1
|
Ran Y, Meng C, Ma Y, Li Q, Zhu H. Reduced Thermal Conductivity in SnSe 2 Moiré Superlattices. ACS NANO 2025; 19:10452-10460. [PMID: 40042486 DOI: 10.1021/acsnano.5c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Two-dimensional (2D) materials with inherently low thermal conductivity offer significant advantages for thermal management due to constrained phonon transport. The introduction of rotational degrees of freedom in layered 2D materials to form Moiré superlattices enables precise modulation of material properties, including electronic band gaps and phonon scattering mechanisms. While simulations have demonstrated that twisted multilayer Moiré structures can significantly reduce thermal conductivity through enhanced scattering and localized phonon modes, experimental progress has been limited due to challenges in synthesizing multilayer superlattices. In this study, we report the in situ synthesis of SnSe2 nanosheets with twisted multilayer Moiré structures using a scalable chemical vapor deposition method. These superlattices, exhibiting multiple Moiré periods, achieve a significant reduction in thermal conductivity compared to regular multilayer structures, driven by enhanced phonon scattering, lattice mismatch, and localized phonon modes. This work establishes multilayer Moiré superlattices as a promising and scalable platform for engineering low thermal conductivity 2D materials for advanced energy and electronic applications.
Collapse
Affiliation(s)
- Yutong Ran
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chen Meng
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yunpeng Ma
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Li
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Ghadimi R, Yang BJ. Quasiperiodic Pairing in Graphene Quasicrystals. NANO LETTERS 2025; 25:1808-1815. [PMID: 39869562 DOI: 10.1021/acs.nanolett.4c04386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
We investigate the superconducting instabilities of twisted bilayer graphene quasicrystals (TBGQCs) obtained by stacking two monolayer graphene sheets with 30° relative twisting. The electronic energy spectrum of the TBGQC contains periodic energy ranges (PERs) and quasiperiodic energy ranges (QERs), where the underlying local density of states (LDOS) exhibits periodic and quasiperiodic distribution, respectively. We found that superconductivity in the PER is a simple superposition of two monolayer superconductors. This is because, particularly near the charge neutrality point of the TBGQC, the two layers are weekly coupled, leading to pairing instabilities with a uniform distribution in real space. On the other hand, within the QER, the inhomogeneous distribution of the LDOS enhances the superconducting instability with a nonuniform distribution of pairing amplitudes, leading to quasiperiodic superconductivity. Our study can qualitatively explain the superconductivity in recently discovered moiré quasicrystals, which show superconductivity in their QER.
Collapse
Affiliation(s)
- Rasoul Ghadimi
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Bohm-Jung Yang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Choo S, Varshney S, Liu H, Sharma S, James RD, Jalan B. From oxide epitaxy to freestanding membranes: Opportunities and challenges. SCIENCE ADVANCES 2024; 10:eadq8561. [PMID: 39661695 PMCID: PMC11633760 DOI: 10.1126/sciadv.adq8561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Motivated by the growing demand to integrate functional oxides with dissimilar materials, numerous studies have been undertaken to detach a functional oxide film from its original substrate, effectively forming a membrane, which can then be affixed to the desired host material. This review article is centered on the synthesis of functional oxide membranes, encompassing various approaches to their synthesis, exfoliation, and transfer techniques. First, we explore the characteristics of thin-film growth techniques with emphasis on molecular beam epitaxy. We then examine the fundamental principles and pivotal factors underlying three key approaches of creating membranes: (i) chemical lift-off, (ii) the two-dimensional layer-assisted lift-off, and (iii) spalling. We review the methods of exfoliation and transfer for each approach. Last, we provide an outlook into the future of oxide membranes, highlighting their applications and emerging properties.
Collapse
Affiliation(s)
- Sooho Choo
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shivasheesh Varshney
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huan Liu
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shivam Sharma
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard D. James
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Zhai D, Lin Z, Yao W. Supersymmetry dictated topology in periodic gauge fields and realization in strained and twisted 2D materials. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:108004. [PMID: 39241785 DOI: 10.1088/1361-6633/ad77f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Supersymmetry (SUSY) of a Hamiltonian dictates double degeneracy between a pair of superpartners (SPs) transformed by supercharge, except at zero energy where modes remain unpaired in many cases. Here we explore a SUSY of complete isospectrum between SPs-with paired zero modes-realized by 2D electrons in zero-flux periodic gauge fields, which can describe twisted or periodically strained 2D materials. We find their low-energy sector containing zero (or threshold) modes must be topologically non-trivial, by proving that Chern numbers of the two SPs have a finite difference dictated by the number of zero modes and energy dispersion in their vicinity. In 30° twisted bilayer (double bilayer) transition metal dichalcogenides subject to periodic strain, we find one SP is topologically trivial in its lowest miniband, while the twin SP of identical dispersion has a Chern number of 1 (2), in stark contrast to time-reversal partners that have to be simultaneously trivial or nontrivial. For systems whose physical Hamiltonian corresponds to the square root of a SUSY Hamiltonian, such as twisted or strained bilayer graphene, we reveal that topological properties of the two SUSY SPs are transferred respectively to the conduction and valence bands, including the contrasted topology in the low-energy sector and identical topology in the high-energy sector. This offers a unified perspective for understanding topological properties in many flat-band systems described by such square-root models. Both types of SUSY systems provide unique opportunities for exploring correlated and topological phases of matter.
