1
|
Li Y, Hu Z, Guo Q, Li J, Liu S, Xie X, Zhang X, Kang L, Li Q. van der Waals one-dimensional atomic crystal heterostructure derived from carbon nanotubes. Chem Soc Rev 2025. [PMID: 40331270 DOI: 10.1039/d4cs00670d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
One-dimensional (1D) van der Waals (vdWs) heterojunctions, due to the dimensional reduction leading to 1D quantum confinement effects and interface effects of the heterojunctions, typically exhibit discrete energy levels and strong electron interactions, resulting in unique conductive and optical behaviors. Carbon nanotube (CNT)-derived 1D atomic crystal vdWs heterojunctions represent a new class of 1D vdWs heterojunctions. They leverage the excellent chemical stability, nanoscale cavities, and adjustable diameters provided by CNTs as templates, ensuring controlled synthesis and precise structural tuning. The 1D radial pathways can alter the photonic-electronic propagation characteristics. At the same time, their unique metal-semiconductor-like electronic structure creates conditions for constructing various types of heterojunctions. The CNTs and their encapsulated 1D materials can lead to synergistic enhancement in the fields of electronics, magnetism, and optics. Currently, research is concentrated on understanding the synthesis mechanisms, integration characteristics, and host-guest interactions, and the exploration of novel 1D atomic crystal vdWs heterojunctions derived from CNTs. This review is focused on the latest progress made in 1D vdWs heterojunctions using CNTs as growth templates, emphasizing the construction methods, selection criteria, and the unique properties and applications arising from these complex interfacial electronic or phonon interactions. We also propose several future directions for the development of CNT-derived 1D atomic crystal vdWs heterojunctions. This review aims to enhance the understanding of their synthesis mechanisms and fundamental properties, broaden the range of available materials, and explore new and broader applications.
Collapse
Affiliation(s)
- Yunfei Li
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Ziyi Hu
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qing Guo
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jing Li
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Shuai Liu
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoxuan Xie
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xu Zhang
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Lixing Kang
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Qingwen Li
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Wang N, Zhang K, Zhu K, Chen X, Sun Q, Zhang D, Wang Y, He Q, Zheng W, Xu W, Yao Y. "Surface-Like Growth" Strategy for the Direct Synthesis of Horizontally Aligned Boron Nitride Nanotubes. NANO LETTERS 2024; 24:9442-9450. [PMID: 39054654 DOI: 10.1021/acs.nanolett.4c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The inherent properties of boron nitride nanotubes (BNNTs) can be further enhanced through the control of their anisotropy. In particular, horizontally aligned BNNTs (HABNNTs) exhibit considerable potential for various applications. However, directly synthesizing HABNNTs is difficult owing to the random floating of BNNTs and the absence of directional forces. Here, we employed a simple, efficient, and universal "surface-like growth" strategy to synthesize high-density and high-quality HABNNTs in the W2B5/Zn precursor system. First, the floating range of BNNTs was restricted to the vicinity of the precursor, and then, directional forces were applied to induce BNNT directional growth along the substrate surface. Experiments and simulations confirmed that the HABNNT orientation could be controlled through manipulation of the directional forces. Furthermore, the strategy was employed for HABNNTs synthesis using the MoB2/Zn, further demonstrating the universality of the approach. Overall, this work offers a fresh perspective on the synthesis of HABNNTs, further expanding their potential applications.
Collapse
Affiliation(s)
- Nanyang Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Kai Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Kaiping Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Xin Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Qianlu Sun
- Key Laboratory Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Dongxu Zhang
- Key Laboratory Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Ying Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Qian He
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Wentao Zheng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Weigao Xu
- Key Laboratory Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
3
|
Saida Y, Gauthier T, Suzuki H, Ohmura S, Shikata R, Iwasaki Y, Noyama G, Kishibuchi M, Tanaka Y, Yajima W, Godin N, Privault G, Tokunaga T, Ono S, Koshihara SY, Tsuruta K, Hayashi Y, Bertoni R, Hada M. Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials. Nat Commun 2024; 15:4600. [PMID: 38816382 PMCID: PMC11139937 DOI: 10.1038/s41467-024-48880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications.
