1
|
Fan Y, Bai H, Liu T, Wang R, Wang Z. The role of galactose and chitosan in novel targeted nanoemulsion delivery carriers: Synthesis, in vitro stability, and anti-Hepa 1-6 cell activity. Carbohydr Polym 2025; 358:123515. [PMID: 40383575 DOI: 10.1016/j.carbpol.2025.123515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 05/20/2025]
Abstract
This study developed water-in-oil-in-water (W/O/W) nanoemulsions (NEs) modified with galactose (GAL) and chitosan (CTS) to encapsulate α-linolenic acid (ALA) for targeted delivery. The evaluation of physicochemical properties, stability, release characteristics, and in vitro targeting explored the effect of adding GAL to the external aqueous phase, as well as the interaction between GAL and CTS, on the targeted delivery performance of the NEs. The CTS and GAL maintained NE structural stability and thermal resistance through electrostatic interactions, preserving a stable encapsulation rate. The CTS in the external aqueous phase facilitated a three-dimensional network, maintaining flow stability. The in vitro digestion showed <22 % ALA release in gastric fluid and <45 % in intestinal fluid within 2 h. Additionally, in vitro cell experiments showed that NEs increased lipid oxidation, decreased superoxide dismutase activity, and increased lactate dehydrogenase release. The NEs with GAL added to the external aqueous phase demonstrated high uptake in Hepa 1-6 cells, indicating effective liver targeting. Thus, NEs with GAL and CTS could serve as carriers for active compounds, offering a novel strategy for targeted nutrient delivery in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yaqing Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huasong Bai
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, China
| | - Tong Liu
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, China
| | - Ruixue Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Qi M, Zhang K, Zhang X, Zhu Y, Cai B, Wang C, Zhao G, Zhang D, Zhang J. Arginine tagged liposomal carrier for the delivery of celastrol for ferroptosis-induced hepatocellular carcinoma therapy. Colloids Surf B Biointerfaces 2025; 250:114546. [PMID: 39919344 DOI: 10.1016/j.colsurfb.2025.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Hepatocellular carcinoma (HCC) is a predominant malignant liver tumor that cannot be efficiently treated because of poor response, toxicity, and drug resistance. Ferroptosis is an iron-dependent way of cell death associated with abnormal intracellular lipid metabolism. Celastrol (Cel) has the ability to inhibit the progression of HCC by regulating multiple signaling pathways and induce ferroptosis. However, Cel exists the limitations of low water solubility, low oral bioavailability, and high organ toxicity. Cel was encapsulated in polyethylene glycol-based liposomes modified with L-arginine (Cel@Lip-Arg). Cel@Lip-Arg has a uniform size distribution (∼100 nm), high drug loading (80 %), and excellent ability to target liver cancer cells. In vitro experiments demonstrated that Cel@Lip-Arg considerably suppressed the activity of HuH7 (hepatoma) cells but had a negligible effect on L02 (normal) cells. Cel@Lip-Arg induced ferroptosis in hepatoma cells by promoting transferrin receptor expression, inhibiting system xc- and glutathione peroxidase 4, and favoring intracellular peroxide accumulation. In vivo experiments revealed that Cel@Lip-Arg plays a therapeutic role by inducing ferroptosis. Compared to Cel, Cel@Lip-Arg had a higher anti-hepatoma activity and effectively reduced the toxicity of Cel in mice. Cel@Lip-Arg-induced ferroptosis was concluded to be an attractive strategy for the precise treatment of HCC.
Collapse
Affiliation(s)
- Manman Qi
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Kai Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Xue Zhang
- School of Basic Medicine, Ningxia Medical University, Ningxia 750004, PR China
| | - Yuzhao Zhu
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai 200233, PR China
| | - Banglan Cai
- School of Basic Medicine, Ningxia Medical University, Ningxia 750004, PR China
| | - Chao Wang
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai 200233, PR China
| | - Gang Zhao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Denghai Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Jian Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China; Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai 200233, PR China.
| |
Collapse
|
3
|
Tang J, Yang Y, He Z, Wang C, Gao Z, Meng Y, Chen X, Wang Q, Zheng G, Hu J, Chang C. Construction of dual-targeted liposomes loaded with celastrol and their application in treating intrahepatic cholangiocarcinoma. Mater Today Bio 2025; 31:101581. [PMID: 40124341 PMCID: PMC11929942 DOI: 10.1016/j.mtbio.2025.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a rare malignant tumor with limited treatment options. Celastrol (Cela) shows potential treatment for ICC, but its clinical use is hindered by poor water solubility and toxic side effects. To address these challenges and enhance its anti-tumor efficacy, we developed hyaluronic acid (HA)-coated triphenylphosphine complex-modified liposomes (HCTL) for accurate delivery of Cela to tumor cell mitochondria.HCTL enhances Cela's water solubility and demonstrates a high rate of encapsulation, stability, and sustained drug release behavior. Moreover, HCTL exhibits outstanding anti-ICC efficacy by efficiently inducing apoptosis in ICC cells via the mitochondrial pathway due to its precise targeting capabilities. In an in-situ ICC mouse model activated by hydrodynamic transfection of AKT and Yap, HCTL downregulates tumor-associated proliferative indices, attenuates the severity of liver injury and modulates the tumor microenvironment. Importantly, HCTL overcomes systemic toxicity associated with Cela. To sum up, HCTL is a potentially effective drug delivery system for ICC treatment.
Collapse
Affiliation(s)
- Jun Tang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yimeng Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zihan He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chuting Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ziwei Gao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinyan Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Guohua Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
| |
Collapse
|
4
|
Sahu C, Sahu RK, Roy A. A Review on Nanotechnologically Derived Phytomedicines for the Treatment of Hepatocellular Carcinoma: Recent Advances in Molecular Mechanism and Drug Targeting. Curr Drug Targets 2025; 26:167-187. [PMID: 39385414 DOI: 10.2174/0113894501312571240920070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.
