1
|
J JR, Mazumder JT, Aloshious AB, Jha RK. Single electron transistor based charge sensors: fabrication challenges and opportunities. NANOSCALE 2025; 17:11960-12013. [PMID: 40309752 DOI: 10.1039/d5nr00384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Measuring electric charge precisely is crucial in various fields including semiconductor device fabrication, particle physics, materials science, medical imaging, electrotherapy, electroplating, and electrolysis. It becomes even more demanding for quantum applications. Existing technology like voltmeters and electrometers are valuable tools, but limitations like low sensitivity, drift, and accessibility hinder their use in quantum applications. Researchers are addressing these issues by exploring new approaches like nanomaterial-based sensors with quantum mechanics for ultra-sensitive charge detection. The single-electron transistor (SET) achieves high sensitivity by controlling individual electron flow due to the Coulomb blockade principle and other quantum phenomena. Existing charge sensors have limited operation, as it is very challenging to detect very small changes in charge due to the continuous current flow. In contrast, SETs control the flow of individual electrons due to the discrete nature of flowing electrons. Furthermore, ultra-low power and highly reliable electronic components can be created by precisely controlling single electrons, which introduces a new era of miniaturized and energy-efficient electronics. In this review, the rudiments of SETs and the significance of material choice for a SET are highlighted. The nano-fabrication methods, leading to the development of next-generation ultra-sensitive and low-power quantum electronics are pointed out. The challenges and issues are incorporated into developing new ideas, approaches, and technologies for the field of quantum sensors. Finally, we discuss the future outlook and potential developments to accelerate the development of high-precision SET-based charge sensors for future research directions.
Collapse
Affiliation(s)
- Jency Rubia J
- Nano Sensors & Devices Lab, Electronics and Electrical Engineering Department, Indian Institute of Technology Guwahati 781039, India.
| | - Julaiba Tahsina Mazumder
- Nano Sensors & Devices Lab, Electronics and Electrical Engineering Department, Indian Institute of Technology Guwahati 781039, India.
- Centre of Excellence for Nanotechnology, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh-522302, India
| | - Arun B Aloshious
- Department of Electrical and Electronics Engineering, Indian Institute of Technology Guwahati 781039, India
| | - Ravindra Kumar Jha
- Nano Sensors & Devices Lab, Electronics and Electrical Engineering Department, Indian Institute of Technology Guwahati 781039, India.
- Department of Electrical and Electronics Engineering, Indian Institute of Technology Guwahati 781039, India
- Centre for Intelligent Cyber-Physical Systems, Indian Institute of Technology Guwahati 781039, India
| |
Collapse
|
2
|
Yang C, Chen C, Bian T, Xu C, Che X, Li D, Liang K, Dong X, Yin J, Li G, Zhu Y. Anisotropic δ-to-α Phase Transition in Formamidinium Lead Iodide Thin Films. ACS NANO 2025; 19:9225-9231. [PMID: 39998157 PMCID: PMC11912570 DOI: 10.1021/acsnano.5c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Thermal annealing on hybrid perovskites is essential to prepare high-quality solar cells with extraordinary efficiency, whose benefits include transformation of inactive phases such as δ-FAPbI3 to active α-FAPbI3. The detailed mechanism for such critical phase transition, however, has not yet been adequately studied. Here, we present multiscale microscopic observation to unravel the anisotropic δ-to-α transition in epitaxial FAPbI3 thin films. We adopt polarized light microscopy that offers enhanced contrast to distinguish isotropic α-FAPbI3 from the anisotropic δ-FAPbI3. Facilitated by in situ heating, it allows us to identify heterogeneous nucleation of α-FAPbI3 and the subsequent diffusional phase transition preferentially occurring along ⟨0001⟩, which is underpinned by the smaller activation energy along the face-sharing direction of PbI6 octahedra. We further reveal the morphology and orientation relationship at the δ-to-α transition front using four-dimensional scanning transmission electron microscopy (4D-STEM), evincing the surface energy dominated orientation rather than the interfacial energy. The presence of high-density planar defects is also discovered at the transition front, which can be considered as an intermediate state facilitating δ-to-α structure transformation. Besides filling the knowledge gap on the phase transition behavior in FAPbI3, our work also demonstrates a multiscale microscopy approach to interrogate the phase transition mechanism in hybrid perovskites.