Collapse
Affiliation(s)
- Dawei Zhai
- New Cornerstone Science Laboratory, Department of Physics, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zuzhang Lin
- New Cornerstone Science Laboratory, Department of Physics, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Wang Yao
- New Cornerstone Science Laboratory, Department of Physics, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
5
|
Tyagi A, Martini L, Gebeyehu ZM, Mišeikis V, Coletti C. Highly Sensitive Hall Sensors Based on Chemical Vapor Deposition Graphene. ACS APPLIED NANO MATERIALS 2024; 7:18329-18336. [PMID: 39206352 PMCID: PMC11348313 DOI: 10.1021/acsanm.3c03920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 09/04/2024]
Abstract
In this work, we demonstrate highly sensitive and scalable Hall sensors fabricated by adopting arrays of monolayer single-crystal chemical vapor deposition (CVD) graphene. The devices are based on graphene Hall bars with a carrier mobility of >12000 cm2 V-1 s-1 and a low residual carrier density of ∼1 × 1011 cm-2, showing Hall sensitivity higher than 5000 V A-1 T-1, which is a value previously only achieved when using exfoliated graphene encapsulated with flakes of hexagonal boron nitride. We also implement a facile and scalable polymeric encapsulation, allowing the performance of graphene Hall bars to be stabilized when measured in an ambient environment. We demonstrate that this capping method can reduce the degradation of electrical transport properties when the graphene devices are kept in air over 10 weeks. State-of-the-art performance of the realized devices, based on scalable synthesis and encapsulation, contributes to the proliferation of graphene-based Hall sensors.
Collapse
Affiliation(s)
- Ayush Tyagi
- NEST,
Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Center
for Nanotechnology Innovation @NEST, Instituto
Italiano di Technologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Leonardo Martini
- Center
for Nanotechnology Innovation @NEST, Instituto
Italiano di Technologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Zewdu M. Gebeyehu
- Center
for Nanotechnology Innovation @NEST, Instituto
Italiano di Technologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Vaidotas Mišeikis
- Center
for Nanotechnology Innovation @NEST, Instituto
Italiano di Technologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Camilla Coletti
- Center
for Nanotechnology Innovation @NEST, Instituto
Italiano di Technologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| |
Collapse
|
6
|
Liu C, Liu T, Zhang Z, Sun Z, Zhang G, Wang E, Liu K. Understanding epitaxial growth of two-dimensional materials and their homostructures. NATURE NANOTECHNOLOGY 2024; 19:907-918. [PMID: 38987649 DOI: 10.1038/s41565-024-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The exceptional physical properties of two-dimensional (2D) van der Waals (vdW) materials have been extensively researched, driving advances in material synthesis. Epitaxial growth, a prominent synthesis strategy, enables the production of large-area, high-quality 2D films compatible with advanced integrated circuits. Typical 2D single crystals, such as graphene, transition metal dichalcogenides and hexagonal boron nitride, have been epitaxially grown at a wafer scale. A systematic summary is required to offer strategic guidance for the epitaxy of emerging 2D materials. Here we focus on the epitaxy methodologies for 2D vdW materials in two directions: the growth of in-plane single-crystal monolayers and the fabrication of out-of-plane homostructures. We first discuss nucleation control of a single domain and orientation control over multiple domains to achieve large-scale single-crystal monolayers. We analyse the defect levels and measures of crystalline quality of typical 2D vdW materials with various epitaxial growth techniques. We then outline technical routes for the growth of homogeneous multilayers and twisted homostructures. We further summarize the current strategies to guide future efforts in optimizing on-demand fabrication of 2D vdW materials, as well as subsequent device manufacturing for their industrial applications.
Collapse
Affiliation(s)
- Can Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing, China
| | - Tianyao Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Espoo, Finland
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Enge Wang
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
| |
Collapse
|
7
|
Pandey V, Mishra S, Maity N, Paul S, B AM, Roy AK, Glavin NR, Watanabe K, Taniguchi T, Singh AK, Kochat V. Probing Interlayer Interactions and Commensurate-Incommensurate Transition in Twisted Bilayer Graphene through Raman Spectroscopy. ACS NANO 2024. [PMID: 38295130 DOI: 10.1021/acsnano.3c08344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Twisted 2D layered materials have garnered much attention recently as a class of 2D materials whose interlayer interactions and electronic properties are dictated by the relative rotation/twist angle between the adjacent layers. In this work, we explore a prototype of such a twisted 2D system, artificially stacked twisted bilayer graphene (TBLG), where we probe, using Raman spectroscopy, the changes in the interlayer interactions and electron-phonon scattering pathways as the twist angle is varied from 0° to 30°. The long-range Moiré potential of the superlattice gives rise to additional intravalley and intervalley scattering of the electrons in TBLG, which has been investigated through their Raman signatures. Density functional theory (DFT) calculations of the electronic band structure of the TBLG superlattices were found to be in agreement with the resonant Raman excitations across the van Hove singularities in the valence and conduction bands predicted for TBLG due to hybridization of bands from the two layers. We also observe that the relative rotation between the graphene layers has a marked influence on the second order overtone and combination Raman modes signaling a commensurate-incommensurate transition in TBLG as the twist angle increases. This serves as a convenient and rapid characterization tool to determine the degree of commensurability in TBLG systems.