Collapse
Affiliation(s)
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Amit Roy
- Chhatrapati Shivaji Institute of Pharmacy, Bhilai, Chhattisgarh-491001, India
| |
Collapse
|
5
|
Zhang W, Li J, Yue L, Ji C. Targeted Delivery of Celastrol by GA-Modified Liposomal Calcium Carbonate Nanoparticles to Enhance Antitumor Efficacy Against Breast Cancer. Pharmaceutics 2024; 16:1382. [PMID: 39598506 PMCID: PMC11597737 DOI: 10.3390/pharmaceutics16111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Breast cancer, a leading health threat affecting millions worldwide, requires effective therapeutic interventions. Celastrol (CEL), despite its antitumor potential, is limited by poor solubility and stability. This study aimed to enhance CEL's efficacy by encapsulating it within glycyrrhizic acid (GA)-modified lipid calcium carbonate (LCC) nanoparticles for targeted breast cancer therapy. METHODS The 4T1 mouse breast cancer cells were used for the study. GA-LCC-CEL nanoparticles were prepared using a gas diffusion method and a thin-film dispersion method. GA-LCC-CEL were characterized using the zeta-potential, dynamic light scattering and transmission electron microscope (TEM). The in vitro release behavior of nanoparticles was assessed using the in vitro dialysis diffusion method. Cellular uptake was examined using flow cytometry and confocal microscopy. Intracellular ROS and Rhodamine 123 levels were observed under fluorescence microscopy. MTT and colony formation assays assessed cytotoxicity and proliferation, and apoptosis was analyzed by Annexin V-FITC/PI staining. Wound healing and transwell assays evaluated migration, and Western blotting confirmed protein expression changes related to apoptosis and migration. RESULTS GA-LCC-CEL nanoparticles displayed a well-defined core-shell structure with a uniform size distribution. They showed enhanced anti-proliferative and pro-apoptotic effects against 4T1 cells and significantly reduced breast cancer cell invasion and migration. Additionally, GA-LCC-CEL modulated epithelial-mesenchymal transition (EMT) protein expression, downregulating Snail and ZEB1, and upregulating E-cadherin. CONCLUSIONS GA-LCC-CEL nanoparticles represent a promising targeted drug delivery approach for breast cancer, enhancing CEL's antitumor efficacy and potentially inhibiting cancer progression by modulating EMT-related proteins.
Collapse
Affiliation(s)
- Wei Zhang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150028, China;
| | - Jiping Li
- School of Public Health, Qiqihar Medical University, Qiqihar 161006, China;
| | - Liling Yue
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China;
| | - Chenfeng Ji
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150028, China;
| |
Collapse
|
6
|
He Z, Yang Z, Hu M, Wang K, Qiu Z, Wang Q, Chen X, Chang C, Hu J, Meng Y. The β-glucan nanotube carrier achieves detoxification and efficacy enhancement of celastrol in intrahepatic cholangiocarcinoma therapy by increasing targeted controlled release and macrophage polarization. Int J Biol Macromol 2024; 280:135848. [PMID: 39326626 DOI: 10.1016/j.ijbiomac.2024.135848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Celastrol (Cel) is a monomer from a famous traditional Chinese medicine named Tripterygium wilfordii Hook. f. Cel has shown great potential in treating intrahepatic cholangiocarcinoma (ICC) but still faces problems, including poor water solubility, high toxicity, and lack of targeting ability. Thus, the present work constructed a drug-delivery system using black fungus polysaccharide self-assembled -nanotubes (BFP). Cel-loaded nanotubes (BFP-Cel) were confirmed to have a high loading content of Cel (38 %), liver targeting, and enzyme-controlled release abilities. Moreover, BFP carriers could significantly increase the uptake efficiency of Cel by tumor cells. In vivo experiments showed that BFP-Cel could effectively inhibit tumor growth and reduce the physiological toxicity of Cel. Furthermore, BFP, as a carrier, could regulate the immune microenvironment in the liver through the activation of macrophages and play an immunomodulatory role. In summary, the BFP nanotube carrier could achieve detoxification and efficacy enhancement of Cel in treating ICC by increasing the targetability, controlled release ability, cell-uptake effect, and regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Zihan He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Traditional Chinese Medicine Department, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Zhangwei Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Mingjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kexing Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyan Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China.
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
7
|
Huang S, Xiao S, Li X, Tao R, Yang Z, Gao Z, Hu J, Meng Y, Zheng G, Chen X. Development of Dual-Targeted Mixed Micelles Loaded with Celastrol and Evaluation on Triple-Negative Breast Cancer Therapy. Pharmaceutics 2024; 16:1174. [PMID: 39339211 PMCID: PMC11435154 DOI: 10.3390/pharmaceutics16091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Considering that the precise delivery of Celastrol (Cst) into mitochondria to induce mitochondrial dysfunction may be a potential approach to improve the therapeutic outcomes of Cst on TNBC, a novel tumor mitochondria dual-targeted mixed-micelle nano-system was fabricated via self-synthesized triphenylphosphonium-modified cholesterol (TPP-Chol) and hyaluronic acid (HA)-modified cholesterol (HA-Chol). The Cst-loaded mixed micelles (Cst@HA/TPP-M) exhibited the characteristics of a small particle size, negative surface potential, high drug loading of up to 22.8%, and sustained drug release behavior. Compared to Cst-loaded micelles assembled only by TPP-Chol (Cst@TPP-M), Cst@HA/TPP-M decreased the hemolysis rate and upgraded the in vivo stability and safety. In addition, a series of cell experiments using the triple-negative breast cancer cell line MDA-MB-231 as a cell model proved that Cst@HA/TPP-M effectively increased the cellular uptake of the drug through CD44-receptors-mediated endocytosis, and the uptake amount was three times that of the free Cst group. The confocal results demonstrated successful endo-lysosomal escape and effective mitochondrial transport triggered by the charge converse of Cst@HA/TPP-M after HA degradation in endo-lysosomes. Compared to the free Cst group, Cst@HA/TPP-M significantly elevated the ROS levels, reduced the mitochondrial membrane potential, and promoted tumor cell apoptosis, showing a better induction effect on mitochondrial dysfunction. In vivo imaging and antitumor experiments based on MDA-MB-231-tumor-bearing nude mice showed that Cst@HA/TPP-M facilitated drug enrichment at the tumor site, attenuated drug systemic distribution, and polished up the antitumor efficacy of Cst compared with free Cst. In general, as a target drug delivery system, mixed micelles co-constructed by TPP-Chol and HA-Chol might provide a promising strategy to ameliorate the therapeutic outcomes of Cst on TNBC.