Collapse
Affiliation(s)
- Chen Yang
- Department
of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon 00000, Hong
Kong, China
| | - Changsheng Chen
- Department
of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon 00000, Hong
Kong, China
| | - Tieyuan Bian
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon 310028, Hong Kong, China
| | - Chao Xu
- Department
of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon 00000, Hong
Kong, China
| | - Xiangli Che
- Department
of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon 00000, Hong
Kong, China
| | - Dongyang Li
- Department
of Electrical and Electronic Engineering, Research Institute for Smart
Energy, Photonic Research Institute, The
Hong Kong Polytechnic University, Hung Hom, Kowloon 310028, Hong Kong, China
| | - Kuan Liang
- Department
of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon 00000, Hong
Kong, China
| | - Xuezhe Dong
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon 310028, Hong Kong, China
| | - Jun Yin
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon 310028, Hong Kong, China
| | - Gang Li
- Department
of Electrical and Electronic Engineering, Research Institute for Smart
Energy, Photonic Research Institute, The
Hong Kong Polytechnic University, Hung Hom, Kowloon 310028, Hong Kong, China
| | - Ye Zhu
- Department
of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon 00000, Hong
Kong, China
| |
Collapse
|
3
|
Zhang G, Sun Z, Gan Z, Liang C, Chen L, Mo H, Jiang Y, Yuan M, Djurišić AB, Kim JT, Li W. One-step Centimeter-Scale Growth of Sub-100-nm Perovskite Single-Crystal Arrays in Ambient Air for Color Painting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415105. [PMID: 39901583 PMCID: PMC11948079 DOI: 10.1002/advs.202415105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Indexed: 02/05/2025]
Abstract
Halide perovskite single crystals have demonstrated enormous potential for next-generation integrated optoelectronic devices. However, there is a lack of a facile method to realize the controllable growth of large-scale, high-quality, and high-resolution perovskite single crystal arrays on diverse types of substrates, which hinders their application in practical scenarios. Here, a one-step wettability-guided blade coating approach is reported for the rapid in situ crystallization of large-scale, multicolor, and sub-100 nm perovskite single-crystal arrays in the ambient environment. By this strategy, the physical dimensions of perovskite single crystals can be precisely regulated from 90 to 260 nm, with a size variation coefficient < 10% and an area of over 900 mm2. All three typicalhalogen perovskites for multi-color luminescence, CsPbX3 (X = Cl, Br, I) and their mixtures (Cl/Br or Br/I systems), are appliable to this fabrication process through the demonstration of complex RGB patterns with remarkable photoluminescence properties. Moreover, various rigid substrates such as silicon oxide (SiO2), silicon (Si), and glass can also be used to construct the wettability-constrast templates where perovskite crystal nucleate and grow. After that, the perovskite single-crystal arrays or complex patterns can be transferred onto flexible substrates, for instance, COC. This method combines convenient solution processing with conventional photolithography to prepare the high-resolution, large-area, and superior-quality perovskite single crystal arrays in a high-throughput manner, showing great potential in the integration of perovskite nano-optoelectronic devices and chips.
Collapse
Affiliation(s)
- Guannan Zhang
- Department of Mechanical EngineeringThe University of Hong KongHong KongSAR999077P. R. China
| | - Zhao Sun
- Department of Mechanical EngineeringThe University of Hong KongHong KongSAR999077P. R. China
| | - Zhuofei Gan
- Department of Mechanical EngineeringThe University of Hong KongHong KongSAR999077P. R. China
| | - Chuwei Liang
- Department of Mechanical EngineeringThe University of Hong KongHong KongSAR999077P. R. China
| | - Liyang Chen
- Department of Mechanical EngineeringThe University of Hong KongHong KongSAR999077P. R. China
| | - Hongbo Mo
- Department of PhysicsThe University of Hong KongHong KongSAR999077P. R. China
| | - Yuanzhi Jiang
- State Key Laboratory of Advanced Chemical Power SourcesKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Frontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300073P. R. China
| | - Mingjian Yuan
- State Key Laboratory of Advanced Chemical Power SourcesKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Frontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300073P. R. China
| | | | - Ji Tae Kim
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Science TownDaejeon34141Republic of Korea
| | - Wen‐Di Li
- Department of Mechanical EngineeringThe University of Hong KongHong KongSAR999077P. R. China
| |
Collapse
|
4
|
Shi Y, Gan Y, Chen Y, Wang Y, Ghosh S, Kavokin A, Xiong Q. Coherent optical spin Hall transport for polaritonics at room temperature. NATURE MATERIALS 2025; 24:56-62. [PMID: 39438655 DOI: 10.1038/s41563-024-02028-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
Spin or valley degrees of freedom hold promise for next-generation spintronics. Nonetheless, the macroscopic coherent spin current formations are still hindered by rapid dephasing due to electron scattering, specifically at room temperature. Exciton polaritons offer excellent platforms for spin-optronic devices via the optical spin Hall effect. However, this effect could neither be unequivocally observed at room temperature nor be exploited for practical spintronic devices due to the presence of strong thermal fluctuations or large linear spin splitting. Here we report the observation of room-temperature optical spin Hall effect of exciton polaritons, with the spin current flow over 60 μm in a formamidinium lead bromide perovskite microcavity. We provide direct evidence of long-range coherence in the flow of polaritons and the spin current carried by them. Leveraging the spin Hall transport of polaritons, we further demonstrate two polaritonic devices, namely, a NOT gate and a spin-polarized beamsplitter, advancing the frontier of room-temperature polaritonics in perovskite microcavities.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, People's Republic of China
| | - Yusong Gan
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, People's Republic of China
| | - Yuzhong Chen
- Beijing Academy of Quantum Information Sciences, Beijing, People's Republic of China
| | - Yubin Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, People's Republic of China
| | - Sanjib Ghosh
- Beijing Academy of Quantum Information Sciences, Beijing, People's Republic of China.
| | - Alexey Kavokin
- School of Science, Westlake University and Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, People's Republic of China.