Collapse
Affiliation(s)
- Yuri Saida
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Thomas Gauthier
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000, Rennes, France
| | - Hiroo Suzuki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Satoshi Ohmura
- Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima, 731-5193, Japan.
| | - Ryo Shikata
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Yui Iwasaki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Godai Noyama
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Misaki Kishibuchi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yuichiro Tanaka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Wataru Yajima
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Nicolas Godin
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000, Rennes, France
| | - Gaël Privault
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000, Rennes, France
| | - Tomoharu Tokunaga
- Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Shota Ono
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Shin-Ya Koshihara
- School of Science, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Kenji Tsuruta
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yasuhiko Hayashi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Roman Bertoni
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000, Rennes, France.
| | - Masaki Hada
- Institute of Pure and Applied Science and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, 305-8573, Japan.
| |
Collapse
|
4
|
Kim J, Lee J, Lee JM, Facchetti A, Marks TJ, Park SK. Recent Advances in Low-Dimensional Nanomaterials for Photodetectors. SMALL METHODS 2024; 8:e2300246. [PMID: 37203281 DOI: 10.1002/smtd.202300246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/21/2023] [Indexed: 05/20/2023]
Abstract
New emerging low-dimensional such as 0D, 1D, and 2D nanomaterials have attracted tremendous research interests in various fields of state-of-the-art electronics, optoelectronics, and photonic applications due to their unique structural features and associated electronic, mechanical, and optical properties as well as high-throughput fabrication for large-area and low-cost production and integration. Particularly, photodetectors which transform light to electrical signals are one of the key components in modern optical communication and developed imaging technologies for whole application spectrum in the daily lives, including X-rays and ultraviolet biomedical imaging, visible light camera, and infrared night vision and spectroscopy. Today, diverse photodetector technologies are growing in terms of functionality and performance beyond the conventional silicon semiconductor, and low-dimensional nanomaterials have been demonstrated as promising potential platforms. In this review, the current states of progress on the development of these nanomaterials and their applications in the field of photodetectors are summarized. From the elemental combination for material design and lattice structure to the essential investigations of hybrid device architectures, various devices and recent developments including wearable photodetectors and neuromorphic applications are fully introduced. Finally, the future perspectives and challenges of the low-dimensional nanomaterials based photodetectors are also discussed.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Junho Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jong-Min Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sung Kyu Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
5
|
Zhang Y, Yang X, Dai Y, Yu W, Yang L, Zhang J, Yu Q, Dong Z, Huang L, Chen C, Hou X, Wang X, Li J, Zhang K. Ternary GePdS 3: 1D van der Waals Nanowires for Integration of High-Performance Flexible Photodetectors. ACS NANO 2023; 17:8743-8754. [PMID: 37104062 DOI: 10.1021/acsnano.3c01977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
One-dimensional (1D) van der Waals (vdW) materials are anticipated to leverage for high-performance, giant polarized, and hybrid-dimension photodetection owing to their dangling-bond free surface, intrinsic crystal structure, and weak vdW interaction. However, only a few related explorations have been conducted, especially in the field of flexible and integrated applications. Here, high-quality 1D vdW GePdS3 nanowires were synthesized and proven to be an n-type semiconductor. The Raman vibration and band gap (1.37-1.68 eV, varying from bulk to single chain) of GePdS3 were systemically studied by experimental and theoretical methods. The photodetector based on a single GePdS3 nanowire possesses fast photoresponse at a broadband spectrum of 254-1550 nm. The highest responsivity and detectivity reach up to ∼219 A/W and ∼2.7 × 1010 Jones (under 254 nm light illumination), respectively. Furthermore, an image sensor with 6 × 6 pixels based on GePdS3 nanowires is integrated on a flexible polyethylene terephthalate (PET) substrate and exhibits sensitive and homogeneous detection at 808 nm light. These results indicate that the ternary noble metal chalcogenides show great potential in flexible and broadband optoelectronics applications.
