1
|
Fan S, Scarpitti BT, Smith AE, Luo Z, Ye J, Schultz ZD. Linker-Free Synthesis of Core/Satellite Nanoparticles for Single-Particle Surface-Enhanced Raman Spectroscopy and Photocatalysis. NANO LETTERS 2025; 25:7785-7792. [PMID: 40326095 DOI: 10.1021/acs.nanolett.5c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
A facile and novel method to synthesize core/satellite (CS) nanoparticles via a linker-free method is reported. Au spheres on the tips of nanostars can gradually grow bigger and eventually transform into gap-enhanced Raman tags (GERTs) to form stable and ultrabright Au nanostar/GERTs CS nanoparticles. Au nanostar/Ag sphere CS nanoparticles can also be prepared via the growth of Ag spheres on the tips, which provides a direct route to new porous Au nanostar/Ag-Au, Ag-Pt, or Ag-Pd sphere CS nanoparticles through galvanic replacement of Ag. In situ surface-enhanced Raman spectroscopy monitoring on CS nanoparticles with different noble metals demonstrates single-particle photocatalysis; among them, the hybrid Ag-Pt CS nanoparticles show the fastest photocatalytic rates for the complete conversion of 4-nitrothiophenol (4-NTP) to 4,4-dimercaptoazobenzene (DMAB) at the single-particle level. This method provides a direct synthetic route to these complex nanoparticles without interference from external linker molecules and opens up new possibilities in single-particle analysis.
Collapse
Affiliation(s)
- Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brian T Scarpitti
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Abigail E Smith
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhewen Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Fang G, Lin X, Wu J, Xu W, Hasi W, Dong B. Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408670. [PMID: 39778054 DOI: 10.1002/smll.202408670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/22/2024] [Indexed: 01/11/2025]
Abstract
Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots. L-cysteines (l-Cys)-modified 3D Au@Ag-Au PPFs are proposed as a benzaldehyde (BA) gas detection carrier to accurately detect biomarkers in complex exhaled gases and eliminate interference from other components. Unlike the conventional use of 4-aminothiophenol as a linker molecule, the novel L-Cys-modified SERS substrate is sensitive toward the aldehyde molecules and immune to other volatile organic compounds (ethanol, cyclohexane, toluene, etc.). Furthermore, a medical mask consisting of this SERS substrate is designed to realize intelligent detection of gaseous BA concentrations assisted by a machine learning algorithm.
Collapse
Affiliation(s)
- Guoqiang Fang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Xiang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Jinlei Wu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Wuliji Hasi
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
3
|
Kim GH, Son J, Nam JM. Advances, Challenges, and Opportunities in Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. ACS NANO 2025; 19:2992-3007. [PMID: 39812822 DOI: 10.1021/acsnano.4c14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications. Despite its potential, several challenges still remain for NERS to be widely useful in real-world applications. This Perspective introduces various plasmonic nanogap configurations with nanoparticles, discusses key advances and critical challenges while addressing possible misunderstandings in this field, and provides future directions for NERS to generate stronger, more uniform, and stable signals over a large number of structures for practical applications.
Collapse
Affiliation(s)
- Gyeong-Hwan Kim
- The Research Institute of Basic Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
4
|
Kim J, Kim JM, Choi K, Park JE, Nam JM. Open Cross-gap Gold Nanocubes with Strong, Large-Area, Symmetric Electromagnetic Field Enhancement for On-Particle Molecular-Fingerprint Raman Bioassays. J Am Chem Soc 2024; 146:14012-14021. [PMID: 38738871 DOI: 10.1021/jacs.4c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Plasmonic nanoparticles with an externally open nanogap can localize the electromagnetic (EM) field inside the gap and directly detect the target via the open nanogap with surface-enhanced Raman scattering (SERS). It would be beneficial to design and synthesize the open gap nanoprobes in a high yield for obtaining uniform and quantitative signals from randomly oriented nanoparticles and utilizing these particles for direct SERS analysis. Here, we report a facile strategy to synthesize open cross-gap (X-gap) nanocubes (OXNCs) with size- and EM field-tunable gaps in a high yield. The site-specific growth of Au budding structures at the corners of the AuNC using the principle that the Au deposition rate is faster than the surface diffusion rate of the adatoms allows