Collapse
Affiliation(s)
- Vineet Pandey
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Subhendu Mishra
- Materials Research Centre, Indian Institute of Science, Bengaluru 560012, India
| | - Nikhilesh Maity
- Materials Research Centre, Indian Institute of Science, Bengaluru 560012, India
| | - Sourav Paul
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Abhijith M B
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Ajit K Roy
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Nicholas R Glavin
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Abhishek K Singh
- Materials Research Centre, Indian Institute of Science, Bengaluru 560012, India
| | - Vidya Kochat
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
8
|
Kuang X, Pantaleón Peralta PA, Angel Silva-Guillén J, Yuan S, Guinea F, Zhan Z. Optical properties and plasmons in moiré structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:173001. [PMID: 38232397 DOI: 10.1088/1361-648x/ad1f8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are stimulating significant investigations on moiré structures that possess a tunable moiré potential. Optical response can provide insights into the electronic structures and transport phenomena of non-twisted and twisted moiré structures. In this article, we review both experimental and theoretical studies of optical properties such as optical conductivity, dielectric function, non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive introduction to the widely employed methodology on optical properties is presented. After, moiré potential induced optical conductivity and plasmons in non-twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré heterostructures. Next, recent investigations of twist-angle dependent optical response and plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical properties and plasmons could contribute to the understanding of the many-body effects and superconductivity observed in moiré structures.
Collapse
Affiliation(s)
- Xueheng Kuang
- Yangtze Delta Industrial Innovation Center of Quantum Science and Technology, Suzhou 215000, People's Republic of China
| | | | - Jose Angel Silva-Guillén
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain
| | - Zhen Zhan
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
9
|
Li Y, Zhang F, Ha VA, Lin YC, Dong C, Gao Q, Liu Z, Liu X, Ryu SH, Kim H, Jozwiak C, Bostwick A, Watanabe K, Taniguchi T, Kousa B, Li X, Rotenberg E, Khalaf E, Robinson JA, Giustino F, Shih CK. Tuning commensurability in twisted van der Waals bilayers. Nature 2024; 625:494-499. [PMID: 38233619 DOI: 10.1038/s41586-023-06904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.
Collapse
Affiliation(s)
- Yanxing Li
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Fan Zhang
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Viet-Anh Ha
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Chuan Lin
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chengye Dong
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Qiang Gao
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Zhida Liu
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Xiaohui Liu
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Sae Hee Ryu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hyunsue Kim
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Chris Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron Bostwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kenji Watanabe
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Bishoy Kousa
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Xiaoqin Li
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eslam Khalaf
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | - Joshua A Robinson
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Feliciano Giustino
- Department of Physics, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Chih-Kang Shih
- Department of Physics, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Liu YB, Zhou J, Wu C, Yang F. Charge-4e superconductivity and chiral metal in 45°-twisted bilayer cuprates and related bilayers. Nat Commun 2023; 14:7926. [PMID: 38040764 PMCID: PMC10692084 DOI: 10.1038/s41467-023-43782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
The material realization of charge-4e/6e superconductivity (SC) is a big challenge. Here, we propose to realize charge-4e SC in maximally-twisted homobilayers, such as 45∘-twisted bilayer cuprates and 30∘-twisted bilayer graphene, referred to as twist-bilayer quasicrystals (TB-QC). When each monolayer hosts a pairing state with the largest pairing angular momentum, previous studies have found that the second-order interlayer Josephson coupling would drive chiral topological SC (TSC) in the TB-QC. Here we propose that, above the Tc of the chiral TSC, either charge-4e SC or chiral metal can arise as vestigial phases, depending on the ordering of the total- and relative-pairing-phase fields of the two layers. Based on a thorough symmetry analysis to get the low-energy effective Hamiltonian, we conduct a combined renormalization-group and Monte-Carlo study and obtain the phase diagram, which includes the charge-4e SC and chiral metal phases.
Collapse
Affiliation(s)
- Yu-Bo Liu
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jing Zhou
- Department of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
- Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Congjun Wu
- Institute for Theoretical Sciences, WestLake University, 310024, Hangzhou, China
- New Cornerstone Science Laboratory, Department of Physics, School of Science, Westlake University, 310024, Hangzhou, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou, 310030, P. R. China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, P. R. China
| | - Fan Yang
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
11
|
Wen Y, Coupin MJ, Hou L, Warner JH. Moiré Superlattice Structure of Pleated Trilayer Graphene Imaged by 4D Scanning Transmission Electron Microscopy. ACS NANO 2023; 17:19600-19612. [PMID: 37791789 DOI: 10.1021/acsnano.2c12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Moiré superlattices in graphene arise from rotational twists in stacked 2D layers, leading to specific band structures, charge density and interlayer electron and excitonic interactions. The periodicities in bilayer graphene moiré lattices are given by a simple moiré basis vector that describes periodic oscillations in atomic density. The addition of a third layer to form trilayer graphene generates a moiré lattice comprised of multiple harmonics that do not occur in bilayer systems, leading to nontrivial crystal symmetries. Here, we use atomic resolution 4D-scanning transmission electron microscopy to study atomic structure in bilayer and trilayer graphene moiré superlattices and use 4D-STEM to map the electric fields to show subtle variations in the long-range moiré patterns. We show that monolayer graphene folded into an S-bend graphene pleat produces trilayer moiré superlattices with both small (<2°) and larger twist angles (7-30°). Annular in-plane electric field concentrations are detected in high angle bilayers due to overlapping rotated graphene hexagons in each layer. The presence of a third low angle twisted layer in S-bend trilayer graphene, introduces a long-range modulation of the atomic structure so that no real space unit cell is detected. By directly imaging trilayer moiré harmonics that span from picoscale to nanoscale using 4D-STEM, we gain insights into the complex spatial distributions of atomic density and electric fields in trilayer twisted layered materials.