Collapse
Affiliation(s)
- Yan Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaoxin Yang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yongping Dai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Guangdong 523000, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Liu Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junrong Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Qiang Yu
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhuo Dong
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Luyi Huang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Cheng Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingang Hou
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Jie Li
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Kai Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Hu Z, Breeze B, Walker M, Faulques E, Sloan J, Lloyd-Hughes J. Spectroscopic Insights into the Influence of Filling Carbon Nanotubes with Atomic Nanowires for Photophysical and Photochemical Applications. ACS APPLIED NANO MATERIALS 2023; 6:2883-2893. [PMID: 36875181 PMCID: PMC9972344 DOI: 10.1021/acsanm.2c05266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Studying the optical performance of carbon nanotubes (CNTs) filled with guest materials can reveal the fundamental photochemical nature of ultrathin one-dimensional (1D) nanosystems, which are attractive for applications including photocatalysis. Here, we report comprehensive spectroscopic studies of how infiltrated HgTe nanowires (NWs) alter the optical properties of small-diameter (d t < 1 nm) single-walled carbon nanotubes (SWCNTs) in different environments: isolated in solution, suspended in a gelatin matrix, and heavily bundled in network-like thin films. Temperature-dependent Raman and photoluminescence measurements revealed that the HgTe NW filling can alter the stiffness of SWCNTs and therefore modify their vibrational and optical modes. Results from optical absorption and X-ray photoelectron spectroscopy demonstrated that the semiconducting HgTe NWs did not provide substantial charge transfer to or from the SWCNTs. Transient absorption spectroscopy further highlighted that the filling-induced nanotube distortion can alter the temporal evolution of excitons and their transient spectra. In contrast to previous studies on functionalized CNTs, where electronic or chemical doping often drove changes to the optical spectra, we highlight structural distortion as playing an important role.
Collapse
Affiliation(s)
- Ziyi Hu
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ben Breeze
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Marc Walker
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Eric Faulques
- Institut
des Matriaux de Nantes Jean Rouxel, CNRS,
University of Nantes, Nantes F-44000, France
| | - Jeremy Sloan
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
7
|
Su J, Li X, Xu M, Zhang J, Liu X, Zheng X, Shi Y, Zhang Q. Enhancing Photodetection Ability of MoS 2 Nanoscrolls via Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3307-3316. [PMID: 36596237 DOI: 10.1021/acsami.2c18537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Van der Waals semiconductors have been really confirmed in two-dimensional (2D) layered systems beyond the traditional limits of lattice-matching requirements. The extension of this concept to the 1D atomic level may generate intriguing physical functionalities due to its non-covalent bonding surface. However, whether the curvature of the lattice in such rolled-up structures affects their optoelectronic features or the performance of devices established on them remains an open question. Here, MoS2-based nanoscrolls were obtained by virtue of an alkaline solution-assisted method and the 0D/1D (BaTiO3/MoS2) strategy to tune their optoelectronic properties and improve the light sensing performance was explored. The capillary force generated by a drop of NaHCO3 solution could drive the delamination of nanosheets from the underlying substrate and a spontaneous rolling-up process. The package of BaTiO3 particles in MoS2 nanoscrolls has been evident by TEM image, and the optical characterizations were mirrored via micro-Raman spectroscopy and photoluminescence. These bare MoS2 nanoscrolls reveal a reduced photoresponse compared to the plane structures due to the curvature of the lattice. However, such BaTiO3/MoS2 nanoscrolls exhibit a significantly improved photodetection (Rhybrid = 73.9 A/W vs Ronly = 1.1 A/W and R2D = 1.5 A/W at 470 nm, 0.58 mW·cm-2), potentially due to the carrier extraction/injection occurring between BaTiO3 and MoS2. This study thereby provides an insight into 1D van der Waals material community and demonstrates a general approach to fabricate high-performance 1D van der Waals optoelectronic devices.
