1
|
Ma Z, Pan S, Yang Y, Ren H, Yin S, Chen Q, An Z, Zhao X, Xu Z. Lipid Droplets: Emerging therapeutic targets for age-related metabolic diseases. Ageing Res Rev 2025; 108:102758. [PMID: 40300696 DOI: 10.1016/j.arr.2025.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
Lipids metabolism is crucial in regulating aging and metabolic diseases. Lipid droplets (LDs) are dynamic, complex organelles responsible for the storage and release of neutral lipids, essential for maintaining lipid homeostasis and energy metabolism. Aging accelerates the accumulation of LDs, functional deterioration, and metabolic disorders, thereby inducing age-related metabolic diseases (ARMDs). This review examines published datasets on the association between LDs and ARMDs, focusing on the structure and function of LDs, their interactions with other organelles, and associated proteins. Furthermore, we explore the potential mechanisms by which LDs mediate the onset of ARMDs, including Alzheimer's disease (AD), sarcopenia, metabolic cardiomyopathy, non-alcoholic fatty liver disease (NAFLD), and cancer. Lastly, we discuss intervention strategies aimed at targeting LDs to improve outcomes in ARMDs, including exercise, dietary, and pharmacological interventions.
Collapse
Affiliation(s)
- Zheying Ma
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China
| | - Shou Pan
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yaming Yang
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China
| | - Huiqian Ren
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China
| | - Sikun Yin
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China
| | - Qianyu Chen
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China
| | - Zhenxian An
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China
| | - Xiaoqin Zhao
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China.
| | - Zujie Xu
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China.
| |
Collapse
|
2
|
Low YL, Kreutzer E, Chandrashekaran IR, Adams LA, Pun J, Doak BC, Pan Y, Short JL, Scanlon MJ, Nicolazzo JA. Evaluation of the Anti-Inflammatory Effects of Novel Fatty Acid-Binding Protein 4 Inhibitors in Microglia. J Neuroimmune Pharmacol 2025; 20:40. [PMID: 40234265 PMCID: PMC12000251 DOI: 10.1007/s11481-025-10191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Fatty acid-binding protein 4 (FABP4) is a key lipid binding protein expressed in microglia, which has been demonstrated to play a critical role in microglial-mediated neuroinflammation, a component of many neurodegenerative diseases. Compounds able to inhibit the function of FABP4 have shown promise in reducing microglial-mediated neuroinflammation, however, their physicochemical properties would prevent their ability to be easily formulated and traverse the blood-brain barrier (BBB) in order to access microglial FABP4. To this end, this study assessed the ability of a series of FABP4 inhibitors, with more desirable physicochemical properties, to attenuate microglial inflammation in an in vitro setting. Four inhibitors with varying affinity to FABP4, as measured by isothermal titration calorimetry (MFP-0011462, MFP-0012314, MFP-0012318, and MFP-0012328), were assessed for their ability to induce toxicity and attenuate reactive oxygen species (ROS) generation and tumour necrosis factor-α (TNF-α) release from lipopolysaccharide (LPS)-activated BV-2 microglia. All FABP4 inhibitors were determined to be soluble in the aqueous buffers at the highest concentration used in the assays (100 µM). Isothermal titration calorimetry demonstrated that the compounds had varying affinities for FABP4 (KD values of 316 nM to > 100 µM). The ability of FABP4 inhibitors to reduce LPS-mediated ROS production aligned with their KD for FABP4, with the most effective inhibitor (MFP-0012328) also able to reduce TNF-α production (by RT-qPCR) and TNF-α release from LPS-activated BV-2 cells by 17% and 25%, respectively. These studies have demonstrated that a series of FABP4 inhibitors with more appropriate physicochemical properties for BBB penetration are able to reduce microglial-mediated inflammation, which may be of benefit in diseases where overactivation of microglia leads to neurodegeneration.