Collapse
Affiliation(s)
- Yi Wen
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Matthew J Coupin
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Linlin Hou
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Jamie H Warner
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Hu J, Tan J, Al Ezzi MM, Chattopadhyay U, Gou J, Zheng Y, Wang Z, Chen J, Thottathil R, Luo J, Watanabe K, Taniguchi T, Wee ATS, Adam S, Ariando A. Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures. Nat Commun 2023; 14:4142. [PMID: 37438404 DOI: 10.1038/s41467-023-39893-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
The supermoiré lattice, built by stacking two moiré patterns, provides a platform for creating flat mini-bands and studying electron correlations. An ultimate challenge in assembling a graphene supermoiré lattice is in the deterministic control of its rotational alignment, which is made highly aleatory due to the random nature of the edge chirality and crystal symmetry. Employing the so-called "golden rule of three", here we present an experimental strategy to overcome this challenge and realize the controlled alignment of double-aligned hBN/graphene/hBN supermoiré lattice, where the twist angles between graphene and top/bottom hBN are both close to zero. Remarkably, we find that the crystallographic edge of neighboring graphite can be used to better guide the stacking alignment, as demonstrated by the controlled production of 20 moiré samples with an accuracy better than ~ 0.2°. Finally, we extend our technique to low-angle twisted bilayer graphene and ABC-stacked trilayer graphene, providing a strategy for flat-band engineering in these moiré materials.
Collapse
Affiliation(s)
- Junxiong Hu
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Junyou Tan
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Mohammed M Al Ezzi
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Udvas Chattopadhyay
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Yuntian Zheng
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Zihao Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Jiayu Chen
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Reshmi Thottathil
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Jiangbo Luo
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Shaffique Adam
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, 117551, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - A Ariando
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore.
| |
Collapse
|
13
|
Gu S, Liu W, Mi S, Xian G, Guo J, Pang F, Chen S, Yang H, Gao HJ, Cheng Z. Twist angle-dependent work functions in CVD-grown twisted bilayer graphene probed by Kelvin probe force microscopy. NANOSCALE 2023; 15:5825-5833. [PMID: 36857709 DOI: 10.1039/d2nr07242d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tailoring the interlayer twist angle of bilayer graphene (BLG) significantly affects its electronic properties, including its superconductivity, topological transitions, ferromagnetic states, and correlated insulating states. These exotic electronic properties are sensitive to the work functions of BLG samples. In this study, the twist angle-dependent work functions of chemical vapour deposition-grown twisted bilayer graphene (tBLG) were investigated in detail using Kelvin probe force microscopy (KPFM) in combination with Raman spectroscopy. The thickness-dependent surface potentials of Bernal-stacked multilayer graphene were measured. It is found that with the increase in the number of layers, the work function decreases and tends to saturate. Bernal-stacked BLG and tBLG were determined via KPFM due to their twist angle-specific surface potentials. The detailed relationship between the twist angle and surface potential was determined via in situ KPFM and Raman spectral measurements. With the increase in the twist angle, the work function of tBLG will increase rapidly and then increase slowly when it is greater than 5°. The thermal stability of tBLG was investigated through a controlled annealing process. tBLG will become Bernal-stacked BLG after annealing at 350 °C. Our work provides the twist angle-dependent surface potentials of tBLG and provides the relevant conditions for the stability of the twist angle, which lays the foundation for further exploration of its twist angle-dependent electronic properties.
Collapse
Affiliation(s)
- Shangzhi Gu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.
| | - Wenyu Liu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| | - Shuo Mi
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| | - Guoyu Xian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.
| | - Jiangfeng Guo
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| | - Fei Pang
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| | - Shanshan Chen
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| | - Haitao Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.