- Moscow Center for Advanced Studies, Moscow, Russia.
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, People's Republic of China.
- Beijing Academy of Quantum Information Sciences, Beijing, People's Republic of China.
- Frontier Science Center for Quantum Information, Beijing, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Zhou Y, Liu D, Gui Yang H, Yang S, Hou Y. Preparation Techniques for Perovskite Single Crystal Films: From Nucleation to Growth. Chem Asian J 2024:e202401294. [PMID: 39624991 DOI: 10.1002/asia.202401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Thickness-controllable perovskite single crystal films exhibit tremendous potential for various optoelectronic applications due to their capacity to leverage the relationship between diffusion length and absorption depth. However, the fabrication processes have suffered from difficulties in large-area production and poor quality with abundant surface defects. While post-treatments, such as passivation and polishing, can provide partial improvement in surface quality, the fundamental solution lies in the direct growth of high-quality single crystal films. In this work, we firstly summarize the basic principles of nucleation and growth phenomenon of crystalline materials. Advanced growth methods of perovskite single crystal films, including solution-based, vapor phase epitaxial growth, and top-down method, are discussed, highlighting their respective advantages and limitations. Finally, we also present future directions and the challenges that lie ahead in perovskite single crystal films.
Collapse
Affiliation(s)
- Yawen Zhou
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Da Liu
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Hua Gui Yang
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Shuang Yang
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| | - Yu Hou
- East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, 130 Meilong Road, 200237, Shanghai, China
| |
Collapse
|
6
|
Liu Y, Knaus T, Wei Z, Zhang J, Damian M, Ronneberger S, Zhu X, Seeberger PH, Zhang H, Mutti FG, Loeffler FF. Confined Flash Printing and Synthesis of Stable Perovskite Nanofilms under Ambient Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409592. [PMID: 39308199 DOI: 10.1002/adma.202409592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
The fabrication of stable perovskite nanofilm patterns is important for the development of functional optical devices. However, current production approaches are limited by the requirement for strict inert gas protection and long processing times. Here, a confined flash printing synthesis method is presented to generate perovskite nanofilms under ambient conditions, combining precursor transfer, perovskite synthesis, crystallization, and polymer protection in a single step within milliseconds. A laser simultaneously prints and induces the flash synthesis, confined in a polymer nanofilm, under normal ambient conditions. Due to its simplicity and flexibility, the method enables the combination and screening of many different perovskite precursor materials on various substrates. Besides for the development of novel perovskite materials and devices, the nanofilms can be applied for biodetection. The unique H2O2-responsive property of the ultrathin perovskite quantum dot film is applied for biomolecule detection based on oxidase-catalyzed enzymatic reactions.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Biomolecular System, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
| | - Tanja Knaus
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Zheng Wei
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Junfang Zhang
- Department of Biomolecular System, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
| | - Matteo Damian
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Sebastian Ronneberger
- Department of Biomolecular System, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
- Institute of Physics and Astronomy, University of Potsdam, Campus Golm, 14476, Potsdam, Germany
| | - Xingjun Zhu
- School of Physical Science and Technology, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Peter H Seeberger
- Department of Biomolecular System, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
| | - Hong Zhang
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Francesco G Mutti
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Felix F Loeffler
- Department of Biomolecular System, Max Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
| |
Collapse
|
7
|
Li X, Aftab S, Mukhtar M, Kabir F, Khan MF, Hegazy HH, Akman E. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. NANO-MICRO LETTERS 2024; 17:28. [PMID: 39343866 PMCID: PMC11439866 DOI: 10.1007/s40820-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, Anhui, People's Republic of China
- Anhui Laboratory of Advanced Laser Technology, Hefei, 230037, Anhui, People's Republic of China
- Nanhu Laser Laboratory, Changsha, 410015, Hunan, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, 61413, Abha, Saudi Arabia
| | - Erdi Akman
- Scientific and Technological Research and Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
8
|
Tan Z, Jung U, Jeong S, Park J. Transferrable CsPbBr 3 Perovskite Single-Crystalline Films for Visible-Wavelength Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45147-45155. [PMID: 39138136 DOI: 10.1021/acsami.4c07059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this study, we propose large-scale CsPbBr3 (CPB) single-crystalline films (SCFs) grown by a one-step vapor-phase epitaxy (VPE) method for application in optoelectronic devices. After optimizing the transport speed of the precursor and cooling rate, we obtained continuous CPB films with a lateral size exceeding 2 cm2, and the thickness could be controlled from several micrometers to hundreds of nanometers. Crystallography and optoelectronic characterization proved the excellent crystallinity and very low trap density (2.14 × 1011) of the SCFs. Furthermore, we demonstrate a transfer-assembly strategy for fabricating perovskite SCF-based heterostructures for visible photodetectors. The high-quality SCF films in the active layer suppress the leakage current, leading to a low dark current of 5 × 10-10 A at -0.6 V. Therefore, the self-biased photodetector based on the vertical CsPbBr3 SCF-SnO2 heterostructure showed a high responsivity of 1.9 A/W, a detectivity of 4.65 × 1012 Jones, and a large on/off ratio of 4.63 × 103 under a 1 mW/cm2 450 nm light illumination. Our study not only demonstrates the excellent performance of single-crystalline perovskite-based photodiodes but also provides a universal assembly method for the integration of monocrystalline perovskite films in optoelectronic devices.
