-text articles will be obtained and independently evaluated by two authors to make the decision of inclusion in the review. RESULTS Curcumin's clinical application is hindered by poor bioavailability, prompting the exploration of methods to enhance it, such as curcumin analogues and novel drug delivery systems. Curcumin could exhibit anti-cancer effects by targeting cancer cells and modulating the tumor microenvironment in HNSCC. Mechanisms of action include cell cycle arrest, apoptosis promotion, reactive oxygen species induction, endoplasmic reticulum stress, inhibition of epithelial-mesenchymal transition, attenuation of extracellular matrix degradation, and modulation of tumor metabolism in HNSCC cells. Curcumin also targets various components of the tumor microenvironment, including cancer-associated fibroblasts, innate and adaptive immunity, and lymphovascular niches. Furthermore, curcumin enhances the anti-cancer effects of other drugs as adjunctive therapy. Two clinical trials report its potential clinical applications in treating HNSCC. CONCLUSION Curcumin has demonstrated therapeutic potential in HNSCC through in vitro and in vivo studies. Its effectiveness is attributed to its ability to modulate cancer cells and interact with the intricate tumor microenvironment. The development of curcumin analogues and novel drug delivery systems has shown promise in improving its bioavailability, thereby expanding its clinical applications. Further research and exploration in this area hold great potential for harnessing the full therapeutic benefits of curcumin in HNSCC treatment.
Collapse
Affiliation(s)
- Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Zhiwei Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Li Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China.
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China.
| |
Collapse
|
21
|
Falcone N, Ermis M, Tamay DG, Mecwan M, Monirizad M, Mathes TG, Jucaud V, Choroomi A, de Barros NR, Zhu Y, Vrana NE, Kraatz HB, Kim HJ, Khademhosseini A. Peptide Hydrogels as Immunomaterials and Their Use in Cancer Immunotherapy Delivery. Adv Healthc Mater 2023; 12:e2301096. [PMID: 37256647 PMCID: PMC10615713 DOI: 10.1002/adhm.202301096] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Peptide-based hydrogel biomaterials have emerged as an excellent strategy for immune system modulation. Peptide-based hydrogels are supramolecular materials that self-assemble into various nanostructures through various interactive forces (i.e., hydrogen bonding and hydrophobic interactions) and respond to microenvironmental stimuli (i.e., pH, temperature). While they have been reported in numerous biomedical applications, they have recently been deemed promising candidates to improve the efficacy of cancer immunotherapies and treatments. Immunotherapies seek to harness the body's immune system to preemptively protect against and treat various diseases, such as cancer. However, their low efficacy rates result in limited patient responses to treatment. Here, the immunomaterial's potential to improve these efficacy rates by either functioning as immune stimulators through direct immune system interactions and/or delivering a range of immune agents is highlighted. The chemical and physical properties of these peptide-based materials that lead to immuno modulation and how one may design a system to achieve desired immune responses in a controllable manner are discussed. Works in the literature that reports peptide hydrogels as adjuvant systems and for the delivery of immunotherapies are highlighted. Finally, the future trends and possible developments based on peptide hydrogels for cancer immunotherapy applications are discussed.
Collapse
Affiliation(s)
- Natashya Falcone
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Tess Grett Mathes
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Nihal Engin Vrana
- SPARTHA Medical, CRBS 1 Rue Eugene Boeckel, Strasbourg, 67000, France
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| |
Collapse
|
22
|
Yu S, Huang Y, Shen B, Zhang W, Xie Y, Gao Q, Zhao D, Wu Z, Liu Y. Peptide hydrogels: Synthesis, properties, and applications in food science. Compr Rev Food Sci Food Saf 2023; 22:3053-3083. [PMID: 37194927 DOI: 10.1111/1541-4337.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Due to the unique and excellent biological, physical, and chemical properties of peptide hydrogels, their application in the biomedical field is extremely wide. The applications of peptide hydrogels are closely related to their unique responsiveness and excellent properties. However, its defects in mechanical properties, stability, and toxicity limit its application in the food field. In this review, we focus on the fabrication methods of peptide hydrogels through the physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by the incorporation with materials is discussed. Meanwhile, the excellent properties of peptide hydrogels such as the stimulus responsiveness, biocompatibility, antimicrobial properties, rheology, and stability are reviewed. Finally, the application of peptide hydrogel in the food field is summarized and prospected.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yueying Huang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Biao Shen
- Zhoushan Customs District, Zhoushan, P. R. China
| | - Wang Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Qi Gao
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Dan Zhao
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Shih KC, Chan HW, Wu CY, Chuang HY. Curcumin Enhances the Abscopal Effect in Mice with Colorectal Cancer by Acting as an Immunomodulator. Pharmaceutics 2023; 15:pharmaceutics15051519. [PMID: 37242761 DOI: 10.3390/pharmaceutics15051519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Radiotherapy (RT) is an effective cancer treatment. The abscopal effect, referring to the unexpected shrinkage observed in non-irradiated tumors after radiation therapy, is thought to be mediated by systemic immune activation. However, it has low incidence and is unpredictable. Here, RT was combined with curcumin to investigate how curcumin affects RT-induced abscopal effects in mice with bilateral CT26 colorectal tumors. Indium 111-labeled DOTA-anti-OX40 mAb was synthesized to detect the activated T cell accumulations in primary and secondary tumors correlating with the changes in protein expressions and tumor growth to understand the overall effects of the combination of RT and curcumin. The combination treatment caused the most significant tumor suppression in both primary and secondary tumors, accompanied by the highest 111In-DOTA-OX40 mAb tumor accumulations. The combination treatment elevated expressions of proapoptotic proteins (Bax and cleaved caspase-3) and proinflammatory proteins (granzyme B, IL-6, and IL-1β) in both primary and secondary tumors. Based on the biodistribution of 111In-DOTA-OX40 mAb, tumor growth inhibition, and anti-tumor protein expression, our findings suggest that curcumin could act as an immune booster to augment RT-induced anti-tumor and abscopal effects effectively.