| | - Zhihai Cheng
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
14
|
Liu F. Time- and angle-resolved photoemission spectroscopy (TR-ARPES) of TMDC monolayers and bilayers. Chem Sci 2023; 14:736-750. [PMID: 36755720 PMCID: PMC9890651 DOI: 10.1039/d2sc04124c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Many unique properties in two-dimensional (2D) materials and their heterostructures rely on charge excitation, scattering, transfer, and relaxation dynamics across different points in the momentum space. Understanding these dynamics is crucial in both the fundamental study of 2D physics and their incorporation in optoelectronic and quantum devices. A direct method to probe charge carrier dynamics with momentum resolution is time- and angle-resolved photoemission spectroscopy (TR-ARPES). Such measurements have been challenging, since photoexcited carriers in many 2D monolayers reside at high crystal momenta, requiring probe photon energies in the extreme UV (EUV) regime. These challenges have been recently addressed by development of table-top pulsed EUV sources based on high harmonic generation, and the successful integration into a TR-ARPES and/or time-resolved momentum microscope. Such experiments will allow direct imaging of photoelectrons with superior time, energy, and crystal momentum resolution, with unique advantage over traditional optical measurements. Recently, TR-ARPES experiments of 2D transition metal dichalcogenide (TMDC) monolayers and bilayers have created unprecedented opportunities to reveal many intrinsic dynamics of 2D materials, such as bandgap renormalization, charge carrier scattering, relaxation, and wavefunction localization in moiré patterns. This perspective aims to give a short review of recent discoveries and discuss the challenges and opportunities of such techniques in the future.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry and the PULSE Institute, Stanford University Stanford California 94305 USA
| |
Collapse
|
15
|
Potočnik T, Christopher PJ, Mouthaan R, Albrow-Owen T, Burton OJ, Jagadish C, Tan HH, Wilkinson TD, Hofmann S, Joyce HJ, Alexander-Webber JA. Automated Computer Vision-Enabled Manufacturing of Nanowire Devices. ACS NANO 2022; 16:18009-18017. [PMID: 36162100 PMCID: PMC9706672 DOI: 10.1021/acsnano.2c08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
We present a high-throughput method for identifying and characterizing individual nanowires and for automatically designing electrode patterns with high alignment accuracy. Central to our method is an optimized machine-readable, lithographically processable, and multi-scale fiducial marker system─dubbed LithoTag─which provides nanostructure position determination at the nanometer scale. A grid of uniquely defined LithoTag markers patterned across a substrate enables image alignment and mapping in 100% of a set of >9000 scanning electron microscopy (SEM) images (>7 gigapixels). Combining this automated SEM imaging with a computer vision algorithm yields location and property data for individual nanowires. Starting with a random arrangement of individual InAs nanowires with diameters of 30 ± 5 nm on a single chip, we automatically design and fabricate >200 single-nanowire devices. For >75% of devices, the positioning accuracy of the fabricated electrodes is within 2 pixels of the original microscopy image resolution. The presented LithoTag method enables automation of nanodevice processing and is agnostic to microscopy modality and nanostructure type. Such high-throughput experimental methodology coupled with data-extensive science can help overcome the characterization bottleneck and improve the yield of nanodevice fabrication, driving the development and applications of nanostructured materials.
Collapse
Affiliation(s)
- Teja Potočnik
- Department
of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Peter J. Christopher
- Department
of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Ralf Mouthaan
- Department
of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Tom Albrow-Owen
- Department
of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Oliver J. Burton
- Department
of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Chennupati Jagadish
- Australian
Research Council Centre of Excellence for Transformative Meta-Optical
Systems, Department of Electronic Materials Engineering, Research
School of Physics and Engineering, The Australian
National University, Canberra ACT 2600, Australia
| | - Hark Hoe Tan
- Australian
Research Council Centre of Excellence for Transformative Meta-Optical
Systems, Department of Electronic Materials Engineering, Research
School of Physics and Engineering, The Australian
National University, Canberra ACT 2600, Australia
| | - Timothy D. Wilkinson
- Department
of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Stephan Hofmann
- Department
of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Hannah J. Joyce
- Department
of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Jack A. Alexander-Webber
- Department
of Engineering, University of Cambridge, 9 JJ Thompson Avenue, Cambridge CB3 0FA, United Kingdom
| |
Collapse
|
16
|
Liu C, Li Z, Qiao R, Wang Q, Zhang Z, Liu F, Zhou Z, Shang N, Fang H, Wang M, Liu Z, Feng Z, Cheng Y, Wu H, Gong D, Liu S, Zhang Z, Zou D, Fu Y, He J, Hong H, Wu M, Gao P, Tan PH, Wang X, Yu D, Wang E, Wang ZJ, Liu K. Designed growth of large bilayer graphene with arbitrary twist angles. NATURE MATERIALS 2022; 21:1263-1268. [PMID: 36109673 DOI: 10.1038/s41563-022-01361-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The production of large-area twisted bilayer graphene (TBG) with controllable angles is a prerequisite for proceeding with its massive applications. However, most of the prevailing strategies to fabricate twisted bilayers face great challenges, where the transfer methods are easily stuck by interfacial contamination, and direct growth methods lack the flexibility in twist-angle design. Here we develop an effective strategy to grow centimetre-scale TBG with arbitrary twist angles (accuracy, <1.0°). The success in accurate angle control is realized by an angle replication from two prerotated single-crystal Cu(111) foils to form a Cu/TBG/Cu sandwich structure, from which the TBG can be isolated by a custom-developed equipotential surface etching process. The accuracy and consistency of the twist angles are unambiguously illustrated by comprehensive characterization techniques, namely, optical spectroscopy, electron microscopy, photoemission spectroscopy and photocurrent spectroscopy. Our work opens an accessible avenue for the designed growth of large-scale two-dimensional twisted bilayers and thus lays the material foundation for the future applications of twistronics at the integration level.