Collapse
Affiliation(s)
- Yi Ling Low
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Ethan Kreutzer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Indu R Chandrashekaran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Luke A Adams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jason Pun
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Bradley C Doak
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Jennifer L Short
- Monash Centre for Advanced mRNA Medicines Manufacturing and Workforce Training, Monash University, Clayton, VIC, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Smith QR, Mandula H, Parepally JMR, Oki J, Thomas F, Thorsheim HR, Al-Ahmad AJ, Abbruscato TJ, Ask P, Hage DS, Robinson PJ. Brain endothelial permeability, transport, and flow assessed over 10 orders of magnitude using the in situ brain perfusion technique. Fluids Barriers CNS 2024; 21:100. [PMID: 39690422 DOI: 10.1186/s12987-024-00584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/06/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Cerebral blood flow normally places a limit on the magnitude of brain vascular permeability (P) that can be measured in vivo. At normal cerebral blood flow, this limit falls at the lower end of lipophilicity for most FDA-approved CNS drugs. In this study, we report on two methods that can be used to overcome this limitation and measure brain vascular permeability values that are up to ~1000 times higher using the in situ brain perfusion technique. METHODS Rat brain was perfused with physiological saline at increased flow rate and in the presence of various concentrations of plasma protein, serum albumin or alpha-acid glycoprotein. Plasma protein was added to the saline perfusion fluid to lower extraction into the measurable range using the Crone Renkin "diffusion-flow" equation to calculate brain PoS. RESULTS Cerebrovascular Po was determined for 125 solutes, of which 78 showed little or no evidence of active efflux transport. Fifty of the solutes were in the lipophilicity zone (Log Poct 1-5) of most FDA-approved CNS drugs. Care was taken to ensure the integrity of the brain vasculature during perfusion and to measure flow accurately using markers that had been verified for the flow rates. The results showed a linear relationship between Log Po and Log Poct over ~10 orders of magnitude with values for diazepam, estradiol, testosterone, and other agents that exceed prior published values by fivefold to 200-fold. CONCLUSIONS The results show that brain vascular permeability can be measured directly in vivo for highly lipophilic solutes and the PS values obtained match reasonably with that predicted by the Crone-Renkin flow diffusion equation with care taken to validate the accuracy for the component measurements and with no need to invoke "enhanced" or "induced" dissociation.
Collapse
Affiliation(s)
- Quentin R Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Haritha Mandula
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Jagan Mohan R Parepally
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Jun Oki
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Fancy Thomas
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Helen R Thorsheim
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Per Ask
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Peter J Robinson
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Supti ST, Koehn LM, Newman SA, Pan Y, Nicolazzo JA. Iron Reduces the Trafficking of Fatty Acids from Human Immortalised Brain Microvascular Endothelial Cells Through Modulation of Fatty Acid Transport Protein 1 (FATP1/SLC27A1). Pharm Res 2024; 41:1631-1648. [PMID: 39044044 PMCID: PMC11362236 DOI: 10.1007/s11095-024-03743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE Alzheimer's disease (AD) is associated with brain accumulation of amyloid-beta (Aβ) and neurofibrillary tangle formation, in addition to reduced brain docosahexaenoic acid (DHA) and increased brain iron levels. DHA requires access across the blood-brain barrier (BBB) to enter the brain, and iron has been shown to affect the expression and function of a number of BBB transporters. Therefore, this study aimed to assess the effect of iron on the expression and function of fatty acid binding protein 5 (FABP5) and fatty acid transport protein 1 (FATP1), both which mediate brain endothelial cell trafficking of DHA. METHODS The mRNA and protein levels of FABP5 and FATP1 in human cerebral microvascular endothelial (hCMEC/D3) cells was assessed by RT-qPCR and Western blot, respectively following ferric ammonium citrate (FAC) treatment (up to 750 µM, 72 h). The function of FABP5 and FATP1 was assessed via uptake and efflux of radiolabelled 3H-oleic acid and 14C-DHA. RESULTS FAC (500 µM, 72 h) had no impact on the expression of FABP5 at the protein and mRNA level in hCMEC/D3 cells, which was associated with a lack of effect on the uptake of 14C-DHA. FAC led to a 19.7% reduction in FATP1 protein abundance in hCMEC/D3 cells with no impact on mRNA levels, and this was associated with up to a 32.6% reduction in efflux of 14C-DHA. CONCLUSIONS These studies demonstrate a role of iron in down-regulating FATP1 protein abundance and function at the BBB, which may have implications on fatty acid access to the brain.