Collapse
Affiliation(s)
- Zhaozhong Tan
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
| | - Uijin Jung
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
| | - Seongmin Jeong
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
| | - Jinsub Park
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
- Department of Semiconductor Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
9
|
Liu S, Gao W, Chen Y, Yang X, Niu K, Li S, Xiao Y, Liu Y, Zhong J, Xia J, Li Z, Hu Y, Chen S, Liu Y, Wang Y. van der Waals Integration of Large-Area Monocrystalline 3D Perovskite Thin Films on Arbitrary Semiconductor Substrates for Heterojunctions. NANO LETTERS 2024; 24:7724-7731. [PMID: 38864413 DOI: 10.1021/acs.nanolett.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Perovskite monocrystalline films are regarded as desirable candidates for the integration of high-performance optoelectronics due to their unique photophysical properties. However, the heterogeneous integration of a perovskite monocrystalline film with other semiconductors is fundamentally limited by the lattice mismatch, which hinders direct epitaxy. Herein, the van der Waals (vdW) integration strategy for 3D perovskites is developed, where perovskite monocrystalline films are epitaxially grown on the mother substrate, followed by its peeling off and transferring to arbitrary semiconductors, forming monocrystalline heterojunctions. The as-achieved CsPbBr3-Nb-doped SrTiO3 (Nb:STO) vdW p-n heterojunction exhibited comparable performance to their directly epitaxial counterpart, demonstrating the feasibility of vdW integration for 3D perovskites. Furthermore, the vdW integration could be extended to silicon substrates, rendering the CsPbBr3-n-Si and CsPbCl3-p-Si p-n heterojunction with apparent rectification behaviors and photoresponse. The vdW integration significantly enriches the selections of semiconductors hybridizing with perovskites and provides opportunities for monocrystalline perovskite optoelectronics with complex configurations and multiple functionalities.
Collapse
Affiliation(s)
- Songlong Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Weiqi Gao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiaokun Yang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Kaixin Niu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Siyu Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yulong Xiao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering and Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Yanfang Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiang Zhong
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiangnan Xia
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zhou Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yuanyuan Hu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Shulin Chen
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Pham PV, Mai TH, Dash SP, Biju V, Chueh YL, Jariwala D, Tung V. Transfer of 2D Films: From Imperfection to Perfection. ACS NANO 2024; 18:14841-14876. [PMID: 38810109 PMCID: PMC11171780 DOI: 10.1021/acsnano.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Atomically thin 2D films and their van der Waals heterostructures have demonstrated immense potential for breakthroughs and innovations in science and technology. Integrating 2D films into electronics and optoelectronics devices and their applications in electronics and optoelectronics can lead to improve device efficiencies and tunability. Consequently, there has been steady progress in large-area 2D films for both front- and back-end technologies, with a keen interest in optimizing different growth and synthetic techniques. Parallelly, a significant amount of attention has been directed toward efficient transfer techniques of 2D films on different substrates. Current methods for synthesizing 2D films often involve high-temperature synthesis, precursors, and growth stimulants with highly chemical reactivity. This limitation hinders the widespread applications of 2D films. As a result, reports concerning transfer strategies of 2D films from bare substrates to target substrates have proliferated, showcasing varying degrees of cleanliness, surface damage, and material uniformity. This review aims to evaluate, discuss, and provide an overview of the most advanced transfer methods to date, encompassing wet, dry, and quasi-dry transfer methods. The processes, mechanisms, and pros and cons of each transfer method are critically summarized. Furthermore, we discuss the feasibility of these 2D film transfer methods, concerning their applications in devices and various technology platforms.
Collapse
Affiliation(s)
- Phuong V. Pham
- Department
of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - The-Hung Mai
- Department
of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Saroj P. Dash
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Vasudevanpillai Biju
- Research
Institute for Electronic Science, Hokkaido
University, Hokkaido 001-0020, Japan
| | - Yu-Lun Chueh
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Deep Jariwala
- Department
of Electrical and Systems Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vincent Tung
- Department
of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Wu LK, Feng Y, Zou QH, Jiang LL, Wang ZJ, Wang N, Ye HY, Li JR. Gas-Liquid Interface Route to Hybrid Copper Bromine Perovskite Single-Crystal Membrane with Dielectric Transitions and Ferromagnetic Exchanges. Inorg Chem 2024; 63:6972-6979. [PMID: 38567571 DOI: 10.1021/acs.inorgchem.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-crystal membranes (SCMs) show great promise in the fields of sensors, light-emitting diodes, and photodetection. However, the growth of a large-area single-crystal membranes is challenging. We report a new organic-inorganic SCMs [HCMA]2CuBr4 (HCMA = cyclohexanemethylamine) crystallized at the gas-liquid interface. It also has low-temperature ferromagnetic order, high-temperature dielectric anomalies, and narrow band gap indirect semiconductor properties. Specifically, the reversible phase transition of the compound occurs at 350/341 K on cooling/heating and exhibits dielectric anomalies and stable switching performance near the phase transition temperature. The ferromagnetic exchange interaction in the inorganic octahedra and the organic layer enables ferromagnetic ordering at low-temperature 10 K. Finally, the single crystal exhibits an indirect semiconducting property with a narrow band gap of 0.99 eV. Such rich multichannel physical properties make it a potential application in photodetection, information storage and sensors.