Collapse
Affiliation(s)
- Jun Su
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xin Li
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Minxuan Xu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Jian Zhang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xiaolian Liu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xin Zheng
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Yueqin Shi
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Qi Zhang
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| |
Collapse
|
8
|
Aftab S, Iqbal MZ, Rim YS. Recent Advances in Rolling 2D TMDs Nanosheets into 1D TMDs Nanotubes/Nanoscrolls. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205418. [PMID: 36373722 DOI: 10.1002/smll.202205418] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Transition metal dichalcogenides (TMDs) van der Waals (vdW) 1D heterostructures are recently synthesized from 2D nanosheets, which open up new opportunities for potential applications in electronic and optoelectronic devices. The most recent and promising strategies in regards to forming 1D TMDs nanotubes (NTs) or nanoscrolls (NSs) in this review article as well as their heterostructures that are produced from 2D TMDs are summarized. In order to improve the functionality of ultrathin 1D TMDs that are coaxially combined with boron nitride nanotubes and single-walled carbon nanotubes. 1D heterostructured devices perform better than 2D TMD nanosheets when the two devices are compared. The photovoltaic effect in WS2 or MoS2 NTs without a junction may exceed the Shockley-Queisser limit for the above-band-gap photovoltage generation. Photoelectrochemical hydrogen evolution is accelerated when monolayer WS2 or MoS2 NSs are incorporated into a heterojunction. In addition, the photovoltaic performance of the WSe2 /MoS2 NSs junction is superior to that of the performance of MoS2 NSs. The summary of the current research about 1D TMDs can be used in a variety of ways, which assists in the development of new types of nanoscale optoelectronic devices. Finally, it also summarizes the current challenges and prospects.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006, South Korea
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640, Pakistan
| | - You Seung Rim
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
9
|
Martins IS, Silva HF, Lazareva EN, Chernomyrdin NV, Zaytsev KI, Oliveira LM, Tuchin VV. Measurement of tissue optical properties in a wide spectral range: a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:249-298. [PMID: 36698664 PMCID: PMC9841994 DOI: 10.1364/boe.479320] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A distinctive feature of this review is a critical analysis of methods and results of measurements of the optical properties of tissues in a wide spectral range from deep UV to terahertz waves. Much attention is paid to measurements of the refractive index of biological tissues and liquids, the knowledge of which is necessary for the effective application of many methods of optical imaging and diagnostics. The optical parameters of healthy and pathological tissues are presented, and the reasons for their differences are discussed, which is important for the discrimination of pathologies and the demarcation of their boundaries. When considering the interaction of terahertz radiation with tissues, the concept of an effective medium is discussed, and relaxation models of the effective optical properties of tissues are presented. Attention is drawn to the manifestation of the scattering properties of tissues in the THz range and the problems of measuring the optical properties of tissues in this range are discussed. In conclusion, a method for the dynamic analysis of the optical properties of tissues under optical clearing using an application of immersion agents is presented. The main mechanisms and technologies of optical clearing, as well as examples of the successful application for differentiation of healthy and pathological tissues, are analyzed.