Collapse
Affiliation(s)
- Siying Huang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Simeng Xiao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Xuehao Li
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Ranran Tao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Zhangwei Yang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Ziwei Gao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Junjie Hu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Yan Meng
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Guohua Zheng
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Xinyan Chen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| |
Collapse
|
8
|
Wang B, Shen J, Zhou C, Wang X, Wang S, Hou R. Enhanced Pharmacokinetics of Celastrol via Long-Circulating Liposomal Delivery for Intravenous Administration. Int J Nanomedicine 2024; 19:5707-5718. [PMID: 38882540 PMCID: PMC11179669 DOI: 10.2147/ijn.s461624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024] Open
Abstract
Background Rheumatoid Arthritis (RA) involves prolonged inflammation of the synovium, damaging joints and causing stiffness and deformity. Celastrol (Cel), derived from the Chinese herbal medicine Tripterygium wilfordii Hook F, offers immunosuppressive effects for RA treatment but is limited by poor solubility and bioavailability. Purpose In this study, long-circulating Cel-loaded liposomes (Cel-LPs) were used to increase the pharmacokinetics of Cel, thereby improving drug delivery and efficacy for the treatment of RA. Methods Cel-LPs were prepared and administered orally and intravenously to compare the elimination half-life of drugs and bioavailability of Cel. Cel-LPs were prepared using the lipid thin-layer-hydration-extrusion method. Human rheumatoid arthritis synovial (MH7A) cells were used to investigate the compatibility of Cel-LPs. The pharmacokinetic studies were performed on male Sprague-Dawley (SD) rats. Results The Cel-LPs had an average size of 72.20 ± 27.99 nm, a PDI of 0.267, a zeta potential of -31.60 ± 6.81 mV, 78.77 ± 5.69% drug entrapment efficiency and sustained release (5.83 ± 0.42% drug loading). The cytotoxicity test showed that liposomes had excellent biocompatibility and the fluorescence microscope diagram indicated that liposome entrapment increased intracellular accumulation of Rhodamine B by MH7A cells. Furthermore, the results exhibited that Cel-LPs improved the pharmacokinetics of Cel by increasing the elimination half-life (t1/2) to 11.71 hr, mean residence time (MRT(0-∞)) to 7.98 hr and apparent volume of distribution (Vz/F) to 44.63 L/kg in rats, compared to the Cel solution. Conclusion In this study, liposomes were demonstrated to be effective in optimizing the delivery of Cel, enabling the formulation of Cel-LPs with prolonged blood circulation and sustained release characteristics. This formulation enhanced the intravenous solubility and bioavailability of Cel, developing a foundation for its clinical application in RA and providing insights on poorly soluble drug management.
Collapse
Affiliation(s)
- Bo Wang
- Department of Orthopaedics, Suzhou Ruihua Orthopedic Hospital Affiliated Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China
- Department of Orthopaedics, the Sixth Affiliated Hospital of Wenzhou Medical University, the People's Hospital of Lishui, Lishui, Zhejiang, 323000, People's Republic of China
| | - Jiquan Shen
- Department of Orthopaedics, the Sixth Affiliated Hospital of Wenzhou Medical University, the People's Hospital of Lishui, Lishui, Zhejiang, 323000, People's Republic of China
| | - Changjian Zhou
- Department of Orthopaedics, the Sixth Affiliated Hospital of Wenzhou Medical University, the People's Hospital of Lishui, Lishui, Zhejiang, 323000, People's Republic of China
| | - Xinggao Wang
- Department of Orthopaedics, the Sixth Affiliated Hospital of Wenzhou Medical University, the People's Hospital of Lishui, Lishui, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, the People's Hospital of Lishui, Lishui, Zhejiang, 323000, People's Republic of China
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Ruihua Orthopedic Hospital Affiliated Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China
| |
Collapse
|
9
|
Mohan CD, Shanmugam MK, Gowda SGS, Chinnathambi A, Rangappa KS, Sethi G. c-MET pathway in human malignancies and its targeting by natural compounds for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155379. [PMID: 38503157 DOI: 10.1016/j.phymed.2024.155379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND c-MET is a receptor tyrosine kinase which is classically activated by HGF to activate its downstream signaling cascades such as MAPK, PI3K/Akt/mTOR, and STAT3. The c-MET modulates cell proliferation, epithelial-mesenchymal transition (EMT), immune response, morphogenesis, apoptosis, and angiogenesis. The c-MET has been shown to serve a prominent role in embryogenesis and early development. The c-MET pathway is deregulated in a broad range of malignancies, due to overexpression of ligands or receptors, genomic amplification, and MET mutations. The link between the deregulation of c-MET signaling and tumor progression has been well-documented. Overexpression or overactivation of c-MET is associated with dismal clinical outcomes and acquired resistance to targeted therapies. Since c-MET activation results in the triggering of oncogenic pathways, abrogating the c-MET pathway is considered to be a pivotal strategy in cancer therapeutics. Herein, an analysis of role of the c-MET pathway in human cancers and its relevance in bone metastasis and therapeutic resistance has been undertaken. Also, an attempt has been made to summarize the inhibitory activity of selected natural compounds towards c-MET signaling in cancers. METHODS The publications related to c-MET pathway in malignancies and its natural compound modulators were obtained from databases such as PubMed, Scopus, and Google Scholar and summarized based on PRISMA guidelines. Some of the keywords used for extracting relevant literature are c-MET, natural compound inhibitors of c-MET, c-MET in liver cancer, c-MET in breast cancer, c-MET in lung cancer, c-MET in pancreatic cancer, c-MET in head and neck cancer, c-MET in bone metastasis, c-MET in therapeutic resistance, and combination of c-MET inhibitors and chemotherapeutic agents. The chemical structure of natural compounds was verified in PubChem database. RESULTS The search yielded 3935 publications, of which 195 reference publications were used for our analysis. Clinical trials were referenced using ClinicalTrials.gov identifier. The c-MET pathway has been recognized as a prominent target to combat the growth, metastasis, and chemotherapeutic resistance in cancers. The key role of the c-MET in bone metastasis as well as therapeutic resistance has been elaborated. Also, suppressive effect of selected natural compounds on the c-MET pathway in clinical/preclinical studies has been discussed.
Collapse
Affiliation(s)
- Chakrabhavi Dhananjaya Mohan
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226 001, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kanchugarakoppal S Rangappa
- Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
10
|
Niu Y, Gao T, Ouyang H, Zhang Y, Gong T, Zhang Z, Cao X, Fu Y. Chondroitin Sulfate-Derived Micelles for Adipose Tissue-Targeted Delivery of Celastrol and Phenformin to Enhance Obesity Treatment. ACS APPLIED BIO MATERIALS 2024; 7:1271-1289. [PMID: 38315869 DOI: 10.1021/acsabm.3c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Adipose tissue macrophages (ATMs) are crucial in maintaining a low-grade inflammatory microenvironment in adipose tissues (ATs). Modulating ATM polarization to attenuate inflammation represents a potential strategy for treating obesity with insulin resistance. This study develops a combination therapy of celastrol (CLT) and phenformin (PHE) using chondroitin sulfate-derived micelles. Specifically, CLT-loaded 4-aminophenylboronic acid pinacol ester-modified chondroitin sulfate micelle (CS-PBE/CLT) and chondroitin sulfate-phenformin conjugate micelles (CS-PHE) were synthesized, which were shown to actively target ATs through CD44-mediated pathways. Furthermore, the dual micellar systems significantly reduced inflammation and lipid accumulation via protein quantification and Oil Red O staining. In preliminary in vivo studies, we performed H&E staining, immunohistochemical staining, insulin tolerance test, and glucose tolerance test, and the results showed that the combination therapy using CS-PBE/CLT and CS-PHE micelles significantly reduced the average body weight, white adipose tissue mass, and liver mass of high-fat diet-fed mice while improving their systemic glucose homeostasis. Overall, this combination therapy presents a promising alternative to current treatment options for diet-induced obesity.