Collapse
Affiliation(s)
- Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei 11220, Taiwan
- Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
24
|
Madamsetty V, Vazifehdoost M, Alhashemi SH, Davoudi H, Zarrabi A, Dehshahri A, Fekri HS, Mohammadinejad R, Thakur VK. Next-Generation Hydrogels as Biomaterials for Biomedical Applications: Exploring the Role of Curcumin. ACS OMEGA 2023; 8:8960-8976. [PMID: 36936324 PMCID: PMC10018697 DOI: 10.1021/acsomega.2c07062] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Since the first report on the pharmacological activity of curcumin in 1949, enormous amounts of research have reported diverse activities for this natural polyphenol found in the dietary spice turmeric. However, curcumin has not yet been used for human application as an approved drug. The clinical translation of curcumin has been hampered due to its low solubility and bioavailability. The improvement in bioavailability and solubility of curcumin can be achieved by its formulation using drug delivery systems. Hydrogels with their biocompatibility and low toxicity effects have shown a substantial impact on the successful formulation of hydrophobic drugs for human clinical trials. This review focuses on hydrogel-based delivery systems for curcumin and describes its applications as anti-cancer as well as wound healing agents.
Collapse
Affiliation(s)
- Vijay
Sagar Madamsetty
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Maryam Vazifehdoost
- Department
of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman 6718773654, Iran
| | - Samira Hossaini Alhashemi
- Pharmaceutical
Sciences Research Center, Shiraz University
of Medical Sciences, Shiraz 7146864685, Iran
| | - Hesam Davoudi
- Department
of Biology, Faculty of Sciences, University
of Zanjan, Zanjan 4537138111, Iran
| | - Ali Zarrabi
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Ali Dehshahri
- Department
of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Hojjat Samareh Fekri
- Student Research
Committee, Kerman University of Medical
Sciences, Kerman 7619813159, Iran
| | - Reza Mohammadinejad
- Research
Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
25
|
Simple Complexity: Incorporating Bioinspired Delivery Machinery within Self-Assembled Peptide Biogels. Gels 2023; 9:gels9030199. [PMID: 36975648 PMCID: PMC10048788 DOI: 10.3390/gels9030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability—features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.
Collapse
|
26
|
Zhu J, Gao R, Wang Z, Cheng Z, Xu Z, Liu Z, Wu Y, Wang M, Zhang Y. Sustained and Targeted Delivery of Self-Assembled Doxorubicin Nonapeptides Using pH-Responsive Hydrogels for Osteosarcoma Chemotherapy. Pharmaceutics 2023; 15:pharmaceutics15020668. [PMID: 36839990 PMCID: PMC9961168 DOI: 10.3390/pharmaceutics15020668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
While chemotherapeutic agents have particularly potent effects in many types of cancer, their clinical applications are still far from satisfactory due to off-target drug exposure, chemotherapy resistance, and adverse effects, especially in osteosarcoma. Therefore, it is clinically promising to construct a novel tumor-targeted drug delivery system to control drug release and alleviate side effects. In this study, a pH-responsive nonapeptide hydrogel was designed and fabricated for the tumor-targeted drug delivery of doxorubicin (DOX). Using a solid-phase synthesis method, a nonapeptide named P1 peptide that is structurally akin to surfactant-like peptides (SLPs) due to its hydrophobic tail and hydrophilic head was synthesized. The physicochemical properties of the P1 hydrogel were characterized via encapsulation capacity, transmission electron microscopy (TEM), circular dichroism (CD), zeta potential, rheological analysis, and drug release studies. We also used in vitro and in vivo experiments to investigate the cytocompatibility and tumor inhibitory efficacy of the drug-loaded peptide hydrogel. The P1 peptide could self-assemble into biodegradable hydrogels under neutral conditions, and the prepared drug-loaded hydrogels exhibited good injectability and biocompatibility. The in vitro drug release studies showed that DOX-P1 hydrogels had high sensitivity to acidic conditions (pH 5.8 versus 7.4, up to 3.6-fold). Furthermore, the in vivo experiments demonstrated that the DOX-P1 hydrogel could not only amplify the therapeutic effect but also increase DOX accumulation at the tumor site. Our study proposes a promising approach to designing a pH-responsive hydrogel with controlled doxorubicin-release action based on self-assembled nonapeptides for targeted chemotherapy.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Rui Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongshi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiming Cheng
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Zhonghua Xu
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Zaiyang Liu
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Yiqun Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Min Wang
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
- Correspondence: (M.W.); (Y.Z.)