Collapse
Affiliation(s)
- Inês S. Martins
- Center for Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Hugo F. Silva
- Porto University, School of Engineering, Porto, Portugal
| | - Ekaterina N. Lazareva
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | | | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Luís M. Oliveira
- Physics Department, Polytechnic of Porto – School of Engineering (ISEP), Porto, Portugal
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| |
Collapse
|
10
|
Gao B, Lin S, Wan J, Cai H, Zhu Z. Buckling behavior of ternary one-dimensional van der Waals heterostructures. NANOTECHNOLOGY 2022; 34:015701. [PMID: 36167004 DOI: 10.1088/1361-6528/ac9531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
One-dimensional van der Waals heterostructures (1D vdWHs) may suffer from external compression when applied in field-effect, light-emitting and photovoltaic devices. Ternary 1D vdWHs were recently reported to be successfully synthesized (Xianget al2020Science367, 537). In present work, the buckling behavior of ternary 1D vdWH consisting of an inner carbon nanotube, a middle boron nitride nanotube and an outer molybdenum disulfide nanotube is extensively investigated by using molecular dynamics simulations. We find that the composite can effectively enhance the capability of axial compression of the inner nanotubes. The 1D vdWH gradually loses its stability under uniaxial compression and the critical stress of buckling decreases as the temperature increases. Slenderness ratioαof 4.8 ≤α≤ 7.2 has a slight influence on the strength and stability of ternary 1D vdWH under axial compression. To obtain a 1D vdWH with best compressive stability and strength, there is an optimal diameter existing for any specific length. Our work provides guidance for the design of 1D vdWH with desired compressive stability.
Collapse
Affiliation(s)
- Bingjie Gao
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shu Lin
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jing Wan
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haifang Cai
- Science and Technology on Aerospace Chemical Power Laboratory, Xiangyang 441003, People's Republic of China
| | - Zuoquan Zhu
- School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou, People's Republic of China
| |
Collapse
|
11
|
Hu Z, Breeze B, Kashtiban RJ, Sloan J, Lloyd-Hughes J. Zigzag HgTe Nanowires Modify the Electron-Phonon Interaction in Chirality-Refined Single-Walled Carbon Nanotubes. ACS NANO 2022; 16:6789-6800. [PMID: 35389617 PMCID: PMC9046977 DOI: 10.1021/acsnano.2c01647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Atomically thin nanowires (NWs) can be synthesized inside single-walled carbon nanotubes (SWCNTs) and feature unique crystal structures. Here we show that HgTe nanowires formed inside small-diameter (<1 nm) SWCNTs can advantageously alter the optical and electronic properties of the SWCNTs. Metallic purification of the filled SWCNTs was achieved by a gel column chromatography method, leading to an efficient extraction of the semiconducting and metallic portions with known chiralities. Electron microscopic imaging revealed that zigzag HgTe chains were the dominant NW geometry in both the semiconducting and metallic species. Equilibrium-state and ultrafast spectroscopy demonstrated that the coupled electron-phonon system was modified by the encapsulated HgTe NWs, in a way that varied with the chirality. For semiconducting SWCNTs with HgTe NWs, Auger relaxation processes were suppressed, leading to enhanced photoluminescence emission. In contrast, HgTe NWs enhanced the Auger relaxation rate of metallic SWCNTs and created faster phonon relaxation, providing experimental evidence that encapsulated atomic chains can suppress hot carrier effects and therefore boost electronic transport.
Collapse
|
12
|
Jiang JW. One-dimensional transition metal dichalcogenide lateral heterostructures. Phys Chem Chem Phys 2021; 23:27312-27319. [PMID: 34850785 DOI: 10.1039/d1cp04850c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Forming heterostructures is a well-established technique to utilize different constituent materials to achieve novel properties like efficient light emission and high-quality electron tunneling. Recent experiments have successfully synthesized one-dimensional van der Waals heterostructures and have discovered plenty of superior properties benefiting from the dimension reduction. Inspired by the success of the van der Waals counterparts, we propose a one-dimensional lateral heterostructure based on transition metal dichalcogenide nanotubes. Molecular simulations show that the misfit strain is restricted to the radial direction due to the one-dimensional tubular confined structure, and the regular exponential distribution of the radial misfit strain can be well interpreted by a mechanics model. Besides the normal exponential distribution, there also exists an abnormal strain distribution within a narrow domain nearby the interface, in which the structure of the larger lattice constant is stretched instead of compressed by the misfit strain. The abnormal misfit strain is due to the interplay between several bending interactions and the stretching interaction. Possible experiments to synthesize this new type of heterostructure are discussed based on current experimental techniques.