Collapse
Affiliation(s)
- Ling-Kun Wu
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yan Feng
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Qing-Hua Zou
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Lu-Lu Jiang
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ze-Jie Wang
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Na Wang
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| |
Collapse
|
12
|
Shi X, Liu C, Zhang X, Zhan G, Cai Y, Zhou D, Zhao Y, Wang N, Hu F, Wang X, Ma H, Wang L. Vapor Phase Growth of Air-Stable Hybrid Perovskite FAPbBr 3 Single-Crystalline Nanosheets. NANO LETTERS 2024; 24:2299-2307. [PMID: 38334593 DOI: 10.1021/acs.nanolett.3c04604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Organic-inorganic hybrid perovskites have attracted tremendous attention owing to their fascinating optoelectronic properties. However, their poor air stability seriously hinders practical applications, which becomes more serious with thickness down to the nanoscale. Here we report a one-step vapor phase growth of HC(NH2)2PbBr3 (FAPbBr3) single-crystalline nanosheets of tunable size up to 50 μm and thickness down to 20 nm. The FAPbBr3 nanosheets demonstrate high stability for over months of exposure to air with no degradation in surface roughness and photoluminescence efficiency. Besides, the FAPbBr3 photodetectors exhibit superior overall performance as compared to previous devices based on nonlayered perovskite nanosheets, such as an ultralow dark current of 24 pA, an ultrahigh responsivity of 1033 A/W, an external quantum efficiency over 3000%, a rapid response time around 25 ms, and a high on/off ratio of 104. This work provides a strategy to tackle the challenges of hybrid perovskites toward integrated optoelectronics with requirements of nanoscale thickness, high stability, and excellent performance.
Collapse
Affiliation(s)
- Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Xiaomin Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuxiao Cai
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Yuwei Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Nana Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Fengrui Hu
- School of Physics, College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- School of Physics, College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| |
Collapse
|
13
|
Li Z, Lin Y, Gu H, Zhang N, Wang B, Cai H, Liao J, Yu D, Chen Y, Fang G, Liang C, Yang S, Xing G. Large-n quasi-phase-pure two-dimensional halide perovskite: A toolbox from materials to devices. Sci Bull (Beijing) 2024; 69:382-418. [PMID: 38105163 DOI: 10.1016/j.scib.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Despite their excellent environmental stability, low defect density, and high carrier mobility, large-n quasi-two-dimensional halide perovskites (quasi-2DHPs) feature a limited application scope because of the formation of self-assembled multiple quantum wells (QWs) due to the similar thermal stabilities of large-n phases. However, large-n quasi-phase-pure 2DHPs (quasi-PP-2DHPs) can solve this problem perfectly. This review discusses the structures, formation mechanisms, and photoelectronic and physical properties of quasi-PP-2DHPs, summarises the corresponding single crystals, thin films, and heterojunction preparation methods, and presents the related advances. Moreover, we focus on applications of large-n quasi-PP-2DHPs in solar cells, photodetectors, lasers, light-emitting diodes, and field-effect transistors, discuss the challenges and prospects of these emerging photoelectronic materials, and review the potential technological developments in this area.
Collapse
Affiliation(s)
- Zijia Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuexin Lin
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Nan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Dejian Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Guojia Fang
- Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China.
| |
Collapse
|
14
|
Cao X, Zhou R, Xiong Y, Du G, Feng Z, Pan Q, Chen Y, Ji H, Ni Z, Lu J, Hu H, You Y. Volume-Confined Fabrication of Large-Scale Single-Crystalline Molecular Ferroelectric Thin Films and Their Applications in 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305016. [PMID: 38037482 PMCID: PMC10811469 DOI: 10.1002/advs.202305016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Indexed: 12/02/2023]
Abstract
With outstanding advantages of chemical synthesis, structural diversity, and mechanical flexibility, molecular ferroelectrics have attracted increasing attention, demonstrating themselves as promising candidates for next-generation wearable electronics and flexible devices in the film form. However, it remains a challenge to grow high-quality thin films of molecular ferroelectrics. To address the above issue, a volume-confined method is utilized to achieve ultrasmooth single-crystal molecular ferroelectric thin films at the sub-centimeter scale, with the thickness controlled in the range of 100-1000 nm. More importantly, the preparation method is applicable to most molecular ferroelectrics and has no dependency on substrates, showing excellent reproducibility and universality. To demonstrate the application potential, two-dimensional (2D) transitional metal dichalcogenide semiconductor/molecular ferroelectric heterostructures are prepared and investigated by optical spectroscopic method, proving the possibility of integrating molecular ferroelectrics with 2D layered materials. These results may unlock the potential for preparing and developing high-performance devices based on molecular ferroelectric thin films.