Collapse
Affiliation(s)
- Can Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Department of Physics, Renmin University of China, Beijing, China.
| | - Zehui Li
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Ruixi Qiao
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qinghe Wang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Fang Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Ziqi Zhou
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Nianze Shang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Hongwei Fang
- ShanghaiTech Laboratory for Topological Physics, School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Meixiao Wang
- ShanghaiTech Laboratory for Topological Physics, School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Zhongkai Liu
- ShanghaiTech Laboratory for Topological Physics, School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Zuo Feng
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yang Cheng
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Heng Wu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Dewei Gong
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhensheng Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dingxin Zou
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ying Fu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Hao Hong
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Muhong Wu
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
| | - Peng Gao
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Xinqiang Wang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Enge Wang
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- School of Physics, Liaoning University, Shenyang, China
| | - Zhu-Jun Wang
- ShanghaiTech Laboratory for Topological Physics, School of Physical Science and Technology, Shanghai Tech University, Shanghai, China.
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China.
| |
Collapse
|
17
|
Das P, Chattopadhyay A. Enhanced Chemical Stability in the Twisted Dodecagonal Stacking of Two-Dimensional Copper Nanocluster Assemblies. J Phys Chem Lett 2022; 13:8793-8800. [PMID: 36103686 DOI: 10.1021/acs.jpclett.2c02300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deterministic chemical stacking of two-dimensional materials with controlled symmetry is a synthetic chemistry challenge that deserves attention. It is plausible that depending on the angle of stacking the material properties of the assembly could be tuned. Herein, we report 30° twisted stacking of two-dimensional nanosheets of a hexagonal assembly of organic ligand-stabilized Cu nanoclusters formed through a Zn2+-mediated complexation reaction. Electron diffraction in transmission electron microscopy revealed the presence of regions of dodecagonal symmetry with the apparent loss of translation symmetry. Photoluminescence measurements indicated the formation of the stacked assembly in the liquid medium. The as-synthesized twisted stacking structure exhibited superior delayed photoluminescence and chemical stability─in the presence of molecular iodine─as compared to the hexagonal crystal. The discovery can lead to a bright future in exploring new chemical and physical properties through the design of stacked assemblies of luminescent or other materials.
Collapse
|
18
|
Piccinini G, Mišeikis V, Novelli P, Watanabe K, Taniguchi T, Polini M, Coletti C, Pezzini S. Moiré-Induced Transport in CVD-Based Small-Angle Twisted Bilayer Graphene. NANO LETTERS 2022; 22:5252-5259. [PMID: 35776918 PMCID: PMC9284678 DOI: 10.1021/acs.nanolett.2c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To realize the applicative potential of 2D twistronic devices, scalable synthesis and assembly techniques need to meet stringent requirements in terms of interface cleanness and twist-angle homogeneity. Here, we show that small-angle twisted bilayer graphene assembled from separated CVD-grown graphene single-crystals can ensure high-quality transport properties, determined by a device-scale-uniform moiré potential. Via low-temperature dual-gated magnetotransport, we demonstrate the hallmarks of a 2.4°-twisted superlattice, including tunable regimes of interlayer coupling, reduced Fermi velocity, large interlayer capacitance, and density-independent Brown-Zak oscillations. The observation of these moiré-induced electrical transport features establishes CVD-based twisted bilayer graphene as an alternative to "tear-and-stack" exfoliated flakes for fundamental studies, while serving as a proof-of-concept for future large-scale assembly.
Collapse
Affiliation(s)
- Giulia Piccinini
- NEST,
Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Vaidotas Mišeikis
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pietro Novelli
- Istituto
Italiano di Tecnologia, Via Melen 83, 16152 Genova, Italy
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Marco Polini
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Camilla Coletti
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Pezzini
- NEST,
Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
19
|
Cho H, Son Y, Choi HC. Rotation of Graphene on Cu during Chemical Vapor Deposition and Its Application to Control the Stacking Angle of Bilayer Graphene. NANO LETTERS 2022; 22:3323-3327. [PMID: 35389213 DOI: 10.1021/acs.nanolett.2c00469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Control of the stacking angle (θS) of bilayer graphene (BLG) is essential for fundamental studies and applications of BLG. Especially, the use of chemical vapor deposition (CVD) to grow high-quality BLG requires this control, but methods to achieve it are not available. Here, we found that graphene rotates during the CVD process, and this action can be exploited as a new strategy to control θS. The rotation of graphene was revealed by the population changes of AB-stacked BLG and 30°-twisted BLG upon the growth time change; this change can only be explained by rotation of graphene. The rotation is largely affected by the edge state of graphene which can be tuned by growth temperature. The rotation was observed through experimental results combined with theoretical calculation. The rotation can be blocked or accelerated by controlling the growth temperature, by which highly selective growth of AB-stacked BLG or 30°-twisted BLG can be achieved.
Collapse
Affiliation(s)
- Hyeyeon Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yelim Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hee Cheul Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
20
|
Hu C, Wu T, Huang X, Dong Y, Chen J, Zhang Z, Lyu B, Ma S, Watanabe K, Taniguchi T, Xie G, Li X, Liang Q, Shi Z. In-situ twistable bilayer graphene. Sci Rep 2022; 12:204. [PMID: 34997017 PMCID: PMC8741971 DOI: 10.1038/s41598-021-04030-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
The electrical and optical properties of twisted bilayer graphene (tBLG) depend sensitively on the twist angle. To study the angle dependent properties of the tBLG, currently it is required fabrication of a large number of samples with systematically varied twist angles. Here, we demonstrate the construction of in-situ twistable bilayer graphene, in which the twist angle of the two graphene monolayers can be in-situ tuned continuously in a large range with high precision. The controlled tuning of the twist angle is confirmed by a combination of real-space and spectroscopic characterizations, including atomic force microscopy (AFM) identification of crystal lattice orientation, scanning near-field optical microscopy (SNOM) imaging of superlattice domain walls, and resonant Raman spectroscopy of the largely enhanced G-mode. The developed in-situ twistable homostructure devices enable systematic investigation of the twist angle effects in a single device, thus could largely advance the research of twistronics.