Collapse
Affiliation(s)
- Showmika T Supti
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Liam M Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Stephanie A Newman
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Ohguro H, Watanabe M, Hikage F, Sato T, Nishikiori N, Umetsu A, Higashide M, Ogawa T, Furuhashi M. Fatty Acid-Binding Protein 4-Mediated Regulation Is Pivotally Involved in Retinal Pathophysiology: A Review. Int J Mol Sci 2024; 25:7717. [PMID: 39062961 PMCID: PMC11277531 DOI: 10.3390/ijms25147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperone molecules that are involved in intracellular lipid transportation to specific cellular compartments, stimulate lipid-associated responses such as biological signaling, membrane synthesis, transcriptional regulation, and lipid synthesis. Previous studies have shown that FABP4, a member of this family of proteins that are expressed in adipocytes and macrophages, plays pivotal roles in the pathogenesis of various cardiovascular and metabolic diseases, including diabetes mellitus (DM) and hypertension (HT). Since significant increases in the serum levels of FABP4 were detected in those patients, FABP4 has been identified as a crucial biomarker for these systemic diseases. In addition, in the field of ophthalmology, our group found that intraocular levels of FABP4 (ioFABP4) and free fatty acids (ioFFA) were substantially elevated in patients with retinal vascular diseases (RVDs) including proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), for which DM and HT are also recognized as significant risk factors. Recent studies have also revealed that ioFABP4 plays important roles in both retinal physiology and pathogenesis, and the results of these studies have suggested potential molecular targets for retinal diseases that might lead to future new therapeutic strategies.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
| |
Collapse
|
6
|
Chasseigneaux S, Cochois-Guégan V, Lecorgne L, Lochus M, Nicolic S, Blugeon C, Jourdren L, Gomez-Zepeda D, Tenzer S, Sanquer S, Nivet-Antoine V, Menet MC, Laplanche JL, Declèves X, Cisternino S, Saubaméa B. Fasting upregulates the monocarboxylate transporter MCT1 at the rat blood-brain barrier through PPAR δ activation. Fluids Barriers CNS 2024; 21:33. [PMID: 38589879 PMCID: PMC11003008 DOI: 10.1186/s12987-024-00526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) is pivotal for the maintenance of brain homeostasis and it strictly regulates the cerebral transport of a wide range of endogenous compounds and drugs. While fasting is increasingly recognized as a potential therapeutic intervention in neurology and psychiatry, its impact upon the BBB has not been studied. This study was designed to assess the global impact of fasting upon the repertoire of BBB transporters. METHODS We used a combination of in vivo and in vitro experiments to assess the response of the brain endothelium in male rats that were fed ad libitum or fasted for one to three days. Brain endothelial cells were acutely purified and transcriptionaly profiled using RNA-Seq. Isolated brain microvessels were used to assess the protein expression of selected BBB transporters through western blot. The molecular mechanisms involved in the adaptation to fasting were investigated in primary cultured rat brain endothelial cells. MCT1 activity was probed by in situ brain perfusion. RESULTS Fasting did not change the expression of the main drug efflux ATP-binding cassette transporters or P-glycoprotein activity at the BBB but modulated a restrictive set of solute carrier transporters. These included the ketone bodies transporter MCT1, which is pivotal for the brain adaptation to fasting. Our findings in vivo suggested that PPAR δ, a major lipid sensor, was selectively activated in brain endothelial cells in response to fasting. This was confirmed in vitro where pharmacological agonists and free fatty acids selectively activated PPAR δ, resulting in the upregulation of MCT1 expression. Moreover, dosing rats with a specific PPAR δ antagonist blocked the upregulation of MCT1 expression and activity induced by fasting. CONCLUSIONS Altogether, our study shows that fasting affects a selected set of BBB transporters which does not include the main drug efflux transporters. Moreover, we describe a previously unknown selective adaptive response of the brain vasculature to fasting which involves PPAR δ and is responsible for the up-regulation of MCT1 expression and activity. Our study opens new perspectives for the metabolic manipulation of the BBB in the healthy or diseased brain.