for a uniform X-gap formation. The average SERS enhancement factor (EF) for the OXNCs with 2.6 nm X-gaps was 1.2 × 109, and the EFs were narrowly distributed within 1 order of magnitude for ∼93% of the measured OXNCs. OXNCs consistently displayed strong EM field enhancement on large particle surfaces for widely varying incident light polarization directions, and this can be attributed to the symmetric X-gap geometry and the availability of these gaps on all 6 faces of a cube. Finally, the OXNC probes with varying X-gap sizes have been utilized in directly detecting biomolecules with varying sizes without Raman dyes. The concept, synthetic method, and biosensing results shown here with OXNCs pave the way for designing, synthesizing, and utilizing plasmonic nanoparticles for selective, quantitative molecular-fingerprint Raman sensing and imaging applications.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Kyungin Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Eun Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
5
|
Li W, Zhang Y, Zhang W, Hu P, Zhang M, Meng X, Zhang X, Shang M, Duan X, Wang C. Portable SERS-Based POCT Kit for Ultrafast and Sensitive Determining Paraquat in Human Gastric Juice and Urine. ACS OMEGA 2024; 9:18576-18583. [PMID: 38680347 PMCID: PMC11044205 DOI: 10.1021/acsomega.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Paraquat (PQ) poisoning poses a significant public health concern. Unfortunately, point-of-care testing (POCT) of PQ in biofluids remains challenging. This study developed a portable kit that enables swift and reliable identification and quantification of PQ in human urine and gastric juice. The approach employed the surface-enhanced Raman scattering (SERS) technique, leveraging gold-silver core-shell nanoparticles (Au@Ag NPs) as the substrate. The kit comprised a portable Raman spectrometer and three sealed tubes containing Au@Ag NPs colloid, KI solution, and MgSO4 solution. A discernible correlation was observed between signal intensity and the logarithmic concentration, spanning from 5 to 500 μg/L in urine and 10 μg/L to 1 mg/L in gastric juice. The detection limits, calculated from the characteristic peak at 1648 cm -1, were 1.36 and 4.05 μg/L in human urine and gastric juice, respectively. Notably, this POCT kit obviated the need for pretreatment procedures, and the detection process was accomplished within 1 min, yielding satisfactory recoveries. This expeditious time frame is crucial for clinical diagnosis and rescue operations. Compared to conventional methods, this kit demonstrated real-time determinations in nonlaboratory settings. The simplicity and practicality of this POCT assay suggest its significant potential as an innovative alternative for poisoning detection applications.
Collapse
Affiliation(s)
- Wanru Li
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yuxuan Zhang
- The
First Clinical Medical College, Nanjing
Medical University, Nanjing 211166, China
| | - Wei Zhang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Peishan Hu
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Mengping Zhang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xiao Meng
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xinya Zhang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ming Shang
- Department
of Key Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Sciences, Jinan 250000, China
| | - Xiuping Duan
- Emergency
department, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
| | - Cuijuan Wang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
6
|
Zhang XL, Zhang HN, Liang H, Yang X, Chai YQ, Yuan R. Gold Nanobipyramid Hotspot Aggregation-Induced Surface-Enhanced Raman Scattering for the Ultrasensitive Detection of miRNA. Anal Chem 2023; 95:12768-12775. [PMID: 37587155 DOI: 10.1021/acs.analchem.3c01477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Herein, a surface-enhanced Raman scattering (SERS) biosensor was constructed by gold nanobipyramid (Au NBP) hotspot aggregation-induced SERS (HAI-SERS) for the ultrasensitive detection of microRNA-221 (miRNA-221). Impressively, compared with single Au NBP, the multiple Au NBPs assembled by tetrahedral DNA nanostructures (TDNs) could increase hotspot aggregation to significantly enhance the SERS signal of Raman molecule methylene blue (MB). Meanwhile, in the aid of Exo-III assisted target cycle amplification and TDNs-induced catalytic hairpin assembly (CHA) amplification, the biosensor could achieve the sensitive detection of miRNA-221 with a linear range of 1 fM-10 nM, and the limit of detection (LOD) was 0.59 fM, which could be used for practical application in MHCC-97L and MCF-7 cell lysates. This work provided a method for hotspot aggregation to enhance SERS for the detection of biomarkers and disease diagnosis.