Collapse
Affiliation(s)
- Yining Niu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tingting Gao
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administrate of Traditional Chinese Medicine, Hefei 230032, China
| | - Hongling Ouyang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunxiao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xi Cao
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administrate of Traditional Chinese Medicine, Hefei 230032, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Sun Y, Wang C, Li X, Lu J, Wang M. Recent advances in drug delivery of celastrol for enhancing efficiency and reducing the toxicity. Front Pharmacol 2024; 15:1137289. [PMID: 38434700 PMCID: PMC10904542 DOI: 10.3389/fphar.2024.1137289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Celastrol is a quinone methyl triterpenoid monomeric ingredient extracted from the root of Tripterygium wilfordii. Celastrol shows potential pharmacological activities in various diseases, which include inflammatory, obesity, cancer, and bacterial diseases. However, the application prospect of celastrol is largely limited by its low bioavailability, poor water solubility, and undesired off-target cytotoxicity. To address these problems, a number of drug delivery methods and technologies have been reported to enhance the efficiency and reduce the toxicity of celastrol. We classified the current drug delivery technologies into two parts. The direct chemical modification includes nucleic acid aptamer-celastrol conjugate, nucleic acid aptamer-dendrimer-celastrol conjugate, and glucolipid-celastrol conjugate. The indirect modification includes dendrimers, polymers, albumins, and vesicular carriers. The current technologies can covalently bond or encapsulate celastrol, which improves its selectivity. Here, we present a review that focalizes the recent advances of drug delivery strategies in enhancing the efficiency and reducing the toxicity of celastrol.
Collapse
Affiliation(s)
- Yuan Sun
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chengen Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Xiaoguang Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Jun Lu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| |
Collapse
|
12
|
Zhao Z, Pei X, Li Q, Zhang H, Wang Y, Qin J, He Y. Pectin-based double network hydrogels as local depots of celastrol for enhanced antitumor therapy. Int J Biol Macromol 2024; 256:128442. [PMID: 38035968 DOI: 10.1016/j.ijbiomac.2023.128442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
In this study, A double-network (DN) hydrogel composed of a physical glycyrrhizic acid (GA) network and a chemically crosslinked pectin-based network was fabricated as a local depot of celastrol (CEL) for cancer treatment. The obtained DN hydrogel possessed excellent mechanical performance, flexibility, biocompatibility, biodegradability and self-healing property. Furthermore, the release profile of CEL loaded DN hydrogel maintained a controlled and sustained release of CEL for a prolonged period. Finally, in vivo animal experiments demonstrated that the DN hydrogel could significantly enhance the therapeutic efficiency of CEL in CT-26 tumor-bearing mice upon intratumoral injection while effectively alleviate the toxicity of the CEL. In summary, this injectable pectin-based double network hydrogels are ideal delivery vehicle for tumor therapy.
Collapse
Affiliation(s)
- Zihao Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Xiaocui Pei
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Qiushuai Li
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Yingna He
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei Province 050200, China.
| |
Collapse
|
13
|
Xiao S, Huang S, Yang X, Lei Y, Chang M, Hu J, Meng Y, Zheng G, Chen X. The development and evaluation of hyaluronic acid coated mitochondrial targeting liposomes for celastrol delivery. Drug Deliv 2023; 30:2162156. [PMID: 36600637 PMCID: PMC9828745 DOI: 10.1080/10717544.2022.2162156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In order to precisely deliver celastrol into mitochondria of tumor cells, improve antitumor efficacy of celastrol and overcome its troublesome problems in clinical application, a novel multistage-targeted celastrol delivery system (C-TL/HA) was developed via electrostatic binding of hyaluronic acid (HA) to celastrol-loaded cationic liposomes composed of natural soybean phosphatidylcholine and cholesterol modified with mitochondrial targeting molecular TPP. Study results in this article showed that C-TL/HA successfully transported celastrol into mitochondria, effectively activated apoptosis of mitochondrial pathway, exerted higher tumor inhibition efficiency and lower toxic side effects compared with free celastrol. More importantly, HA coating not only enabled this delivery system to have good stability and safety in vivo, but also increased drug uptake and facilitated tumor targeting through recognizing CD44 receptors rich on the surface of tumor cells. Conclusively, this HA-coated mitochondrial targeting liposomes may provide a prospect for the clinical application of celastrol in tumor therapy.
Collapse
Affiliation(s)
- Simeng Xiao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Siying Huang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaojing Yang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Yujie Lei
- Pharmacy Department, Wuxue No.1 People’s Hospital, Wuxue, China
| | - Mingxiang Chang
- Laboratory of Cell and Molecular Biology, Hubei Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Junjie Hu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Meng
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China,CONTACT Xinyan Chen Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan430065, China; Guohua Zheng Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan430065, China
| | - Xinyan Chen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China,CONTACT Xinyan Chen Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan430065, China; Guohua Zheng Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan430065, China
| |
Collapse
|
14
|
Escutia-Gutiérrez R, Sandoval-Rodríguez A, Zamudio-Ojeda A, Guevara-Martínez SJ, Armendáriz-Borunda J. Advances of Nanotechnology in the Diagnosis and Treatment of Hepatocellular Carcinoma. J Clin Med 2023; 12:6867. [PMID: 37959332 PMCID: PMC10647688 DOI: 10.3390/jcm12216867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Nanotechnology has emerged as a promising technology in the field of hepatocellular carcinoma (HCC), specifically in the implementation of diagnosis and treatment strategies. Nanotechnology-based approaches, such as nanoparticle-based contrast agents and nanoscale imaging techniques, have shown great potential for enhancing the sensitivity and specificity of HCC detection. These approaches provide high-resolution imaging and allow for the detection of molecular markers and alterations in cellular morphology associated with HCC. In terms of treatment, nanotechnology has revolutionized HCC therapy by enabling targeted drug delivery, enhancing therapeutic efficacy, and minimizing off-target effects. Nanoparticle-based drug carriers can be functionalized with ligands specific to HCC cells, allowing for selective accumulation of therapeutic agents at the tumor site. Furthermore, nanotechnology can facilitate combination therapy by co-encapsulating multiple drugs within a single nanoparticle, allowing for synergistic effects and overcoming drug resistance. This review aims to provide an overview of recent advances in nanotechnology-based approaches for the diagnosis and treatment of HCC. Further research is needed to optimize the design and functionality of nanoparticles, improve their biocompatibility and stability, and evaluate their long-term safety and efficacy. Nonetheless, the integration of nanotechnology in HCC management holds great promise and may lead to improved patient outcomes in the future.