| | - Yuan Zhang
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
- Correspondence: (M.W.); (Y.Z.)
| |
Collapse
|
27
|
Developments on the Smart Hydrogel-Based Drug Delivery System for Oral Tumor Therapy. Gels 2022; 8:gels8110741. [PMID: 36421563 PMCID: PMC9689473 DOI: 10.3390/gels8110741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
At present, an oral tumor is usually treated by surgery combined with preoperative or postoperative radiotherapies and chemotherapies. However, traditional chemotherapies frequently result in substantial toxic side effects, including bone marrow suppression, malfunction of the liver and kidneys, and neurotoxicity. As a new local drug delivery system, the smart drug delivery system based on hydrogel can control drug release in time and space, and effectively alleviate or avoid these problems. Environmentally responsive hydrogels for smart drug delivery could be triggered by temperature, photoelectricity, enzyme, and pH. An overview of the most recent research on smart hydrogels and their controlled-release drug delivery systems for the treatment of oral cancer is given in this review. It is anticipated that the local drug release method and environment-responsive benefits of smart hydrogels will offer a novel technique for the low-toxicity and highly effective treatment of oral malignancy.
Collapse
|
28
|
Chen H, Chen X, Chen X, Lin S, Cheng J, You L, Xiong C, Cai X, Wang S. New perspectives on fabrication of peptide-based nanomaterials in food industry: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022; 8:706. [PMID: 36354614 PMCID: PMC9689023 DOI: 10.3390/gels8110706] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.
Collapse
Affiliation(s)
| | | | | | | | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
30
|
Gene Regulations upon Hydrogel-Mediated Drug Delivery Systems in Skin Cancers-An Overview. Gels 2022; 8:gels8090560. [PMID: 36135270 PMCID: PMC9498739 DOI: 10.3390/gels8090560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence of skin cancer has increased dramatically in recent years, particularly in Caucasian populations. Specifically, the metastatic melanoma is one of the most aggressive cancers and is responsible for more than 80% of skin cancer deaths around the globe. Though there are many treatment techniques, and drugs have been used to cure this belligerent skin cancer, the side effects and reduced bioavailability of drug in the targeted area makes it difficult to eradicate. In addition, cellular metabolic pathways are controlled by the skin cancer driver genes, and mutations in these genes promote tumor progression. Consequently, the MAPK (RAS-RAF-MEK-ERK pathway), WNT and PI3K signaling pathways are found to be important molecular regulators in melanoma development. Even though hydrogels have turned out to be a promising drug delivery system in skin cancer treatment, the regulations at the molecular level have not been reported. Thus, we aimed to decipher the molecular pathways of hydrogel drug delivery systems for skin cancer in this review. Special attention has been paid to the hydrogel systems that deliver drugs to regulate MAPK, PI3K-AKT-mTOR, JAK-STAT and cGAS-STING pathways. These signaling pathways can be molecular drivers of skin cancers and possible potential targets for the further research on treatment of skin cancers.
Collapse
|
31
|
Binaymotlagh R, Chronopoulou L, Haghighi FH, Fratoddi I, Palocci C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5871. [PMID: 36079250 PMCID: PMC9456777 DOI: 10.3390/ma15175871] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 05/09/2023]
Abstract
Peptide-based hydrogels have attracted increasing attention for biological applications and diagnostic research due to their impressive features including biocompatibility and biodegradability, injectability, mechanical stability, high water absorption capacity, and tissue-like elasticity. The aim of this review will be to present an updated report on the advancement of peptide-based hydrogels research activity in recent years in the field of anticancer drug delivery, antimicrobial and wound healing materials, 3D bioprinting and tissue engineering, and vaccines. Additionally, the biosensing applications of this key group of hydrogels will be discussed mainly focusing the attention on cancer detection.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
32
|
Design and preparation of a theranostic peptideticle for targeted cancer therapy: Peptide-based codelivery of doxorubicin/curcumin and graphene quantum dots. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102544. [PMID: 35192939 DOI: 10.1016/j.nano.2022.102544] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/22/2022]
Abstract
Although chemotherapy has been known as a powerful medication for cancer treatment over the years, there is an important necessity for designing a novel targeted drug delivery system to overcome the drawbacks of this conventional method including undesired side effects on normal cells and drug resistance. The structural differences between the surface of cancerous and normal cells allow to design and engineer targeted drug delivery systems for cancer treatment. Integrins as one of the cell surface receptors over-expressed in cancer cells could potentially be suitable candidates for targeting cancer cells. In the present study, the novel nano-carriers based on designed MiRGD peptides and graphene quantum dots (GQDs) have been used for targeted delivery of doxorubicin (Dox) and curcumin (Cur) as hydrophilic and hydrophobic drug models, respectively. The prepared nano-composites were characterized by UV-vis and photoluminescence (PL) spectroscopies, Zeta-Sizer and transmission electron microscopy (TEM). Altogether, the results of cellular uptake and fluorimetric assays performed in HUVEC and HFF cells as models of αv integrin-over-expressed cancer and normal cells, respectively, besides in-vivo study on breast cancer bearing BALB/c mice, demonstrated that the prepared nano-composites can be considered as suitable multifunctional theranostic peptideticles for targeted drug delivery and tracking.