Collapse
Affiliation(s)
- Stéphanie Chasseigneaux
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois-Guégan
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Lucas Lecorgne
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Murielle Lochus
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Corinne Blugeon
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Laurent Jourdren
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - David Gomez-Zepeda
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), A Hemlholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, 69120, Heidelberg, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), A Hemlholtz Institute of the DKFZ, Mainz, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division 191, 69120, Heidelberg, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | | | - Valérie Nivet-Antoine
- AP-HP Biochimie générale, Hôpital Necker Enfants Malades, Université Paris Cité, Inserm, Innovations Thérapeutiques en Hémostase, Paris, France
| | - Marie-Claude Menet
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, 91400, Orsay, France
| | - Jean-Louis Laplanche
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bruno Saubaméa
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Inserm, 4 avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
7
|
Sublette ME, Daray FM, Ganança L, Shaikh SR. The role of polyunsaturated fatty acids in the neurobiology of major depressive disorder and suicide risk. Mol Psychiatry 2024; 29:269-286. [PMID: 37993501 DOI: 10.1038/s41380-023-02322-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are obtained from diet or derived from essential shorter-chain fatty acids, and are crucial for brain development and functioning. Fundamentally, LC-PUFAs' neurobiological effects derive from their physicochemical characteristics, including length and double bond configuration, which differentiate LC-PUFA species and give rise to functional differences between n(omega)-3 and n-6 LC-PUFAs. LC-PUFA imbalances are implicated in psychiatric disorders, including major depression and suicide risk. Dietary intake and genetic variants in enzymes involved in biosynthesis of LC-PUFAs from shorter chain fatty acids influence LC-PUFA status. Domains impacted by LC-PUFAs include 1) cell signaling, 2) inflammation, and 3) bioenergetics. 1) As major constituents of lipid bilayers, LC-PUFAs are determinants of cell membrane properties of viscosity and order, affecting lipid rafts, which play a role in regulation of membrane-bound proteins involved in cell-cell signaling, including monoaminergic receptors and transporters. 2) The n-3:n-6 LC-PUFA balance profoundly influences inflammation. Generally, metabolic products of n-6 LC-PUFAs (eicosanoids) are pro-inflammatory, while those of n-3 LC-PUFAs (docosanoids) participate in the resolution of inflammation. Additionally, n-3 LC-PUFAs suppress microglial activation and the ensuing proinflammatory cascade. 3) N-3 LC-PUFAs in the inner mitochondrial membrane affect oxidative stress, suppressing production of and scavenging reactive oxygen species (ROS), with neuroprotective benefits. Until now, this wealth of knowledge about LC-PUFA biomechanisms has not been adequately tapped to develop translational studies of LC-PUFA clinical effects in humans. Future studies integrating neurobiological mechanisms with clinical outcomes may suggest ways to identify depressed individuals most likely to respond to n-3 LC-PUFA supplementation, and mechanistic research may generate new treatment strategies.
Collapse
Affiliation(s)
- M Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA.
| | - Federico Manuel Daray
- University of Buenos Aires, School of Medicine, Institute of Pharmacology, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Licínia Ganança
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Saame Raza Shaikh
- Nutritional Obesity Research Center, Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
de la Monte SM. Conquering Insulin Network Dysfunctions in Alzheimer's Disease: Where Are We Today? J Alzheimers Dis 2024; 101:S317-S343. [PMID: 39422949 PMCID: PMC11807374 DOI: 10.3233/jad-240069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Functional impairments in the brain's insulin and insulin-like growth factor (IGF) signal transduction networks are recognized mediators of dysregulated energy metabolism, a major driver of the Alzheimer's disease (AD) neurodegeneration cascade. AD-associated insulin-deficient and insulin-resistant states mimic those of diabetes mellitus and affect all cell types in the brain. Besides accounting for abundant amyloid-β and hyperphosphorylated tau lesions in AD, insulin/IGF pathway dysfunctions cause cortical atrophy, loss of synaptic plasticity, white matter myelin/oligodendrocyte degeneration, astrocyte