Collapse
Affiliation(s)
- Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
| | - Adalberto Zamudio-Ojeda
- Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Santiago José Guevara-Martínez
- Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Juan Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45201, Mexico
| |
Collapse
|
15
|
Zheng H, Zhao C, Lu Y, Cao J, Zeng F, Wang H, Qin Z, Tao T. Celastrol-encapsulated microspheres prepared by microfluidic electrospray for alleviating inflammatory pain. BIOMATERIALS ADVANCES 2023; 149:213398. [PMID: 36990025 DOI: 10.1016/j.bioadv.2023.213398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Inflammatory pain is induced by trauma, infection, chemical stimulation, etc. It causes severe physical and psychological agony to patients. Celastrol has powerful anti-inflammatory property and has achieved good results in various inflammation-related diseases. However, the low water solubility and multi-system toxicity limit its clinical application. Herein, we proposed alginate microspheres with core-shell structure which encapsulated celastrol by microfluidic electrospray to effectively overcome the shortcomings and improve the therapeutic effect. The microspheres had uniform size and good biocompatibility, and could release the loaded drugs in the gut. The behavioral tests showed that the celastrol-loaded microspheres effectively alleviated inflammatory pain, and the hematoxylin and eosin staining (HE staining), immunofluorescence and detection of inflammatory cytokines showed the anti-inflammatory effect. These results indicated that the microspheres could reduce dose and toxicity without affecting efficacy, and facilitate the application of celastrol in different clinical situations.
Collapse
Affiliation(s)
- Huiyu Zheng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Central People's Hospital of Zhanjiang, Yuanzhu Road, Zhanjiang 524045, China
| | - Cheng Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210096, China; Department of Endocrinology, Health Science Center, The First Affiliated Hospital, Shenzhen University, Shenzhen 518035, China
| | - Yitian Lu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Central People's Hospital of Zhanjiang, Yuanzhu Road, Zhanjiang 524045, China
| | - Jun Cao
- Department of Anesthesiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen 518000, China
| | - Fanning Zeng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Tao Tao
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Yuanzhu Road, Zhanjiang 524045, China.
| |
Collapse
|
16
|
Basu A, Namporn T, Ruenraroengsak P. Critical Review in Designing Plant-Based Anticancer Nanoparticles against Hepatocellular Carcinoma. Pharmaceutics 2023; 15:1611. [PMID: 37376061 DOI: 10.3390/pharmaceutics15061611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for 85% of liver cancer cases, continues to be the third leading cause of cancer-related deaths worldwide. Although various forms of chemotherapy and immunotherapy have been investigated in clinics, patients continue to suffer from high toxicity and undesirable side effects. Medicinal plants contain novel critical bioactives that can target multimodal oncogenic pathways; however, their clinical translation is often challenged due to poor aqueous solubility, low cellular uptake, and poor bioavailability. Nanoparticle-based drug delivery presents great opportunities in HCC therapy by increasing selectivity and transferring sufficient doses of bioactives to tumor areas with minimal damage to adjacent healthy cells. In fact, many phytochemicals encapsulated in FDA-approved nanocarriers have demonstrated the ability to modulate the tumor microenvironment. In this review, information about the mechanisms of promising plant bioactives against HCC is discussed and compared. Their benefits and risks as future nanotherapeutics are underscored. Nanocarriers that have been employed to encapsulate both pure bioactives and crude extracts for application in various HCC models are examined and compared. Finally, the current limitations in nanocarrier design, challenges related to the HCC microenvironment, and future opportunities are also discussed for the clinical translation of plant-based nanomedicines from bench to bedside.
Collapse
Affiliation(s)
- Aalok Basu
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Thanaphon Namporn
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Pakatip Ruenraroengsak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
17
|
Chemical synthesis of oligosaccharides and their application in new drug research. Eur J Med Chem 2023; 249:115164. [PMID: 36758451 DOI: 10.1016/j.ejmech.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Oligosaccharides are the ubiquitous molecules of life. In order to translate human bioglycosylation into clinical applications, homogeneous samples of oligosaccharides and glycoconjugates can be obtained by chemical, enzymatic or other biological methods for systematic studies. However, the structural complexity and diversity of glycans and their conjugates present a major challenge for the synthesis of such molecules. This review summarizes the chemical synthesis methods of oligosaccharides, the application of oligosaccharides in the field of medicinal chemistry according to their related biological activities, and shows the great prospect of oligosaccharides in the field of pharmaceutical chemistry.
Collapse
|
18
|
Zhang X, Xu X, Wang X, Lin Y, Zheng Y, Xu W, Liu J, Xu W. Hepatoma-targeting and reactive oxygen species-responsive chitosan-based polymeric micelles for delivery of celastrol. Carbohydr Polym 2023; 303:120439. [PMID: 36657834 DOI: 10.1016/j.carbpol.2022.120439] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
A glycyrrhetinic acid-modified carboxymethyl chitosan-thioketal-rhein (GCTR) conjugate was designed and synthesized for the in vivo delivery of celastrol (Cela). Cela was encapsulated into polymeric micelles (PMs) formed by GCTR conjugates self-assembly in water to form Cela/GCTR PMs with high drug loading capacity and small particle size. Cela/GCTR PMs had a sustained-release characteristic in the blood environment and a rapid-release feature in the tumor microenvironment. Cela/GCTR PMs had a significant proliferation inhibitory effect on HepG2 and BEL-7402 cells, but a negligible impact on L-02 cells at low concentrations. Cela/GCTR PMs possessed reactive oxygen species (ROS)-responsive properties in vitro and in cells, could improve the bioavailability of Cela, and exert remarkable hepatoma-targeting properties. Cela/GCTR PMs could also effectively inhibit tumor growth with no apparent damage to different organs. In summary, GCTR PMs with good ROS-responsive and hepatoma-targeting properties are expected to be possible delivery carriers for hydrophobic antineoplastic drugs for hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Xue Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xueya Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaoying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yajuan Lin
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yaling Zheng
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jian Liu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
19
|
N-octadecyl lactose-amide modified microemulsions as targeting delivery carrier for α-linolenic acid: In vitro evaluation and interaction mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Wang N, Li Y, He F, Liu S, Liu Y, Peng J, Liu J, Yu C, Wang S. Assembly of Celastrol to Zeolitic Imidazolate Framework-8 by Coordination as a Novel Drug Delivery Strategy for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15091076. [PMID: 36145296 PMCID: PMC9504028 DOI: 10.3390/ph15091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Celastrol (Cel), a compound derived from traditional Chinese medicine Tripterygium wilfordii Hook. F, has attracted considerable attention as an anticancer drug. However, its clinical application is limited due to its low bioavailability and potential toxicity. With the advancement of nanoscale metal organic frameworks (MOF), the nano-delivery of drugs can effectively improve those disadvantages. Nevertheless, hydrophobic drugs apparently cannot be encapsulated by the hydrophilic channels of MOF-based drug delivery systems. To address these issues, a new assembly strategy for hydrophobic Cel was developed by coordinating the deprotonated Cel to zeolitic imidazolate framework-8 (ZIF-8) with the assistance of triethylamine (Cel-ZIF-8). This strategy greatly elevates the assembly efficiency of Cel from less than 1% to ca. 80%. The resulted Cel-ZIF-8 remains stable in the physiological condition while dissociating and releasing Cel after a 45-minute incubation in an acidic tumor microenvironment (pH 5.5). Furthermore, Cel-ZIF-8 is proved to be easily taken up by cancer cells and exhibits a better therapeutic effect on tumor cells than free Cel. Overall, the Cel-ZIF-8 provides a novel assembly strategy for hydrophobic drugs, and the findings are envisaged to facilitate the application of Cel in cancer therapies.