Collapse
|
33
|
Shaikh S, Shaikh J, Naba YS, Doke K, Ahmed K, Yusufi M. Curcumin: reclaiming the lost ground against cancer resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:298-320. [PMID: 35582033 PMCID: PMC9019276 DOI: 10.20517/cdr.2020.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Curcumin, a polyphenol, has a wide range of biological properties such as anticancer, antibacterial, antitubercular, cardioprotective and neuroprotective. Moreover, the anti-proliferative activities of Curcumin have been widely studied against several types of cancers due to its ability to target multiple pathways in cancer. Although Curcumin exhibited potent anticancer activity, its clinical use is limited due to its poor water solubility and faster metabolism. Hence, there is an immense interest among researchers to develop potent, water-soluble, and metabolically stable Curcumin analogs for cancer treatment. While drug resistance remains a major problem in cancer therapy that renders current chemotherapy ineffective, curcumin has shown promise to overcome the resistance and re-sensitize cancer to chemotherapeutic drugs in many studies. In the present review, we are summarizing the role of curcumin in controlling the proliferation of drug-resistant cancers and development of curcumin-based therapeutic applications from cell culture studies up to clinical trials.
Collapse
Affiliation(s)
- Siraj Shaikh
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Javed Shaikh
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Yusufi Sadia Naba
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India
| | - Kailas Doke
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Khursheed Ahmed
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| | - Mujahid Yusufi
- Post-Graduate Department of Chemistry and Research Center, Abeda Inamdar Senior College of Arts, Science and Commerce (Affiliated to SPPU), Pune 411001, India.,Advanced Scientific Research Laboratory, Azam Campus, Pune 411001, India
| |
Collapse
|
34
|
Elsawy MA, Wychowaniec JK, Castillo Díaz LA, Smith AM, Miller AF, Saiani A. Controlling Doxorubicin Release from a Peptide Hydrogel through Fine-Tuning of Drug-Peptide Fiber Interactions. Biomacromolecules 2022; 23:2624-2634. [PMID: 35543610 PMCID: PMC9198986 DOI: 10.1021/acs.biomac.2c00356] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Hydrogels are versatile
materials that have emerged in the last
few decades as promising candidates for a range of applications in
the biomedical field, from tissue engineering and regenerative medicine
to controlled drug delivery. In the drug delivery field, in particular,
they have been the subject of significant interest for the spatially
and temporally controlled delivery of anticancer drugs and therapeutics.
Self-assembling peptide-based hydrogels, in particular, have recently
come to the fore as potential candidate vehicles for the delivery
of a range of drugs. In order to explore how drug–peptide interactions
influence doxorubicin (Dox) release, five β-sheet-forming self-assembling
peptides with different physicochemical properties were used for the
purpose of this study, namely: FEFKFEFK (F8), FKFEFKFK (FK), FEFEFKFE
(FE), FEFKFEFKK (F8K), and KFEFKFEFKK (KF8K) (F: phenylalanine; E:
glutamic acid; K: lysine). First, Dox-loaded hydrogels were characterized
to ensure that the incorporation of the drug did not significantly
affect the hydrogel properties. Subsequently, Dox diffusion out of
the hydrogels was investigated using UV absorbance. The amount of
drug retained in F8/FE composite hydrogels was found to be directly
proportional to the amount of charge carried by the peptide fibers.
When cation−π interactions were used, the position and
number of end-lysine were found to play a key role in the retention
of Dox. In this case, the amount of Dox retained in F8/KF8K composite
hydrogels was linked to the amount of end-lysine introduced, and an
end-lysine/Dox interaction stoichiometry of 3/1 was obtained. For
pure FE and KF8K hydrogels, the maximum amount of Dox retained was
also found to be related to the overall concentration of the hydrogels
and, therefore, to the overall fiber surface area available for interaction
with the drug. For 14 mM hydrogel, ∼170–200 μM
Dox could be retained after 24 h. This set of peptides also showed
a broad range of susceptibilities to enzymatic degradation opening
the prospect of being able to control also the rate of degradation
of these hydrogels. Finally, the Dox released from the hydrogel was
shown to be active and affect 3T3 mouse fibroblasts viability in vitro.
Our study clearly shows the potential of this peptide design as a
platform for the formulation of injectable or sprayable hydrogels
for controlled drug delivery.