and microglial neuroinflammation and oxidative stress, deficits in energy metabolism, mitochondrial dysfunction, and microvascular disease. These same neuropathological processes have been linked to cognitive impairment in type 2 diabetes mellitus, Parkinson's disease, and vascular dementia. Strategies to address metabolic mediators of cognitive impairment have been borrowed from diabetes and other insulin-resistant diseases and leveraged on preclinical AD model data. The repurposing of diabetes drugs led to clinical trials with intranasal insulin, followed by insulin sensitizers including metformin and peroxisome-proliferator-activated receptor agonists, and then incretin mimetics primarily targeting GLP-1 receptors. In addition, other glucose-lowering agents have been tested for their efficacy in preventing cognitive declines. The strengths and limitations of these approaches are discussed. The main conclusion of this review is that we have now arrived at a stage in which it is time to address long-term deficits in trophic factor availability and receptor responsiveness, signaling abnormalities that extend beyond insulin and include IGFs and interconnected pathways, and the need for multi-pronged rather than single-pronged therapeutic targeting to remediate AD and other forms of neurodegeneration.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
10
|
Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023; 13:384. [PMID: 36984824 PMCID: PMC10058084 DOI: 10.3390/metabo13030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Efficient signal transduction is important in maintaining the function of the nervous system across tissues. An intact neurotransmission process can regulate energy balance through proper communication between neurons and peripheral organs. This ensures that the right neural circuits are activated in the brain to modulate cellular energy homeostasis and systemic metabolic function. Alterations in neurotransmitters secretion can lead to imbalances in appetite, glucose metabolism, sleep, and thermogenesis. Dysregulation in dietary intake is also associated with disruption in neurotransmission and can trigger the onset of type 2 diabetes (T2D) and obesity. In this review, we highlight the various roles of neurotransmitters in regulating energy balance at the systemic level and in the central nervous system. We also address the link between neurotransmission imbalance and the development of T2D as well as perspectives across the fields of neuroscience and metabolism research.
Collapse
Affiliation(s)
| | | | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Institut Necker Enfants Malades-INEM, Université Paris Cité, CNRS, INSERM, F-75015 Paris, France
| |
Collapse
|
11
|
Aging decreases docosahexaenoic acid transport across the blood-brain barrier in C57BL/6J mice. PLoS One 2023; 18:e0281946. [PMID: 36795730 PMCID: PMC9934487 DOI: 10.1371/journal.pone.0281946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
Nutrients are actively taken up by the brain via various transporters at the blood-brain barrier (BBB). A lack of specific nutrients in the aged brain, including decreased levels of docosahexaenoic acid (DHA), is associated with memory and cognitive dysfunction. To compensate for decreased brain DHA, orally supplied DHA must be transported from the circulating blood to the brain across the BBB through transport carriers, including major facilitator superfamily domain-containing protein 2a (MFSD2A) and fatty acid-binding protein 5 (FABP5) that transport esterified and non-esterified DHA, respectively. Although it is known that the integrity of the BBB is altered during aging, the impact of aging on DHA transport across the BBB has not been fully elucidated. We used 2-, 8-, 12-, and 24-month-old male C57BL/6 mice to evaluate brain uptake of [14C]DHA, as the non-esterified form, using an in situ transcardiac brain perfusion technique. Primary culture of rat brain endothelial cells (RBECs) was used to evaluate the effect of siRNA-mediated MFSD2A knockdown on cellular uptake of [14C]DHA. We observed that the 12- and 24-month-old mice exhibited significant reductions in brain uptake of [14C]DHA and decreased MFSD2A protein expression in the brain microvasculature compared with that of the 2-month-old mice; nevertheless, FABP5 protein expression was up-regulated with age. Brain uptake of [14C]DHA was inhibited by excess unlabeled DHA in 2-month-old mice. Transfection of MFSD2A siRNA into RBECs decreased the MFSD2A protein expression levels by 30% and reduced cellular uptake of [14C]DHA by 20%. These results suggest that MFSD2A is involved in non-esterified DHA transport at the BBB. Therefore, the decreased DHA transport across the BBB that occurs with aging could be due to age-related down-regulation of MFSD2A rather than FABP5.