Collapse
Affiliation(s)
- Na Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fei He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Susu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinting Peng
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Jiahui Liu
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (C.Y.); (S.W.); Tel./Fax: +86-10-64421335 (S.W.)
| | - Shihui Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (C.Y.); (S.W.); Tel./Fax: +86-10-64421335 (S.W.)
| |
Collapse
|
21
|
Alharbi KS, Almalki WH, Albratty M, Meraya AM, Najmi A, Vyas G, Singh SK, Dua K, Gupta G. The therapeutic role of nutraceuticals targeting the Nrf2/HO-1 signaling pathway in liver cancer. J Food Biochem 2022; 46:e14357. [PMID: 35945911 DOI: 10.1111/jfbc.14357] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Liver cancer (L.C.) is the most common cause of cancer death in the United States and the fifth most common globally. The overexpression of nuclear factor E2 related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) caused by oxidative stress has been associated with tumor growth, aggressiveness, treatment resistance, and poor prognosis. Nutraceuticals that inhibit Nrf2/HO-1 signaling may become the most effective strategy to treat liver cancer. Phytochemicals found in fruits and vegetables, also known as nutraceuticals, tend to emerge as chemopreventive agents, with the added benefit of low toxicity and high nutritional values. This paper reviews the present scientific knowledge of the Nrf2/HO-1 signaling as a possible target molecule for chemotherapeutic agents, its basic control mechanisms, and Nrf2/HO-1 inducers produced from natural products that might be employed as cancer chemopreventive drugs. The growing interest in the contribution of the Nrf2/ARE/HO-1 signaling in the development of liver cancer and the Use of nutraceuticals to treat liver cancer by targeting Nrf2/ARE/HO-1. PRACTICAL APPLICATIONS: An increase in Nrf2 expression indicates that Nrf2 is the most important player in liver cancer. Cancer patients are more resistant to chemotherapy because of this erroneous Nrf2 signaling. Furthermore, an increasing body of evidence indicates that activation of the Nrf2/HO-1 pathway results in the production of phase II detoxifying and antioxidant enzymes, which serve a defense purpose in cells. As a consequence, treating liver cancer. This master regulator may be a possibility. Nutraceuticals that reduce Nrf2/HO-1 signaling may be the most effective strategy for preventing liver cancer. The methods of action of numerous natural substances are examined in this article.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Govind Vyas
- R&D, Quality and Regulatory Compliance, Invahealth Inc., Cranbury, New Jersey, USA
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
22
|
Wang X, Wang A, Feng W, Wang D, Guo X, Wang X, Miao Q, Liu M, Xia G. Novel 5-Fluorouracil Carbonate-Loaded Liposome: Preparation, In Vitro, and In Vivo Evaluation as an Antitumor Agent. Mol Pharm 2022; 19:2061-2076. [PMID: 35731595 DOI: 10.1021/acs.molpharmaceut.1c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug against many types of cancers, especially colorectal cancer. However, its short plasma half-life and serious adverse reactions limit its wide clinical applications. To overcome these shortcomings, a novel lipophilic 5-FU carbonate [XL-01, (5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) methyl tetradecyl carbonate] was designed, synthesized, and encapsulated into liposome (LipoXL-01) by a thin-film dispersion method through formulation screening and optimization. LipoXL-01 was characterized by a particle size of around 100 nm, polydispersity index of 0.200, ζ-potential value of -41 mV, encapsulation efficiency of 93.9%, and drug-loading efficiency of 11.6%. The cellular uptake of LipoXL-01 was increased in a concentration-dependent manner on HCT15 cells. LipoXL-01 could enhance the induction of cell apoptosis and the inhibition of cell migration and arrest the ability of the cell cycle at the S-phase on HCT15 cells better than 5-FU. Additionally, LipoXL-01 exhibited a slow drug release profile with a cumulative release rate of 12% in 8 h. The results of pharmacokinetic and biodistribution studies revealed that LipoXL-01 had a long plasma half-life (7.21 h) and a high tumor accumulation (733 nmol/g at 8 h). The in vivo antitumor effect study also showed that LipoXL-01 had more potent efficacy than 5-FU (65 vs 48% of the tumor-inhibition rate). Simultaneously, negligible systemic toxicity was observed via analyzing the body weight as well as hematological and pathological parameters in the tested mice. The current study suggested that LipoXL-01 might be a promising nanocandidate for chemotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoru Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingfang Miao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Li M, Xie F, Wang L, Zhu G, Qi LW, Jiang S. Celastrol: An Update on Its Hepatoprotective Properties and the Linked Molecular Mechanisms. Front Pharmacol 2022; 13:857956. [PMID: 35444532 PMCID: PMC9013942 DOI: 10.3389/fphar.2022.857956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The liver plays an important role in glucose and lipid homeostasis, drug metabolism, and bile synthesis. Metabolic disorder and inflammation synergistically contribute to the pathogenesis of numerous liver diseases, such as metabolic-associated fatty liver disease (MAFLD), liver injury, and liver cancer. Celastrol, a triterpene derived from Tripterygium wilfordii Hook.f., has been extensively studied in metabolic and inflammatory diseases during the last several decades. Here we comprehensively review the pharmacological activities and the underlying mechanisms of celastrol in the prevention and treatment of liver diseases including MAFLD, liver injury, and liver cancer. In addition, we also discuss the importance of novel methodologies and perspectives for the drug development of celastrol. Although celastrol has been claimed as a promising agent against several metabolic diseases, both preclinical and clinical studies are highly required to accelerate the clinical transformation of celastrol in treating different liver illness. It is foreseeable that celastrol-derived therapeutics is evolving in the field of liver ailments.