Collapse
Affiliation(s)
- Mohamed A Elsawy
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Manchester Institute of Biotechnology, Oxford Road, Manchester M13 9PL, U.K
| | - Jacek K Wychowaniec
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Manchester Institute of Biotechnology, Oxford Road, Manchester M13 9PL, U.K
| | - Luis A Castillo Díaz
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Manchester Institute of Biotechnology, Oxford Road, Manchester M13 9PL, U.K
| | - Andrew M Smith
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Manchester Institute of Biotechnology, Oxford Road, Manchester M13 9PL, U.K
| | - Aline F Miller
- Manchester Institute of Biotechnology, Oxford Road, Manchester M13 9PL, U.K.,Department of Chemical Engineering and Analytical Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Alberto Saiani
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Manchester Institute of Biotechnology, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
35
|
Zheng Z, Xie W, Chen X, Wang F, Huang L, Li X, Lin Q, Wong KC. Subclass-specific Prognosis and Treatment Efficacy Inference in Head and Neck Squamous Carcinoma. IEEE J Biomed Health Inform 2022; 26:4303-4313. [PMID: 35439152 DOI: 10.1109/jbhi.2022.3168289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exploring the prognostic classification and biomarkers in Head and Neck Squamous Carcinoma (HNSC) is of great clinical significance. We hybridized three prominent strategies to comprehensively characterize the molecular features of HNSC. We constructed a 15-gene signature to predict patients death risk with an average AUC of 0.744 for 1-, 3-, and 5-year on TCGA-HNSC training set, and average AUCs of 0.636, 0.584, 0.755 in GSE65858, GSE-112026, CPTAC-HNSCC datasets, respectively. By combined with NMF clustering and consensus clustering of fraction of tumor immune cell infiltration (ICI) in the tumor microenvironment (TME), we captured a more refined biological characteristics of HNSC, and observed a prognosis heterogeneity in high tumor immunity patients. By matching tumor subset-specific expression signatures to drug-induced cell line expression profiles from large-scale pharmacogenomic databases in the OCTAD workspace, we identified a group of HNSC patients featured with poor prognosis and demonstrated that the individuals in this group are likely to receive increased drug sensitivity to reverse differentially expressed disease signature genes. This trend is especially highlighted among those with higher death risk and tumour immunity.
Collapse
|
36
|
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, Ahmadian E, Eftekhari A, Forouhandeh H, Rahbar Saadat Y, Sharifi S, Zununi Vahed S. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36:1156-1181. [PMID: 35129230 DOI: 10.1002/ptr.7389] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Health innovation and acceleration center, Tabriz University of Medical Sciences, Tabriz, Iran.,Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
| | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
37
|
Chen H, Cai X, Cheng J, Wang S. Self-assembling peptides: Molecule-nanostructure-function and application on food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics (Basel) 2022; 11:antibiotics11020135. [PMID: 35203738 PMCID: PMC8868220 DOI: 10.3390/antibiotics11020135] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a natural lipophilic polyphenol that exhibits significant pharmacological effects in vitro and in vivo through various mechanisms of action. Numerous studies have identified and characterised the pharmacokinetic, pharmacodynamic, and clinical properties of curcumin. Curcumin has an anti-inflammatory, antioxidative, antinociceptive, antiparasitic, antimalarial effect, and it is used as a wound-healing agent. However, poor curcumin absorption in the small intestine, fast metabolism, and fast systemic elimination cause poor bioavailability of curcumin in human beings. In order to overcome these problems, a number of curcumin formulations have been developed. The aim of this paper is to provide an overview of recent research in biological and pharmaceutical aspects of curcumin, methods of sample preparation for its isolation (Soxhlet extraction, ultrasound extraction, pressurised fluid extraction, microwave extraction, enzyme-assisted aided extraction), analytical methods (FTIR, NIR, FT-Raman, UV-VIS, NMR, XRD, DSC, TLC, HPLC, HPTLC, LC-MS, UPLC/Q-TOF-MS) for identification and quantification of curcumin in different matrices, and different techniques for developing formulations. The optimal sample preparation and use of an appropriate analytical method will significantly improve the evaluation of formulations and the biological activity of curcumin.
Collapse
|
39
|
Schiattarella C, Diaferia C, Gallo E, Della Ventura B, Morelli G, Vitagliano L, Velotta R, Accardo A. Solid-state optical properties of self-assembling amyloid-like peptides with different charged states at the terminal ends. Sci Rep 2022; 12:759. [PMID: 35031624 PMCID: PMC8760239 DOI: 10.1038/s41598-021-04394-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
The self-assembling of small peptides not only leads to the formation of intriguing nanoarchitectures, but also generates materials with unexpected functional properties. Oligopeptides can form amyloid-like cross-β assemblies that are able to emit intrinsic photoluminescence (PL), over the whole near-UV/visible range, whose origin is still largely debated. As proton transfer between the peptide chain termini within the assembly is one of the invoked interpretations of this phenomenon, we here evaluated the solid state PL properties of a series of self-assembled hexaphenylalanine peptides characterized by a different terminal charge state. Overall, our data indicate that the charge state of these peptides has a marginal role in the PL emission as all systems exhibit very similar multicolour PL associated with a violation of the Kasha’s rule. On the other hand, charged/uncharged ends occasionally produce differences in the quantum yields. The generality of these observations has been proven by extending these analyses to the Aβ16–21 peptide. Collectively, the present findings provide useful information for deciphering the code that links the spectroscopic properties of these assemblies to their structural/electronic features.