Collapse
Affiliation(s)
- Xiao‐Xing Cao
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Ru‐Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Yu‐An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Guo‐Wei Du
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Zi‐Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Yin‐Zhu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Hao‐Ran Ji
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Zhenhua Ni
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Junpeng Lu
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189People's Republic of China
| | - Huihui Hu
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| | - Yu‐Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189People's Republic of China
| |
Collapse
|
15
|
Qiao BS, Wang SY, Zhang ZH, Lian ZD, Zheng ZY, Wei ZP, Li L, Ng KW, Wang SP, Liu ZB. Photosensitive Dielectric 2D Perovskite Based Photodetector for Dual Wavelength Demultiplexing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300632. [PMID: 36916201 DOI: 10.1002/adma.202300632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Stacked 2D perovskites provide more possibilities for next generation photodetector with more new features. Compared with its excellent optoelectronic properties, the good dielectric performance of metal halide perovskite rarely comes into notice. Here, a bifunctional perovskite based photovoltaic detector capable of two wavelength demultiplexing is demonstrated. In the Black Phosphorus/Perovskite/MoS2 structured photodetector, the comprehensive utilization of the photosensitive and dielectric properties of 2D perovskite allows the device to work in different modes. The device shows normal continuous photoresponse under 405 nm, while it shows a transient spike response to visible light with longer wavelengths. The linear dynamic range, rise/decay time, and self-powered responsivity under 405 nm can reach 100, 38 µs/50 µs, and 17.7 mA W-1 , respectively. It is demonstrated that the transient spike photocurrent with long wavelength exposure is related to the illumination intensity and can coexist with normal photoresponse. Two waveband-dependent signals can be identified and used to reflect more information simultaneously. This work provides a new strategy for multispectral detection and demultiplexing, which can be used to improve data transfer rates and encrypted communications. This work mode can inspire more multispectral photodetectors with different stacked 2D materials, especially to the optoelectronic application of the wide bandgap, high dielectric photosensitive materials.
Collapse
Affiliation(s)
- Bao-Shi Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Su-Yun Wang
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Hong Zhang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Zhen-Dong Lian
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Zhi-Yao Zheng
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun, 130033, P. R. China
| | - Zhi-Peng Wei
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Lin Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics & Electron Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Shuang-Peng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China
| | - Zhi-Bo Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
16
|
Chang Z, Lu Z, Deng W, Shi Y, Sun Y, Zhang X, Jie J. Narrow-bandgap Sn-Pb mixed perovskite single crystals for high-performance near-infrared photodetectors. NANOSCALE 2023; 15:5053-5062. [PMID: 36805123 DOI: 10.1039/d2nr05800f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Narrow-bandgap Sn-Pb mixed perovskite single crystals are highly promising as photoactive materials for efficient and low-cost near-infrared (NIR) photodetectors. However, because of the significant difference in the crystallization velocities for Pb- and Sn-based perovskites, Sn-Pb mixed perovskites are peculiarly prone to phase separation during the crystallization process, causing the degradation of the optical and electronic properties of materials. Herein, we propose a low-temperature space-confined technique (LT-SCT) that simultaneously reduces the crystallization velocities of pure Sn and Pb perovskites, enabling the fabrication of pure-phase (FASnI3)0.1(MAPbI3)0.9 single crystals. The resulting (FASnI3)0.1(MAPbI3)0.9 single crystals exhibit excellent crystallinity with a high hole mobility of 7.44 × 103 cm2 V-1 s-1 and a low surface trap density of 1.88 × 109 cm-2. These properties benefit the application of (FASnI3)0.1(MAPbI3)0.9 single crystals in self-powered NIR photodetectors and yield outstanding comprehensive performance, especially with a broad linear dynamic range of up to 163.5 dB, a large responsivity (R) of 0.53 A W-1, and a fast response speed of 22.78 μs in the NIR spectral region (750-860 nm). Furthermore, high-quality NIR imaging and wearable health monitoring are achieved by employing high-performance and self-driven NIR photodetectors. This work contributes to developing Sn-Pb mixed perovskite single crystals and provides a promising candidate for efficient and low-cost NIR photodetection.
Collapse
Affiliation(s)
- Zhizhen Chang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Zhengjun Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Yandi Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Yuye Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
| |
Collapse
|
17
|
Hong E, Li Z, Yan T, Fang X. Surface-Tension-Dominant Crystallization of 2D Perovskite Single Crystals for Vertically Oriented Hetero-/Homo-Structure Photodetectors. NANO LETTERS 2022; 22:8662-8669. [PMID: 36314926 DOI: 10.1021/acs.nanolett.2c03262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
2D halide perovskites feature solution processability and tunable optoelectronic properties for optoelectronic applications. However, the controllable fabrication of halide perovskite heterojunction still remains a challenge. Herein, through controlling surface tension and nucleation driving force, a fast and facile aqueous floating growth is demonstrated to obtain a series of large-area single-crystalline 2D perovskite microplates at room temperature. The optoelectronic performance of 2D perovskites can be tuned by composition engineering, and the best performance is realized for quantum well index n = 4, including a suppressed dark current with boosted photocurrent and an on/off ratio up to 3.5 orders of magnitude. Benefiting from a convenient transfer method onto arbitrary substrates, vertically oriented 2D perovskite hetero-/homo-junctions are gently stacked, which exhibit improved self-powered characteristics. This straightforward growth strategy is an universal solution-processed method for growing 2D perovskites, laying the foundation of the 2D perovskite hetero-/homo-junction for future miniaturization and functionalization of next-generation optoelectronics.