Collapse
Affiliation(s)
- Mengzhen Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Faren Xie
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnology 2022; 20:109. [PMID: 35248080 PMCID: PMC8898455 DOI: 10.1186/s12951-022-01309-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is considered one of the deadliest diseases with one of the highest disease burdens worldwide. Among the different types of liver cancer, hepatocellular carcinoma is considered to be the most common type. Multiple conventional approaches are being used in treating hepatocellular carcinoma. Focusing on drug treatment, regular agents in conventional forms fail to achieve the intended clinical outcomes. In order to improve the treatment outcomes, utilizing nanoparticles-specifically lipid based nanoparticles-are considered to be one of the most promising approaches being set in motion. Multiple forms of lipid based nanoparticles exist including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, phytosomes, lipid coated nanoparticles, and nanoassemblies. Multiple approaches are used to enhance the tumor uptake as well tumor specificity such as intratumoral injection, passive targeting, active targeting, and stimuli responsive nanoparticles. In this review, the effect of utilizing lipidic nanoparticles is being discussed as well as the different tumor uptake enhancement techniques used.
Collapse
Affiliation(s)
- Khaled Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
25
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
26
|
Regulated preparation of celastrol-loaded nanoparticle by flash nanoprecipitation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Li Y, Zhang R, Xu Z, Wang Z. Advances in Nanoliposomes for the Diagnosis and Treatment of Liver Cancer. Int J Nanomedicine 2022; 17:909-925. [PMID: 35250267 PMCID: PMC8893038 DOI: 10.2147/ijn.s349426] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
The mortality rate of liver cancer is gradually increasing worldwide due to the increasing risk factors such as fatty liver, diabetes, and alcoholic cirrhosis. The diagnostic methods of liver cancer include ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI), among others. The treatment of liver cancer includes surgical resection, transplantation, ablation, and chemoembolization; however, treatment still faces multiple challenges due to its insidious development, high rate of recurrence after surgical resection, and high failure rate of transplantation. The emergence of liposomes has provided new insights into the treatment of liver cancer. Due to their excellent carrier properties and maneuverability, liposomes can be used to perform a variety of functions such as aiding in imaging diagnoses, combinatorial therapies, and integrating disease diagnosis and treatment. In this paper, we further discuss such advantages.
Collapse
Affiliation(s)
- Yitong Li
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People’s Republic of China
| | - Ruihang Zhang
- Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450052, Henan, People’s Republic of China
| | - Zhen Xu
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People’s Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People’s Republic of China
- Correspondence: Zhicheng Wang, NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, Jilin, People’s Republic of China, Tel +86 13843131059, Fax +86 431185619443, Email
| |
Collapse
|
28
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
29
|
Xi L, Lin Z, Qiu F, Chen S, Li P, Chen X, Wang Z, Zheng Y. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharm Sin B 2022; 12:339-352. [PMID: 35127390 PMCID: PMC8808595 DOI: 10.1016/j.apsb.2021.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Psoriasis is an autoimmune skin disease in which dendritic cells (DCs) trigger the progression of psoriasis by complex interactions with keratinocytes and other immune cells. In the present study, we aimed to load celastrol, an anti-inflammatory ingredient isolated from Chinese herbs, on mannosylated liposomes to enhance DC uptake as well as to induce DC tolerance in an imiquimod-induced psoriasis-like mouse model. Mannose was grafted onto liposomes to target mannose receptors on DCs. The results demonstrated that compared with unmodified liposomes, DCs preferred to take up more fluorescence-labeled mannosylated liposomes. After loading celastrol into mannose-modified liposomes, they effectively inhibited the expression of maturation markers, including CD80, CD86 and MHC-II, on DCs both in vitro and in vivo. Additionally, after intradermal injection with a microneedle, celastrol-loaded mannose-modified liposomes (CEL-MAN-LPs) achieved a superior therapeutic effect compared with free drug and celastrol-loaded unmodified liposomes in the psoriasis mouse model in terms of the psoriasis area and severity index, histology evaluation, spleen weight, and expression of inflammatory cytokines. In conclusion, our results clearly revealed that CEL-MAN-LPs was an effective formulation for psoriasis treatment and suggested that this treatment has the potential to be applied to other inflammatory diseases triggered by activated DCs.
Collapse
|
30
|
Zeng X, Zhu X, Tian Q, Tan X, Sun N, Yan M, Zhao J, Wu X, Li R, Zhang Z, Zeng H. Celastrol-conjugated chitosan oligosaccharide for the treatment of pancreatic cancer. Drug Deliv 2021; 29:89-98. [PMID: 34964425 PMCID: PMC8725862 DOI: 10.1080/10717544.2021.2018521] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Celastrol is a promising antitumor drug candidate, but the poor water solubility and cytotoxicity limit its clinical application. Herein, we synthesized a Celastrol (Cel)-chitosan oligosaccharide (CSO) conjugate (Cel-CSO) for drug delivery. Celastrol was conjugated to a CSO backbone via amide bond formation, which was verified by infrared spectrum (IR) analyses. The Cel-CSO contained ∼10 wt% of Celastrol showed excellent aqueous solubility (18.6 mg/mL) in comparation with the parent Celastrol. Cel-CSO significantly inhibited tumor growth, induced apoptosis, and effectively suppressed tumor metastasis in human pancreatic cancer cells (BxPC-3). While the cytotoxicity of Cel-CSO in hepatic cells (HL7702) was lower than that of the free Celastrol. Cel-CSO enhanced the anticancer efficacy, promoted the circulation time of Celastrol, and reduced the subacute toxicity, which indicated that CSO can be a promising Celastrol delivery system for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Xiaohu Zeng
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Zhu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qikang Tian
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoke Tan
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning Sun
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Yan
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Traditional Chinese Medicine Innovation Engineering Technology Research Center, Zhengzhou, China
| | - Junwei Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, China Zhengzhou Henan
| | - Xiangxiang Wu
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruiqin Li
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenqiang Zhang
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huahui Zeng
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China.,Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Traditional Chinese Medicine Innovation Engineering Technology Research Center, Zhengzhou, China
| |
Collapse
|
31
|
Guo L, Zhang Y, Al-Jamal KT. Recent progress in nanotechnology-based drug carriers for celastrol delivery. Biomater Sci 2021; 9:6355-6380. [PMID: 34582530 DOI: 10.1039/d1bm00639h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Celastrol (CLT) is an active ingredient that was initially discovered and extracted from the root of Tripterygium wilfordii. The potential pharmacological activities of CLT in cancer, obesity, and inflammatory, auto-immune, and neurodegenerative diseases have been demonstrated in recent years. However, CLT's clinical application is extremely restricted by its low solubility/permeability, poor bioavailability, and potential off-target toxicity. The advent of nanotechnology provides a solution to improve the oral bioavailability, therapeutic effects or tissue-targeting ability of CLT. This review focuses on the most recent advances, improvements, inventions, and updated literature of various nanocarrier systems for CLT.