Collapse
Affiliation(s)
- Chiara Schiattarella
- Institute of Applied Sciences and Intelligent Systems, CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via Gianturco 113, 80143, Naples, Italy
| | - Bartolomeo Della Ventura
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Via Cintia 26, 80125, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Raffaele Velotta
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Via Cintia 26, 80125, Naples, Italy.
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy.
| |
Collapse
|
40
|
|
41
|
Wang L, Li J, Xiong Y, Wu Y, Yang F, Guo Y, Chen Z, Gao L, Deng W. Ultrashort Peptides and Hyaluronic Acid-Based Injectable Composite Hydrogels for Sustained Drug Release and Chronic Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58329-58339. [PMID: 34860513 DOI: 10.1021/acsami.1c16738] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Peptide hydrogels are widely used for biomedical applications owing to their good biocompatibility and unique advantages in terms of amino acid-based structures and functions. However, the exploration of the peptide/saccharide composite hydrogels as potential biomaterials for chronic diabetic wound healing is still limited. Herein, hyaluronic acid (HA) was incorporated into diphenylalanine (FF) conjugated with different aromatic moieties by a one-pot reaction. Our results showed that the dipeptide derivatives modified by benzene (B), naphthalene (N), and pyrene (P) self-assembled into composite hydrogels with uniform distribution and good mechanical properties in the presence of HA. The obtained N-FF/HA composite hydrogel exhibited greatly improved self-healing properties via injection syringe needle operation and good biocompatibility on human skin fibroblast (HSF) cells. Besides, the structure of thinner nanofibers and honeycomb networks inside the composite hydrogel allowed for a longer sustained release of curcumin, a hydrophobic drug for anti-inflammation and wound healing. The curcumin-loaded N-FF/HA composite hydrogels could promote chronic wound healing in the streptozotocin-induced type I diabetic mouse model. The results suggested that our developed saccharide-peptide hydrogels could serve as very promising synthetic biomaterials for applications in both drug delivery and wound healing in the future.
Collapse
Affiliation(s)
- Ling Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jing Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yue Xiong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Ying Guo
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Zhaolin Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
42
|
Sun Z, Sun X, Chen Z, Du J, Wu Y. Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. Int J Pept Res Ther 2021; 28:19. [PMID: 34903958 PMCID: PMC8653808 DOI: 10.1007/s10989-021-10334-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises from the epithelial lining of the oral cavity, hypopharynx, oropharynx, and larynx. There are several potential risk factors that cause the generation of HNSCC, including cigarette smoking, alcohol consumption, betel quid chewing, inadequate nutrition, poor oral hygiene, HPV and Epstein–Barr virus, and Candida albicans infections. HNSCC has causative links to both environmental factors and genetic mutations, with the latter playing a more critical role in cancer progression. These molecular changes to epithelial cells include the inactivation of cancer suppressor genes and proto-oncogenes overexpression, resulting in tumour cell proliferation and distant metastasis. HNSCC patients have impaired dendritic cell (DC) and natural killer (NK) cell functions, increased production of higher immune-suppressive molecules, loss of regulatory T cells and co-stimulatory molecules and major histocompatibility complex (MHC) class Ι molecules, lower number of lymphocyte subsets, and a poor response to antigen-presenting cells. At present, the standard treatment modalities for HNSCC patients include surgery, chemotherapy and radiotherapy, and combinatorial therapy. Despite advances in the development of novel treatment modalities over the last few decades, survival rates of HNSCC patients have not increased. To establish effective immunotherapies, a greater understanding of interactions between the immune system and HNSCC is required, and there is a particular need to develop novel therapeutic options. A therapeutic cancer vaccine has been proposed as a promising method to improve outcome by inducing a powerful adaptive immune response that leads to cancer cell elimination. Compared with other vaccines, peptide cancer vaccines are more robust and specific. In the past few years, there have been remarkable achievements in peptide-based vaccines for HNSCC patients. Here, we summarize the latest molecular alterations in HNSCC, explore the immune response to HNSCC, and discuss the latest developments in peptide-based cancer vaccine strategies. This review highlights areas for valuable future research focusing on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, Shandong 250000 China
| | - Zhanwei Chen
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Juan Du
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Yihua Wu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| |
Collapse
|
43
|
Das S, Das D. Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Front Chem 2021; 9:770102. [PMID: 34869218 PMCID: PMC8635208 DOI: 10.3389/fchem.2021.770102] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Peptide-based hydrogels have captivated remarkable attention in recent times and serve as an excellent platform for biomedical applications owing to the impressive amalgamation of unique properties such as biocompatibility, biodegradability, easily tunable hydrophilicity/hydrophobicity, modular incorporation of stimuli sensitivity and other functionalities, adjustable mechanical stiffness/rigidity and close mimicry to biological molecules. Putting all these on the same plate offers smart soft materials that can be used for tissue engineering, drug delivery, 3D bioprinting, wound healing to name a few. A plethora of work has been accomplished and a significant progress has been realized using these peptide-based platforms. However, designing hydrogelators with the desired functionalities and their self-assembled nanostructures is still highly serendipitous in nature and thus a roadmap providing guidelines toward designing and preparing these soft-materials and applying them for a desired goal is a pressing need of the hour. This review aims to provide a concise outline for that purpose and the design principles of peptide-based hydrogels along with their potential for biomedical applications are discussed with the help of selected recent reports.