Collapse
Affiliation(s)
- Enliu Hong
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai200433, P. R. China
| | - Tingting Yan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai200433, P. R. China
| |
Collapse
|
18
|
Zhang H, Yu T, Wang C, Jia R, Pirzado AAA, Wu D, Zhang X, Zhang X, Jie J. High-Luminance Microsized CH 3NH 3PbBr 3 Single-Crystal-Based Light-Emitting Diodes via a Facile Liquid-Insulator Bridging Route. ACS NANO 2022; 16:6394-6403. [PMID: 35404055 DOI: 10.1021/acsnano.2c00488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Micro-/nanosized organic-inorganic hybrid perovskite single crystals (SCs) with appropriate thickness and high crystallinity are promising candidates for high-performance electroluminescent (EL) devices. However, their small lateral size poses a great challenge for efficient device construction and performance optimization, causing perovskite SC-based light-emitting diodes (PSC-LEDs) to demonstrate poor EL performance. Here, we develop a facile liquid-insulator bridging (LIB) strategy to fabricate high-luminance PSC-LEDs based on single-crystalline CH3NH3PbBr3 microflakes. By introducing a blade-coated poly(methyl methacrylate) (PMMA) insulating layer to effectively overcome the problems of leakage current and possible short circuits between electrodes, we achieve the reliable fabrication of PSC-LEDs. The LIB method also allows us to systematically boost the device performance through crystal growth regulation and device architecture optimization. Consequently, we realize the best CH3NH3PbBr3 microflake-based PSC-LED with an ultrahigh luminance of 136100 cd m-2 and a half-lifetime of 88.2 min at an initial luminance of ∼1100 cd m-2, which is among the highest for organic-inorganic hybrid perovskite LEDs reported to date. Moreover, we observe the strong polarized edge emission of the microflake-based PSC-LEDs with a high degree of polarization up to 0.69. Our work offers a viable approach for the development of high-performance perovskite SC-based EL devices.
Collapse
Affiliation(s)
- Huanyu Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Tingxiu Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Chaoqiang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Ruofei Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Azhar Ali Ayaz Pirzado
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Department of Electronic Engineering, Faculty of Engineering and Technology, University of Sindh, Allama I.I. Kazi Campus, Jamshoro, Sindh 76080, Pakistan
| | - Di Wu
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
| |
Collapse
|
19
|
Jia L, Wu J, Zhang Y, Qu Y, Jia B, Chen Z, Moss DJ. Fabrication Technologies for the On-Chip Integration of 2D Materials. SMALL METHODS 2022; 6:e2101435. [PMID: 34994111 DOI: 10.1002/smtd.202101435] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
With compact footprint, low energy consumption, high scalability, and mass producibility, chip-scale integrated devices are an indispensable part of modern technological change and development. Recent advances in 2D layered materials with their unique structures and distinctive properties have motivated their on-chip integration, yielding a variety of functional devices with superior performance and new features. To realize integrated devices incorporating 2D materials, it requires a diverse range of device fabrication techniques, which are of fundamental importance to achieve good performance and high reproducibility. This paper reviews the state-of-art fabrication techniques for the on-chip integration of 2D materials. First, an overview of the material properties and on-chip applications of 2D materials is provided. Second, different approaches used for integrating 2D materials on chips are comprehensively reviewed, which are categorized into material synthesis, on-chip transfer, film patterning, and property tuning/modification. Third, the methods for integrating 2D van der Waals heterostructures are also discussed and summarized. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Linnan Jia
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yuning Zhang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yang Qu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Zhigang Chen
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300457, China
- Department of Physics and Astronomy, San Francisco State University, San Francisco, CA, 94132, USA
| | - David J Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
20
|
Pang S, Io W, Hao J. Facile Atomic-Level Tuning of Reactive Metal-Support Interactions in the Pt QDs@ HF-Free MXene Heterostructure for Accelerating pH-Universal Hydrogen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102207. [PMID: 34612021 PMCID: PMC8596115 DOI: 10.1002/advs.202102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Indexed: 05/19/2023]
Abstract
Supported metallic nanoparticles render highly tunable physical and chemical properties to mixed-dimensionality materials in electrocatalysts. However, some supports are susceptible to being dissolved in acidic solution or are unstable in ambient air. The development of high-performance catalysts has been facing the major hurdles of the sluggish activity in alkaline solution and requesting high energy to stabilize the nanoparticles on their supports, challenging the pH-universality and the applicability of the supported metallic nanoparticles. Here, a one-step strategy is proposed to modulate the growth of Pt quantum dots (QDs) on HF-free MXene under atomic-level by a low-temperature metal-support interaction reaction. By controllable tailoring in the morphology and strain induced by terminations, Pt (111) QDs with a sub-nanoscale size of 1.15 nm are grown as 0D/1D heterostructure to overcome the restrictions of employing reduction gas and high annealing temperature. The catalyst exhibits a low overpotential of 33.3 mV for acidic solution, while 65.1 mV for alkaline solution at a specific current density of 10 mA cm-2 . This study not only paves a scalable pathway to developing cost-efficient catalysts in moderate conditions, but also demonstrates an effective surface modulation strategy for 0D/1D heterostructures.