Collapse
Affiliation(s)
- Ling Guo
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Huaxi University City, Guiyang, Guizhou 550025, P.R. China.,Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Yongping Zhang
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Dongqing South Road, Huaxi University City, Guiyang, Guizhou 550025, P.R. China.,Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
32
|
Wagh PR, Desai P, Prabhu S, Wang J. Nanotechnology-Based Celastrol Formulations and Their Therapeutic Applications. Front Pharmacol 2021; 12:673209. [PMID: 34177584 PMCID: PMC8226115 DOI: 10.3389/fphar.2021.673209] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
Celastrol (also called tripterine) is a quinone methide triterpene isolated from the root extract of Tripterygium wilfordii (thunder god vine in traditional Chinese medicine). Over the past two decades, celastrol has gained wide attention as a potent anti-inflammatory, anti-autoimmune, anti-cancer, anti-oxidant, and neuroprotective agent. However, its clinical translation is very challenging due to its lower aqueous solubility, poor oral bioavailability, and high organ toxicity. To deal with these issues, various formulation strategies have been investigated to augment the overall celastrol efficacy in vivo by attempting to increase the bioavailability and/or reduce the toxicity. Among these, nanotechnology-based celastrol formulations are most widely explored by pharmaceutical scientists worldwide. Based on the survey of literature over the past 15 years, this mini-review is aimed at summarizing a multitude of celastrol nanoformulations that have been developed and tested for various therapeutic applications. In addition, the review highlights the unmet need in the clinical translation of celastrol nanoformulations and the path forward.
Collapse
Affiliation(s)
- Pushkaraj Rajendra Wagh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Preshita Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
33
|
Yi S, Zhang C, Hu J, Meng Y, Chen L, Yu H, Li S, Wang G, Zheng G, Qiu Z. Preparation, Characterization, and In Vitro Pharmacodynamics and Pharmacokinetics Evaluation of PEGylated Urolithin A Liposomes. AAPS PharmSciTech 2021; 22:26. [PMID: 33404864 DOI: 10.1208/s12249-020-01890-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Urolithin A (Uro-A), a metabolite of ellagitannins in mammals' intestinal tract, displays broad biological properties in preclinical models, including anti-oxidant, anti-inflammatory, and anti-tumor effects. However, the clinical application of Uro-A is restricted because of its low aqueous solubility and short elimination half-life. Our purpose was to develop a delivery system to improve the bioavailability and anti-tumor efficacy of Uro-A. To achieve this goal, urolithin A-loaded PEGylated liposomes (Uro-A-PEG-LPs) were prepared for the first time and its physicochemical properties and anti-tumor efficacy in vitro were evaluated. The morphology of Uro-A-PEG-LPs displayed a uniform sphere under transmission electron microscope. The particle size, polydispersity index, zeta potential, and encapsulation efficiency of Uro-A-PEG-LPs were 122.8 ± 7.4 nm, 0.25 ± 0.16, - 25.5 ± 2.3 mV, and 94.6 ± 1.6%, respectively. Moreover, Uro-A-PEG-LPs possessed higher stability and could be stably stored at 4°C for a long time. In vitro release characteristics indicated that Uro-A-PEG-LPs possessed superior sustained release properties. The results of confocal laser scanning microscopy experiment showed that the coumarin 6-loaded PEGylated liposomes (C6-PEG-LPs) have superior cellular uptake than that of conventional liposomes. In addition, in vitro tests demonstrated that Uro-A-PEG-LPs elevated cytotoxicity and pro-apoptotic effect in human hepatoma cells comparing with free Uro-A. Furthermore, the results of pharmacokinetic experiments showed that the t1/2, AUC0-t, and MRT0-t of Uro-A-PEG-LPs increased to 4.58-fold, 2.33-fold, and 2.43-fold than those of free Uro-A solution, respectively. Collectively, these manifested that PEGylated liposomes might be a potential delivery system for Uro-A to prolonging in vivo circulation time, promoting cellular uptake, and enhancing its anti-tumor efficacy.
Collapse
|
34
|
Shi J, Li J, Xu Z, Chen L, Luo R, Zhang C, Gao F, Zhang J, Fu C. Celastrol: A Review of Useful Strategies Overcoming its Limitation in Anticancer Application. Front Pharmacol 2020; 11:558741. [PMID: 33364939 PMCID: PMC7751759 DOI: 10.3389/fphar.2020.558741] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Celastrol, a natural bioactive ingredient derived from Tripterygium wilfordii Hook F, exhibits significant broad-spectrum anticancer activities for the treatment of a variety of cancers including liver cancer, breast cancer, prostate tumor, multiple myeloma, glioma, etc. However, the poor water stability, low bioavailability, narrow therapeutic window, and undesired side effects greatly limit its clinical application. To address this issue, some strategies were employed to improve the anticancer efficacy and reduce the side-effects of celastrol. The present review comprehensively focuses on the various challenges associated with the anticancer efficiency and drug delivery of celastrol, and the useful approaches including combination therapy, structural derivatives and nano/micro-systems development. The specific advantages for the use of celastrol mediated by these strategies are presented. Moreover, the challenges and future research directions are also discussed. Based on this review, it would provide a reference to develop a natural anticancer compound for cancer treatment.
Collapse
Affiliation(s)
- Jinfeng Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
35
|
A multicomponent-based microemulsion for boosting ovarian cancer therapy through dual modification with transferrin and SA-R 6H 4. Drug Deliv Transl Res 2020; 11:1969-1982. [PMID: 33006741 DOI: 10.1007/s13346-020-00859-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Balancing the antitumor activity and systemic toxicity of tripterine still faces a big challenge due to the narrow therapeutic window. To address this issue, we report a microemulsion system based on tripterine, brucea oil, and glycyrrhizin, and dual modified with both transferrin and cell-penetrating peptide SA-R6H4 (Tf/SA-R6H4-TBG-MEs) for combinational and tumor-targeted cancer therapy. Such a microemulsion exhibited a spherical shape with a size of ~50 nm and a mildly-negative charge. The half-maximal inhibitory concentration (IC50) of Tf/SA-R6H4-TBG-MEs against ovarian cancer SKOV3 cells was 0.27 ± 0.43 μg tripterine/mL, which was 5.85 times lower than that of free tripterine. The cellular uptake of tripterine after treatment with Tf/SA-R6H4-TBG-MEs was 1.56 times higher than that of TBG-MEs (non-modified microemulsion). In pharmacokinetics studies, the area under the curve of Tf/SA-R6H4-TBG-MEs increased by 1.97 times compared with that of the physical mixture group. The tumoral accumulation of tripterine was significantly improved in Tf/SA-R6H4-TBG-MEs group than TBG-MEs-treated group. In antitumor efficacy in vivo, Tf/SA-R6H4-TBG-MEs exhibited the strongest inhibition of tumor growth and the longest survival period among all the groups, which is associated with the rational combination, microemulsion system, and dual modification with tumor-targeted ligands. Importantly, Tf/SA-R6H4-TBG-MEs significantly reduced the toxicity of tripterine against the liver and kidney. Our design provides a new approach for efficient and safe ovarian cancer therapy based on a multicomponent combination.
Collapse
|