Collapse
Affiliation(s)
- Jin-Wu Jiang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
13
|
One-dimensional van der Waals heterostructures: Growth mechanism and handedness correlation revealed by nondestructive TEM. Proc Natl Acad Sci U S A 2021; 118:2107295118. [PMID: 34508003 PMCID: PMC8449348 DOI: 10.1073/pnas.2107295118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
We recently synthesized one-dimensional (1D) van der Waals heterostructures in which different atomic layers (e.g., boron nitride or molybdenum disulfide) seamlessly wrap around a single-walled carbon nanotube (SWCNT) and form a coaxial, crystalized heteronanotube. The growth process of 1D heterostructure is unconventional-different crystals need to nucleate on a highly curved surface and extend nanotubes shell by shell-so understanding the formation mechanism is of fundamental research interest. In this work, we perform a follow-up and comprehensive study on the structural details and formation mechanism of chemical vapor deposition (CVD)-synthesized 1D heterostructures. Edge structures, nucleation sites, and crystal epitaxial relationships are clearly revealed using transmission electron microscopy (TEM). This is achieved by the direct synthesis of heteronanotubes on a CVD-compatible Si/SiO2 TEM grid, which enabled a transfer-free and nondestructive access to many intrinsic structural details. In particular, we have distinguished different-shaped boron nitride nanotube (BNNT) edges, which are confirmed by electron diffraction at the same location to be strictly associated with its own chiral angle and polarity. We also demonstrate the importance of surface cleanness and isolation for the formation of perfect 1D heterostructures. Furthermore, we elucidate the handedness correlation between the SWCNT template and BNNT crystals. This work not only provides an in-depth understanding of this 1D heterostructure material group but also, in a more general perspective, serves as an interesting investigation on crystal growth on highly curved (radius of a couple of nanometers) atomic substrates.
Collapse
|
14
|
Cambré S, Liu M, Levshov D, Otsuka K, Maruyama S, Xiang R. Nanotube-Based 1D Heterostructures Coupled by van der Waals Forces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102585. [PMID: 34355517 DOI: 10.1002/smll.202102585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/19/2021] [Indexed: 06/13/2023]
Abstract
1D van der Waals heterostructures based on carbon nanotube templates are raising a lot of excitement due to the possibility of creating new optical and electronic properties, by either confining molecules inside their hollow core or by adding layers on the outside of the nanotube. In contrast to their 2D analogs, where the number of layers, atomic type and relative orientation of the constituting layers are the main parameters defining physical properties, 1D heterostructures provide an additional degree of freedom, i.e., their specific diameter and chiral structure, for engineering their characteristics. The current state-of-the-art in synthesizing 1D heterostructures are discussed here, in particular focusing on their resulting optical properties, and details the vast parameter space that can be used to design heterostructures with custom-built properties that can be integrated into a large variety of applications. First, the effects of van der Waals coupling on the properties of the simplest and best-studied 1D heterostructure, namely a double-walled carbon nanotube, are described, and then heterostructures built from the inside and the outside are considered, which all use a nanotube as a template, and, finally, an outlook is provided for the future of this research field.