Collapse
Affiliation(s)
- Cheng Hu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tongyao Wu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyue Huang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yulong Dong
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiajun Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhichun Zhang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bosai Lyu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saiqun Ma
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Guibai Xie
- National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi'an), Xi'an, China
| | - Xiaojun Li
- National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi'an), Xi'an, China
| | - Qi Liang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
21
|
Brzhezinskaya M, Kononenko O, Matveev V, Zotov A, Khodos II, Levashov V, Volkov V, Bozhko SI, Chekmazov SV, Roshchupkin D. Engineering of Numerous Moiré Superlattices in Twisted Multilayer Graphene for Twistronics and Straintronics Applications. ACS NANO 2021; 15:12358-12366. [PMID: 34255478 DOI: 10.1021/acsnano.1c04286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because of their unique atomic structure, 2D materials are able to create an up-to-date paradigm in fundamental science and technology on the way to engineering the band structure and electronic properties of materials on the nanoscale. One of the simplest methods along this path is the superposition of several 2D nanomaterials while simultaneously specifying the twist angle between adjacent layers (θ), which leads to the emergence of Moiré superlattices. The key challenge in 2D nanoelectronics is to obtain a nanomaterial with numerous Moiré superlattices in addition to a high carrier mobility in a stable and easy-to-fabricate material. Here, we demonstrate the possibility of synthesizing twisted multilayer graphene (tMLG) with a number of monolayers NL = 40-250 and predefined narrow ranges of θ = 3-8°, θ = 11-15°, and θ = 26-30°. A 2D nature of the electron transport is observed in the tMLG, and its carrier mobilities are close to those of twisted bilayer graphene (tBLG) (with θ = 30°) between h-BN layers. We demonstrate an undoubtful presence of numerous Moiré superlattices simultaneously throughout the entire tMLG thickness, while the periods of these superlattices are rather close to each other. This offers a challenge of producing a next generation of devices for nanoelectronics, twistronics, and neuromorphic computing for large data applications.
Collapse
Affiliation(s)
- Maria Brzhezinskaya
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Oleg Kononenko
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Academician Ossipyan Str. 6, Chernogolovka 142432, Russian Federation
| | - Victor Matveev
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Academician Ossipyan Str. 6, Chernogolovka 142432, Russian Federation
| | - Aleksandr Zotov
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Academician Ossipyan Str. 6, Chernogolovka 142432, Russian Federation
| | - Igor I Khodos
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Academician Ossipyan Str. 6, Chernogolovka 142432, Russian Federation
| | - Vladimir Levashov
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Academician Ossipyan Str. 6, Chernogolovka 142432, Russian Federation
| | - Vladimir Volkov
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Academician Ossipyan Str. 6, Chernogolovka 142432, Russian Federation
| | - Sergey I Bozhko
- Institute of Solid State Physics, Russian Academy of Sciences, Academician Ossipyan Str. 2, Chernogolovka 142432, Russian Federation
| | - Sergey V Chekmazov
- Institute of Solid State Physics, Russian Academy of Sciences, Academician Ossipyan Str. 2, Chernogolovka 142432, Russian Federation
| | - Dmitry Roshchupkin
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Academician Ossipyan Str. 6, Chernogolovka 142432, Russian Federation
| |
Collapse
|
22
|
Zatko V, Dubois SMM, Godel F, Carrétéro C, Sander A, Collin S, Galbiati M, Peiro J, Panciera F, Patriarche G, Brus P, Servet B, Charlier JC, Martin MB, Dlubak B, Seneor P. Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures. ACS NANO 2021; 15:7279-7289. [PMID: 33755422 DOI: 10.1021/acsnano.1c00544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a growth process relying on pulsed laser deposition for the elaboration of complex van der Waals heterostructures on large scales, at a 400 °C CMOS-compatible temperature. Illustratively, we define a multilayer quantum well geometry through successive in situ growths, leading to WSe2 being encapsulated into WS2 layers. The structural constitution of the quantum well geometry is confirmed by Raman spectroscopy combined with transmission electron microscopy. The large-scale high homogeneity of the resulting 2D van der Waals heterostructure is also validated by macro- and microscale Raman mappings. We illustrate the benefit of this integrative in situ approach by showing the structural preservation of even the most fragile 2D layers once encapsulated in a van der Waals heterostructure. Finally, we fabricate a vertical tunneling device based on these large-scale layers and discuss the clear signature of electronic transport controlled by the quantum well configuration with ab initio calculations in support. The flexibility of this direct growth approach, with multilayer stacks being built in a single run, allows for the definition of complex 2D heterostructures barely accessible with usual exfoliation or transfer techniques of 2D materials. Reminiscent of the III-V semiconductors' successful exploitation, our approach unlocks virtually infinite combinations of large 2D material families in any complex van der Waals heterostructure design.