Collapse
Affiliation(s)
- Sin‐Yi Pang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Weng‐Fu Io
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Jianhua Hao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongP. R. China
| |
Collapse
|
21
|
Ding R, Lyu Y, Wu Z, Guo F, Io WF, Pang SY, Zhao Y, Mao J, Wong MC, Hao J. Effective Piezo-Phototronic Enhancement of Flexible Photodetectors Based on 2D Hybrid Perovskite Ferroelectric Single-Crystalline Thin-Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101263. [PMID: 34176170 DOI: 10.1002/adma.202101263] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/23/2021] [Indexed: 06/13/2023]
Abstract
2D hybrid perovskites are very attractive for optoelectronic applications because of their numerous exceptional properties. The emerging 2D perovskite ferroelectrics, in which are the coupling of spontaneous polarization and piezoelectric effects, as well as photoexcitation and semiconductor behaviors, have great appeal in the field of piezo-phototronics that enable to effectively improve the performance of optoelectronic devices via modulating the electro-optical processes. However, current studies on 2D perovskite ferroelectrics focus on bulk ceramics that cannot endure irregular mechanical deformation and limit their application in flexible optoelectronics and piezo-phototronics. Herein, we synthesize ferroelectric EA4 Pb3 Br10 single-crystalline thin-films (SCFs) for integration into flexible photodetectors. The in-plane multiaxial ferroelectricity is evident within the EA4 Pb3 Br10 SCFs through systematic characterizations. Flexible photodetectors based on EA4 Pb3 Br10 SCFs are achieved with an impressive photodetection performance. More importantly, optoelectronic EA4 Pb3 Br10 SCFs incorporated with in-plane ferroelectric polarization and effective piezoelectric coefficient show great promise for the observation of piezo-phototronic effect, which is capable of greatly enhancing the photodetector performance. Under external strains, the responsivity of the flexible photodetectors can be modulated by piezo-phototronic effect with a remarkable enhancement up to 284%. Our findings shed light on the piezo-phototronic devices and offer a promising avenue to broaden functionalities of hybrid perovskite ferroelectrics.
Collapse
Affiliation(s)
- Ran Ding
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Yongxin Lyu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Zehan Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Feng Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Weng Fu Io
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Sin-Yi Pang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Yuqian Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Jianfeng Mao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
22
|
Lee JW, Seo S, Nandi P, Jung HS, Park NG, Shin H. Dynamic structural property of organic-inorganic metal halide perovskite. iScience 2020; 24:101959. [PMID: 33437939 PMCID: PMC7788097 DOI: 10.1016/j.isci.2020.101959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Unique organic-inorganic hybrid semiconducting materials have made a remarkable breakthrough in new class of photovoltaics (PVs). Organic-inorganic metal (Pb and/or Sn) halides (-I, -Br, and -Cl) are the semiconducting absorber with the crystal structure of the famous "Perovskite". It is widely called "perovskite solar cells (PSCs)" in PV society. Now, the power conversion efficiency (PCE) of PSCs is recorded in 25.5%. Prototypical composition of the absorbers is (A = methylammonium [MA], formamidinium [FA], and Cs), (M = Pb and/or Sn), and (X = I, Br, and Cl) in the form of perovskite AMX3. Since the report on the stable all solid-state PSCs in 2012, the average annual growth rate of PCE is well over ∼10%. Such an outstanding PV performance attracts huge number of scientists in our research society. Their chemical as well as physical properties are dramatically different from monocrystalline Si, GaAs, other III-IV semiconductors, and many oxides with the crystal structure of perovskite. In this review, different fundamental aspects, in particular, the dynamic properties of A site cationic molecules and PbI6 octahedrons linked with their corners, from other semiconducting and dielectric materials are reviewed and summarized. Upon discussing unique properties, perspectives on the promising PV applications based on the comprehension in dynamic nature of the orientation in A site molecule and PbI6 octahedron tilting will be given.
Collapse
Affiliation(s)
- Jin-Wook Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seongrok Seo
- Department of Energy Science and Nature Inspired Materials Processing Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pronoy Nandi
- Department of Energy Science and Nature Inspired Materials Processing Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Suk Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Corresponding author
| | - Nam-Gyu Park
- School of Chemical Engineering, Energy Frontier Laboratory, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Corresponding author
| | - Hyunjung Shin
- Department of Energy Science and Nature Inspired Materials Processing Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Corresponding author
| |
Collapse
|