Collapse
Affiliation(s)
- Sofie Cambré
- Nanostructured and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, Antwerp 2610, Belgium
| | - Ming Liu
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Dmitry Levshov
- Nanostructured and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, Antwerp 2610, Belgium
| | - Keigo Otsuka
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Rong Xiang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
15
|
Du L, Zhao Y, Wu L, Hu X, Yao L, Wang Y, Bai X, Dai Y, Qiao J, Uddin MG, Li X, Lahtinen J, Bai X, Zhang G, Ji W, Sun Z. Giant anisotropic photonics in the 1D van der Waals semiconductor fibrous red phosphorus. Nat Commun 2021; 12:4822. [PMID: 34376660 PMCID: PMC8355160 DOI: 10.1038/s41467-021-25104-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/12/2021] [Indexed: 11/11/2022] Open
Abstract
A confined electronic system can host a wide variety of fascinating electronic, magnetic, valleytronic and photonic phenomena due to its reduced symmetry and quantum confinement effect. For the recently emerging one-dimensional van der Waals (1D vdW) materials with electrons confined in 1D sub-units, an enormous variety of intriguing physical properties and functionalities can be expected. Here, we demonstrate the coexistence of giant linear/nonlinear optical anisotropy and high emission yield in fibrous red phosphorus (FRP), an exotic 1D vdW semiconductor with quasi-flat bands and a sizeable bandgap in the visible spectral range. The degree of photoluminescence (third-order nonlinear) anisotropy can reach 90% (86%), comparable to the best performance achieved so far. Meanwhile, the photoluminescence (third-harmonic generation) intensity in 1D vdW FRP is strong, with quantum efficiency (third-order susceptibility) four (three) times larger than that in the most well-known 2D vdW materials (e.g., MoS2). The concurrent realization of large linear/nonlinear optical anisotropy and emission intensity in 1D vdW FRP paves the way towards transforming the landscape of technological innovations in photonics and optoelectronics.
Collapse
Affiliation(s)
- Luojun Du
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Finland.
| | - Yanchong Zhao
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linlu Wu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, P.R. China
| | - Xuerong Hu
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Finland
- Institute of Photonics and Photon Technology, Northwest University, Xi'an, China
| | - Lide Yao
- Department of Applied Physics, Aalto University, Aalto, Finland
| | - Yadong Wang
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Finland
| | - Xueyin Bai
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Finland
| | - Jingsi Qiao
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, P.R. China
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
| | - Md Gius Uddin
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Finland
| | - Xiaomei Li
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jouko Lahtinen
- Department of Applied Physics, Aalto University, Aalto, Finland
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, P.R. China.
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto, Finland.
| |
Collapse
|
16
|
Purschke DN, Pielmeier MRP, Üzer E, Ott C, Jensen C, Degg A, Vogel A, Amer N, Nilges T, Hegmann FA. Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double-Helix SnIP Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100978. [PMID: 34278600 DOI: 10.1002/adma.202100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Tin iodide phosphide (SnIP), an inorganic double-helix material, is a quasi-1D van der Waals semiconductor that shows promise in photocatalysis and flexible electronics. However, the understanding of the fundamental photophysics and charge transport dynamics of this new material is limited. Here, time-resolved terahertz (THz) spectroscopy is used to probe the transient photoconductivity of SnIP nanowire films and measure the carrier mobility. With insight into the highly anisotropic electronic structure from quantum chemical calculations, an electron mobility as high as 280 cm2 V-1 s-1 along the double-helix axis and a hole mobility of 238 cm2 V-1 s-1 perpendicular to the double-helix axis are detected. Additionally, infrared-active (IR-active) THz vibrational modes are measured, which shows excellent agreement with first-principles calculations, and an ultrafast photoexcitation-induced charge redistribution is observed that reduces the amplitude of a twisting mode of the outer SnI helix on picosecond timescales. Finally, it is shown that the carrier lifetime and mobility are limited by a trap density greater than 1018 cm-3 . The results provide insight into the optical excitation and relaxation pathways of SnIP and demonstrate a remarkably high carrier mobility for such a soft and flexible material, suggesting that it could be ideally suited for flexible electronics applications.
Collapse
Affiliation(s)
- David N Purschke
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Markus R P Pielmeier
- Department of Chemistry, Technical University of Munich, 85748, Garching bei München, Germany
| | - Ebru Üzer
- Department of Chemistry, Technical University of Munich, 85748, Garching bei München, Germany
| | - Claudia Ott
- Department of Chemistry, Technical University of Munich, 85748, Garching bei München, Germany
| | - Charles Jensen
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Annabelle Degg
- Department of Chemistry, Technical University of Munich, 85748, Garching bei München, Germany
| | - Anna Vogel
- Department of Chemistry, Technical University of Munich, 85748, Garching bei München, Germany
| | - Naaman Amer
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Tom Nilges
- Department of Chemistry, Technical University of Munich, 85748, Garching bei München, Germany
| | - Frank A Hegmann
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
17
|
Lloyd-Hughes J, Oppeneer PM, Pereira Dos Santos T, Schleife A, Meng S, Sentef MA, Ruggenthaler M, Rubio A, Radu I, Murnane M, Shi X, Kapteyn H, Stadtmüller B, Dani KM, da Jornada FH, Prinz E, Aeschlimann M, Milot RL, Burdanova M, Boland J, Cocker T, Hegmann F. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:353001. [PMID: 33951618 DOI: 10.1088/1361-648x/abfe21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light-matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.