Collapse
Affiliation(s)
- Victor Zatko
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Simon Mutien-Marie Dubois
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Florian Godel
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Cécile Carrétéro
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Anke Sander
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Sophie Collin
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Marta Galbiati
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Julian Peiro
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Federico Panciera
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Gilles Patriarche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Pierre Brus
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Thales Research and Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
| | - Bernard Servet
- Thales Research and Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
| | - Jean-Christophe Charlier
- Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Marie-Blandine Martin
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Bruno Dlubak
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Pierre Seneor
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| |
Collapse
|
23
|
Cai L, Yu G. Fabrication Strategies of Twisted Bilayer Graphenes and Their Unique Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004974. [PMID: 33615593 DOI: 10.1002/adma.202004974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Twisted bilayer graphene (tBLG) exhibits a host of innovative physical phenomena owing to the formation of moiré superlattice. Especially, the discovery of superconducting behavior has generated new interest in graphene. The growing studies of tBLG mainly focus on its physical properties, while the fabrication of high-quality tBLG is a prerequisite for achieving the desired properties due to the great dependence on the twist angle and the interfacial contact. Here, the cutting-edge preparation strategies and challenges of tBLG fabrication are reviewed. The advantages and disadvantages of chemical vapor deposition, epitaxial growth on silicon carbide, stacking monolayer graphene, and folding monolayer graphene methods for the fabrication of tBLG are analyzed in detail, providing a reference for further development of preparation methods. Moreover, the characterization methods of twist angle for the tBLG are presented. Then, the unique physicochemical properties and corresponding applications of tBLG, containing correlated insulating and superconducting states, ferromagnetic state, soliton, enhanced optical absorption, tunable bandgap, and lithium intercalation and diffusion, are described. Finally, the opportunities and challenges for fabricating high-quality and large-area tBLG are discussed, unique physical properties are displayed, and new applications inferred from its angle-dependent features are explored, thereby impelling the commercialization of tBLG from laboratory to market.
Collapse
Affiliation(s)
- Le Cai
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
|
25
|
Khokhriakov D, Karpiak B, Hoque AM, Zhao B, Parui S, Dash SP. Robust Spin Interconnect with Isotropic Spin Dynamics in Chemical Vapor Deposited Graphene Layers and Boundaries. ACS NANO 2020; 14:15864-15873. [PMID: 33136363 PMCID: PMC7690053 DOI: 10.1021/acsnano.0c07163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The utilization of large-area graphene grown by chemical vapor deposition (CVD) is crucial for the development of scalable spin interconnects in all-spin-based memory and logic circuits. However, the fundamental influence of the presence of multilayer graphene patches and their boundaries on spin dynamics has not been addressed yet, which is necessary for basic understanding and application of robust spin interconnects. Here, we report universal spin transport and dynamic properties in specially devised single layer, bilayer, and trilayer graphene channels and their layer boundaries and folds that are usually present in CVD graphene samples. We observe uniform spin lifetime with isotropic spin relaxation for spins with different orientations in graphene layers and their boundaries at room temperature. In all of the inhomogeneous graphene channels, the spin lifetime anisotropy ratios for spins polarized out-of-plane and in-plane are measured to be close to unity. Our analysis shows the importance of both Elliott-Yafet and D'yakonov-Perel' mechanisms with an increasing role of the latter mechanism in multilayer channels. These results of universal and isotropic spin transport on large-area inhomogeneous CVD graphene with multilayer patches and their boundaries and folds at room temperature prove its outstanding spin interconnect functionality, which is beneficial for the development of scalable spintronic circuits.
Collapse
Affiliation(s)
- Dmitrii Khokhriakov
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, SE-41296, Göteborg, Sweden
| | - Bogdan Karpiak
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, SE-41296, Göteborg, Sweden
| | - Anamul Md. Hoque
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, SE-41296, Göteborg, Sweden
| | - Bing Zhao
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, SE-41296, Göteborg, Sweden
| | | | - Saroj P. Dash
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, SE-41296, Göteborg, Sweden
- Graphene
center, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| |
Collapse
|
26
|
Layer-dependent topological phase in a two-dimensional quasicrystal and approximant. Proc Natl Acad Sci U S A 2020; 117:26135-26140. [PMID: 33020263 DOI: 10.1073/pnas.2015164117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The electronic and topological properties of materials are derived from the interplay between crystalline symmetry and dimensionality. Simultaneously introducing "forbidden" symmetries via quasiperiodic ordering with low dimensionality into a material system promises the emergence of new physical phenomena. Here, we isolate a two-dimensional (2D) chalcogenide quasicrystal and approximant, and investigate their electronic and topological properties. The 2D layers of the materials with a composition close to Ta1.6Te, derived from a layered transition metal dichalcogenide, are isolated with standard exfoliation techniques, and investigated with electron diffraction and atomic resolution scanning transmission electron microscopy. Density functional theory calculations and symmetry analysis of the large unit cell crystalline approximant of the quasicrystal, Ta21Te13, reveal the presence of symmetry-protected nodal crossings in the quasicrystalline and approximant phases, whose presence is tunable by layer number. Our study provides a platform for the exploration of physics in quasicrystalline, low-dimensional materials and the interconnected nature of topology, dimensionality, and symmetry in electronic systems.
Collapse
|