Collapse
Affiliation(s)
- Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
44
|
Diaferia C, Schiattarella C, Gallo E, Della Ventura B, Morelli G, Velotta R, Vitagliano L, Accardo A. Fluorescence Emission of Self-assembling Amyloid-like Peptides: Solution versus Solid State. Chemphyschem 2021; 22:2215-2221. [PMID: 34496136 PMCID: PMC8597038 DOI: 10.1002/cphc.202100570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Indexed: 01/15/2023]
Abstract
Analysis of the intrinsic UV-visible fluorescence exhibited by self-assembling amyloid-like peptides in solution and in solid the state highlights that their physical state has a profound impact on the optical properties. In the solid state, a linear dependence of the fluorescence emission peaks as a function of excitation wavelength is detected. On the contrary, an excitation-independent emission is observed in solution. The present findings constitute a valuable benchmark for current and future explanations of the fluorescence emission by amyloids.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy andResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Chiara Schiattarella
- Institute of Applied Sciences and Intelligent Systems, CNRVia P. Castellino 111Naples80131Italy
| | | | - Bartolomeo Della Ventura
- Department of Physics “Ettore Pancini”University of Naples “Federico II”Via Cintia 26Naples80125Italy
| | - Giancarlo Morelli
- Department of Pharmacy andResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Raffaele Velotta
- Department of Physics “Ettore Pancini”University of Naples “Federico II”Via Cintia 26Naples80125Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNRVia Mezzocannone 1680134NaplesItaly
| | - Antonella Accardo
- Department of Pharmacy andResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
45
|
Lopez-Silva TL, Schneider JP. From structure to application: Progress and opportunities in peptide materials development. Curr Opin Chem Biol 2021; 64:131-144. [PMID: 34329941 PMCID: PMC8585687 DOI: 10.1016/j.cbpa.2021.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 01/12/2023]
Abstract
For over 20 years, peptide materials in their hydrogel or soluble fibril form have been used for biomedical applications such as drug delivery, cell culture, vaccines, and tissue regeneration. To facilitate the translation of these materials, key areas of research still need to be addressed. Their structural characterization lags compared to amyloid proteins. Many of the structural features designed to guide materials formation are primarily being characterized by their observation in atomic resolution structures of amyloid assemblies. Herein, these motifs are examined in relation to peptide designs identifying common interactions that drive assembly and provide structural specificity. Current efforts to design complex structures, as reviewed here, highlight the need to extend the structural revolution of amyloid proteins to peptide assemblies to validate design principles. With respect to clinical applications, the fundamental interactions and responses of proteins, cells, and the immune system to peptide materials are still not well understood. Only a few trends are just now emerging for peptide materials interactions with biological systems. Understanding how peptide material properties influence these interactions will enable the translation of materials towards current and emerging applications.
Collapse
Affiliation(s)
- Tania L Lopez-Silva
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States.
| |
Collapse
|
46
|
Omidi S, Rafiee Z, Kakanejadifard A. Design and synthesis of curcumin nanostructures: Evaluation of solubility, stability, antibacterial and antioxidant activities. Bioorg Chem 2021; 116:105308. [PMID: 34509044 DOI: 10.1016/j.bioorg.2021.105308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
By coupling a quaternary pyridinium compound and curcumin (CM), a new antimicrobial agent called CP was obtained. The poor water-solubility was the most important limiting factor in the use of CM and CP. To address this problem, a hydrophilic hyperbranched polyglycerol (PG) was synthesized and reacted with CM and CP via Schiff base reaction to form two new macromolecules. Due to the presence of polymer, the solubility and stability of CM and CP increased significantly in aqueous media. Since the new macromolecules were including the hydrophilic polymeric and curcumin hydrophobic units, they self-assembled into spherical nanostructures, which were characterized by Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) images. The synthetic nanostructures exhibited a controlled release of curcumin unit in the acidic environment. In vitro experiments showed that the new macromolecules are potent antibacterial and antioxidant agents.
Collapse
Affiliation(s)
- Sakineh Omidi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran.
| | - Zeinab Rafiee
- Department of Chemistry, Malayer University, Malayer, Iran
| | - Ali Kakanejadifard
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
47
|
Adeola HA, Bano A, Vats R, Vashishtha A, Verma D, Kaushik D, Mittal V, Rahman MH, Najda A, Albadrani GM, Sayed AA, Farouk SM, Hassanein EHM, Akhtar MF, Saleem A, Abdel-Daim MM, Bhardwaj R. Bioactive compounds and their libraries: An insight into prospective phytotherapeutics approach for oral mucocutaneous cancers. Biomed Pharmacother 2021; 141:111809. [PMID: 34144454 DOI: 10.1016/j.biopha.2021.111809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Oral mucocutaneous cancers (OMCs) are cancers that affect both the oral mucosa and perioral cutaneous structures. Common OMCs are squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and malignant melanoma (MM). Anatomical similarities and conventions which categorizes these lesions blur the magnitude of OMCs in diverse populations. The burden of OMC is high in the sub-Saharan Africa and Indian subcontinents, and the cost of management is prohibitive in the resource-limited, developing world. Hence, there is a pressing demand for the use of cost-effective in silico approaches to identify diagnostic tools and treatment targets for diseases with high burdens in these regions. Due to their ubiquitousness and accessibility, the use of therapeutic efficacy of plant bioactive compounds in the management of OMC is both appropriate and plausible. Furthermore, screening known mechanistic disease targets with well annotated plant bioactive compound libraries is poised to improve the routine management of OMCs provided that the requisite access to database resources are available and accessible. Using natural products minimizes the side effects and morbidities associated with conventional therapies. The development of innovative treatments approaches would tremendously benefit the African and Indian populace and reduce the mortalities associated with OMCs in the developing world. Hence, we discuss herein, the potential benefits, opportunities and challenges of using bioactive compound libraries in the management of OMCs.