Collapse
Affiliation(s)
- J Lloyd-Hughes
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - P M Oppeneer
- Department of Physics and Astronomy, Uppsala University, PO Box 516, S-75120 Uppsala, Sweden
| | - T Pereira Dos Santos
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - A Schleife
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - S Meng
- Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - M A Sentef
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
| | - M Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
| | - A Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco UPV/EHU 20018 San Sebastián, Spain
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York, NY, 10010, United States of America
| | - I Radu
- Department of Physics, Freie Universität Berlin, Germany
- Max Born Institute, Berlin, Germany
| | - M Murnane
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - X Shi
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - H Kapteyn
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - B Stadtmüller
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - K M Dani
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - F H da Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, United States of America
| | - E Prinz
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - M Aeschlimann
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - R L Milot
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - M Burdanova
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - J Boland
- Photon Science Institute, Department of Electrical and Electronic Engineering, University of Manchester, United Kingdom
| | - T Cocker
- Michigan State University, United States of America
| | | |
Collapse
|
18
|
Liu M, Hisama K, Zheng Y, Maruyama M, Seo S, Anisimov A, Inoue T, Kauppinen EI, Okada S, Chiashi S, Xiang R, Maruyama S. Photoluminescence from Single-Walled MoS 2 Nanotubes Coaxially Grown on Boron Nitride Nanotubes. ACS NANO 2021; 15:8418-8426. [PMID: 33881302 DOI: 10.1021/acsnano.0c10586] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-walled and multiwalled molybdenum disulfide (MoS2) nanotubes have been coaxially synthesized on small-diameter boron nitride nanotubes (BNNTs) that are obtained from removing single-walled carbon nanotubes (SWCNTs) in heteronanotubes of SWCNTs coated by BNNTs. The photoluminescence (PL) from single-walled MoS2 nanotubes supported by core BNNTs is observed in this work, which evidences the direct bandgap structure of single-walled MoS2 nanotubes with a diameter around 6-7 nm. The observation is consistent with our DFT results that the single-walled MoS2 nanotube changes from an indirect-gap to a direct-gap semiconductor when the diameter of a nanotube is more than around 5.2 nm. On the other hand, when there are SWCNTs inside the heteronanotubes of BNNTs and single-walled MoS2 nanotubes, the PL signal from MoS2 nanotubes is considerably quenched. The charge transfer and energy transfer between SWCNTs and single-walled MoS2 nanotubes were examined through characterizations by PL, X-ray photoelectron spectroscopy, and Raman spectroscopy. Moreover, the PL signal from multiwalled MoS2 nanotubes is significantly quenched. Single-walled and multiwalled MoS2 nanotubes exhibit different Raman features in both resonant and nonresonant Raman spectra.
Collapse
Affiliation(s)
- Ming Liu
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kaoru Hisama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yongjia Zheng
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Mina Maruyama
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Seungju Seo
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | | | - Taiki Inoue
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Esko I Kauppinen
- Department of Applied Physics, Aalto University School of Science, Espoo 15100, Aalto FI-00076, Finland
| | - Susumu Okada
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Shohei Chiashi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Rong Xiang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Affiliation(s)
- Rong Xiang
- Department of Mechanical Engineering The University of Tokyo Tokyo 113-8656 Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering The University of Tokyo Tokyo 113-8656 Japan
| |
Collapse
|