Collapse
|
12
|
Pan Y, Kagawa Y, Sun J, Turner BJ, Huang C, Shah AD, Schittenhelm RB, Nicolazzo JA. Altered Blood-Brain Barrier Dynamics in the C9orf72 Hexanucleotide Repeat Expansion Mouse Model of Amyotrophic Lateral Sclerosis. Pharmaceutics 2022; 14:pharmaceutics14122803. [PMID: 36559296 PMCID: PMC9783795 DOI: 10.3390/pharmaceutics14122803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For peripherally administered drugs to reach the central nervous system (CNS) and treat amyotrophic lateral sclerosis (ALS), they must cross the blood-brain barrier (BBB). As mounting evidence suggests that the ultrastructure of the BBB is altered in individuals with ALS and in animal models of ALS (e.g., SOD1G93A mice), we characterized BBB transporter expression and function in transgenic C9orf72 BAC (C9-BAC) mice expressing a hexanucleotide repeat expansion, the most common genetic cause of ALS. Using an in situ transcardiac brain perfusion technique, we identified a 1.4-fold increase in 3H-2-deoxy-D-glucose transport across the BBB in C9-BAC transgenic (C9) mice, relative to wild-type (WT) mice, which was associated with a 1.3-fold increase in brain microvascular glucose transporter 1 expression, while other general BBB permeability processes (passive diffusion, efflux transporter function) remained unaffected. We also performed proteomic analysis on isolated brain microvascular endothelial cells, in which we noted a mild (14.3%) reduction in zonula occludens-1 abundance in C9 relative to WT mice. Functional enrichment analysis highlighted trends in changes to various BBB transporters and cellular metabolism. To our knowledge, this is the first study to demonstrate altered BBB function in a C9orf72 repeat expansion model of ALS, which has implications on how therapeutics may access the brain in this mouse model.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai 980-0872, Miyagi, Japan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (Y.P.); (J.A.N.); Tel.: +61-3-8344-4000 (Y.P.); +61-3-9903-9605 (J.A.N.); Fax: +61-3-9903-9583 (J.A.N.)
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai 980-0872, Miyagi, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, WA 6009, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anup D. Shah
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
- Correspondence: (Y.P.); (J.A.N.); Tel.: +61-3-8344-4000 (Y.P.); +61-3-9903-9605 (J.A.N.); Fax: +61-3-9903-9583 (J.A.N.)
| |
Collapse
|
13
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
14
|
Hubbard WB, Spry ML, Gooch JL, Cloud AL, Vekaria HJ, Burden S, Powell DK, Berkowitz BA, Geldenhuys WJ, Harris NG, Sullivan PG. Clinically relevant mitochondrial-targeted therapy improves chronic outcomes after traumatic brain injury. Brain 2021; 144:3788-3807. [PMID: 34972207 PMCID: PMC8719838 DOI: 10.1093/brain/awab341] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/14/2022] Open
Abstract
Pioglitazone, an FDA-approved compound, has been shown to target the novel mitochondrial protein mitoNEET and produce short-term neuroprotection and functional benefits following traumatic brain injury. To expand on these findings, we now investigate the dose- and time-dependent effects of pioglitazone administration on mitochondrial function after experimental traumatic brain injury. We then hypothesize that optimal pioglitazone dosing will lead to ongoing neuroprotection and cognitive benefits that are dependent on pioglitazone-mitoNEET signalling pathways. We show that delayed intervention is significantly more effective than early intervention at improving acute mitochondrial bioenergetics in the brain after traumatic brain injury. In corroboration, we demonstrate that mitoNEET is more heavily expressed, especially near the cortical contusion, in the 18 h following traumatic brain injury. To explore whether these findings relate to ongoing pathological and behavioural outcomes, mice received controlled cortical impact followed by initiation of pioglitazone treatment at either 3 or 18 h post-injury. Mice with treatment initiation at 18 h post-injury exhibited significantly improved behaviour and tissue sparing compared to mice with pioglitazone initiated at 3 h post-injury. Further using mitoNEET knockout mice, we show that this therapeutic effect is dependent on mitoNEET. Finally, we demonstrate that delayed pioglitazone treatment improves serial motor and cognitive performance in conjunction with attenuated brain atrophy after traumatic brain injury. This study illustrates that mitoNEET is the critical target for delayed pioglitazone intervention after traumatic brain injury, mitochondrial-targeting is highly time-dependent after injury and there is an extended therapeutic window to effectively treat mitochondrial dysfunction after brain injury.