Collapse
Affiliation(s)
- Henry A Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa; Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Amit Vashishtha
- Deptartment Of Botany, Sri Venkateswara college, University of Delhi, India.
| | | | - Deepak Kaushik
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, 124001, India.
| | - Vineet Mittal
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, 124001, India.
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences in Lublin 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Sameh M Farouk
- Cytology and Histology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan.
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
48
|
Karavasili C, Fatouros DG. Self-assembling peptides as vectors for local drug delivery and tissue engineering applications. Adv Drug Deliv Rev 2021; 174:387-405. [PMID: 33965460 DOI: 10.1016/j.addr.2021.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular self-assembly has forged a new era in the development of advanced biomaterials for local drug delivery and tissue engineering applications. Given their innate biocompatibility and biodegradability, self-assembling peptides (SAPs) have come in the spotlight of such applications. Short and water-soluble SAP biomaterials associated with enhanced pharmacokinetic (PK) and pharmacodynamic (PD) responses after the topical administration of the therapeutic systems, or improved regenerative potential in tissue engineering applications will be the focus of the current review. SAPs are capable of generating supramolecular structures using a boundless array of building blocks, while peptide engineering is an approach commonly pursued to encompass the desired traits to the end composite biomaterials. These two elements combined, expand the spectrum of SAPs multi-functionality, constituting them potent biomaterials for use in various biomedical applications.
Collapse
|
49
|
Tan B, Wu Y, Wu Y, Shi K, Han R, Li Y, Qian Z, Liao J. Curcumin-Microsphere/IR820 Hybrid Bifunctional Hydrogels for In Situ Osteosarcoma Chemo- co-Thermal Therapy and Bone Reconstruction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31542-31553. [PMID: 34191477 DOI: 10.1021/acsami.1c08775] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conventional biomaterial-mediated osteosarcoma therapy mainly focuses on its antitumor effect yet often fails to overcome the problem of post-treatment bone tissue defect repair. Simultaneously, minimally invasive drug delivery methods are becoming spotlights for normal tissue preservation. Herein, an injectable curcumin-microsphere/IR820 coloaded hybrid methylcellulose hydrogel (Cur-MP/IR820 gel) platform was designed for osteosarcoma therapy and bone regeneration. In vitro, the K7M2wt osteosarcoma cells were eradicated by hyperthermia and curcumin. Later, the sustained release of curcumin promoted alkaline phosphatase expression and calcium deposition of bone mesenchymal stem cells. In vivo, this hybrid hydrogel could reach tumor site via injection and turned into hydrogel due to heat sensitivity. Under the irradiation of an 808 nm laser, localized hyperthermia (∼51 °C) generated in 5 min to ablate the tumor. Meanwhile, the thermal-accelerated curcumin release and thermal-increased cell membrane permeability led to tumor cell apoptosis. Tumors in photothermal-co-chemotherapy group were successfully restrained from day 2 after treatment. After that, bone reconstruction was promoted because of sustained released curcumin. The chemo-co-thermal efficacy and osteogenic capacity of Cur-MP/IR820 hydrogel suggest a promising approach to the treatment of osteosarcoma and provide provoking inspiration for treating bone tumors and repairing bone tissue.
Collapse
Affiliation(s)
- Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan P. R. China
| | - Yiling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan P. R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
50
|
Khezri K, Saeedi M, Mohammadamini H, Zakaryaei AS. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res 2021; 35:5527-5563. [PMID: 34131980 DOI: 10.1002/ptr.7190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its use in clinical trials is very limited. The poor biopharmaceutical properties of Cur such as short half-life in plasma, low bioavailability, poor absorption, rapid metabolism, very low solubility (at acidic and physiological pH), and the chemical instability in body fluids are major concerns associated with the clinical applications of Cur. Recently, nanoformulations are emerging as approaches to develop and improve the therapeutic efficacy of various drugs. Many studies have shown that Cur nanoformulations have tremendous therapeutic potential against various diseases such as SARS-CoV-2, cancer, inflammatory, osteoporosis, and so on. These nanoformulations can inhibit many diseases through several cellular and molecular mechanisms. However, successful long-term clinical results are required to confirm their safety and clinical efficacy. The present review aims to update and explain the therapeutic potential of Cur nanoformulations.
Collapse
Affiliation(s)
- Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|