Collapse
Affiliation(s)
- W Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
- Lexington VA Healthcare System, Lexington, KY 40502, USA
| | - Malinda L Spry
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jennifer L Gooch
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Amber L Cloud
- College of Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Shawn Burden
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - David K Powell
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, and Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington VA Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
15
|
Interactions of Lipids, Lipoproteins, and Apolipoproteins with the Blood-Brain Barrier. Pharm Res 2021; 38:1469-1475. [PMID: 34518942 DOI: 10.1007/s11095-021-03098-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Lipids and lipoproteins are a diverse group of substances and their interactions with the blood-brain barrier (BBB) is similarly diverse. Some lipoproteins such as high density lipoprotein (HDL), apolipoprotein (apo) A-I, apoJ, some free fatty acids, and triglycerides cross the BBB whereas others such as apoE do not. Some forms of cholesterol can cross the BBB and others do not. Lipids can have effects on BBB preservation and function: HDL may protect the BBB during multiple sclerosis, cholesterol can disrupt the BBB, and triglycerides inhibit the transport of leptin across the BBB and the activation of the hypothalamic leptin receptor. ApoE is associated with many effects on the BBB, with the specific isoform apoE4 having detrimental effects. In summary, the diverse ways in which lipids, lipoproteins, and apolipoproteins interact with the BBB is important in both health and disease.
Collapse
|
16
|
Low YL, Pan Y, Short JL, Nicolazzo JA. Profiling the expression of fatty acid-binding proteins and fatty acid transporters in mouse microglia and assessing their role in docosahexaenoic acid-d5 uptake. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102303. [PMID: 34098488 DOI: 10.1016/j.plefa.2021.102303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 01/19/2023]
Abstract
While the processes governing docosahexaenoic acid (DHA) trafficking across the blood-brain barrier have been elucidated, factors governing DHA uptake into microglia, an essential step for this fatty acid to exert its anti-inflammatory effects, are unknown. This study assessed the mRNA and protein expression of fatty acid-binding proteins (FABPs) and fatty acid transport proteins (FATPs) in mouse BV-2 cells and their mRNA expression in primary mouse microglia. The microglial uptake of DHA-d5, a surrogate of DHA, was assessed by LC-MS/MS following interventions including temperature reduction, silencing of various FABP isoforms, competition with DHA, and metabolic inhibition. It was found that DHA-d5 uptake at 4°C was 39.6% lower than at 37°C, suggesting that microglial uptake of DHA-d5 likely involves passive and/or active uptake mechanisms. Of all FABP and FATP isoforms probed, only FABP3, FABP4, FABP5, FATP1, and FATP4 were expressed at both the mRNA and protein level. Silencing of FABP3, FABP4, and FABP5 resulted in no change in cellular DHA-d5 uptake, nor did concomitant DHA administration or the presence of 0.1% sodium azide/50 mM 2-deoxy-D-glucose. This study is the first to identify the presence of FABPs and FATPs in mouse microglia, albeit these proteins are not involved in the microglial uptake of DHA-d5.
Collapse
Affiliation(s)
- Y L Low
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Y Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - J L Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - J A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
17
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
18
|
Moya ELJ, Vandenhaute E, Rizzi E, Boucau MC, Hachani J, Maubon N, Gosselet F, Dehouck MP. Miniaturization and Automation of a Human In Vitro Blood-Brain Barrier Model for the High-Throughput Screening of Compounds in the Early Stage of Drug Discovery. Pharmaceutics 2021; 13:pharmaceutics13060892. [PMID: 34208550 PMCID: PMC8233835 DOI: 10.3390/pharmaceutics13060892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/25/2023] Open
Abstract
Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.
Collapse
Affiliation(s)
- Elisa L. J. Moya
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
| | | | - Eleonora Rizzi
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
| | - Marie-Christine Boucau
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
| | - Johan Hachani
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
| | | | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
| | - Marie-Pierre Dehouck
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University Artois, UR 2465, F-62300 Lens, France; (E.L.J.M.); (E.R.); (M.-C.B.); (J.H.); (F.G.)
- Correspondence:
| |
Collapse
|