Collapse
Affiliation(s)
- Xin-Li Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hai-Na Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Huan Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
7
|
Peng F, Lu SY, Sun PQ, Zhang NN, Liu K. Branched Aluminum Nanocrystals with Internal Hot Spots: Synthesis and Single-Particle Surface-Enhanced Raman Scattering. NANO LETTERS 2023. [PMID: 37410961 DOI: 10.1021/acs.nanolett.3c01605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Owing to their unique and sustainable surface plasmonic properties, Al nanocrystals have attracted increasing attention for plasmonic-enhanced applications, including single-particle surface-enhanced Raman scattering (SERS). However, whether Al nanocrystals can achieve single-particle SERS is still unknown, mainly due to the synthetic difficulty of Al nanocrystals with internal gaps. Herein, we report a regrowth method for the synthesis of Al nanohexapods with tunable and uniform internal gaps for single-particle SERS with an enhancement factor of up to 1.79 × 108. The uniform branches of the Al nanohexapods can be systematically tuned regarding their dimensions, terminated facets, and internal gaps. The Al nanohexapods generate hot spots concentrated in the internal gaps due to the strong plasmonic coupling between the branches. A single-particle SERS measurement of Al nanohexapods shows strong Raman signals with maximum enhancement factors comparable to that of Au counterparts. The large enhancement factor indicates that Al nanohexapods are good candidates for single-particle SERS.
Collapse
Affiliation(s)
- Fei Peng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shao-Yong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Pan-Qi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Shorny A, Steiner F, Hörner H, Skoff SM. Imaging and identification of single nanoplastic particles and agglomerates. Sci Rep 2023; 13:10275. [PMID: 37355695 DOI: 10.1038/s41598-023-37290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023] Open
Abstract
Pollution by nanoplastic is a growing environmental and health concern. Currently the extent of nanoplastic in the environment can only be cumbersomely and indirectly estimated but not measured. To be able to quantify the extent of the problem, detection methods that can identify nanoplastic particles that are smaller than 1 [Formula: see text]m are critically needed. Here, we employ surface-enhanced Raman scattering (SERS) to image and identify single nanoplastic particles down to 100 nm in size. We can differentiate between single particles and agglomerates and our method allows an improvement in detection speed of [Formula: see text] compared to state-of-the art surface-enhanced Raman imaging. Being able to resolve single particles allows to measure the SERS enhancement factor on individual nanoplastic particles instead of averaging over a concentration without spatial information. Our results thus contribute to the better understanding and employment of SERS for nanoplastic detection and present an important step for the development of future sensors.
Collapse
Affiliation(s)
- Ambika Shorny
- Atominstitut, Technische Universität Wien, Stadionallee 2, Vienna, 1020, Austria
| | - Fritz Steiner
- Atominstitut, Technische Universität Wien, Stadionallee 2, Vienna, 1020, Austria
| | - Helmut Hörner
- Atominstitut, Technische Universität Wien, Stadionallee 2, Vienna, 1020, Austria
| | - Sarah M Skoff
- Atominstitut, Technische Universität Wien, Stadionallee 2, Vienna, 1020, Austria.
| |
Collapse
|
9
|
Kim JM, Kim J, Choi K, Nam JM. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208250. [PMID: 36680474 DOI: 10.1002/adma.202208250] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Metal nanostructures with a tunable plasmonic gap are useful for photonics, surface-enhanced spectroscopy, biosensing, and bioimaging applications. The use of these structures as chemical and biological sensing/imaging probes typically requires an ultra-precise synthesis of the targeted nanostructure in a high yield, with Raman dye-labeling and complex assay components and procedures. Here, a plasmonic nanostructure with tunable dual nanogaps, Au dual-gap nanodumbbells (AuDGNs), is designed and synthesized via the anisotropic adsorption of polyethyleneimine on Au nanorods to facilitate tip-selective Au growths on nanorod tips for forming mushroom-shaped dumbbell-head structures at both tips and results in dual gaps (intra-head and inter-head gaps) within a single particle. AuDGNs are synthesized in a high yield (>90%) while controlling the inter-head gap size, and the average surface-enhanced Raman scattering (SERS) enhancement factor (EF) value is 7.5 × 108 with a very narrow EF distribution from 1.5 × 108 to 1.5 × 109 for >90% of analyzed particles. Importantly, AuDGNs enable label-free on-particle SERS detection assays through the diffusion of target molecules into the intraparticle gap for different DNA sequences with varying ATGC combinations in a highly specific and sensitive manner without a need for Raman dyes.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Kyungin Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
10
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
11
|
Chu Q, Wang W, Guo S, Park E, Jin S, Park Y, Chen L, Liu Y, Jung YM. Interface Design of 3D Flower-like Ag@ZnSe Composites: SERS and Photocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11304-11313. [PMID: 36790371 DOI: 10.1021/acsami.2c21833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this work, we cosputtered Ag and ZnSe on a polystyrene template to form a three-dimensional (3D) Ag@ZnSe (x) structure. The 3D surface morphology and material composition that provided abundant "hot spots" were controlled by adjusting the sputtering power of the ZnSe, which was confirmed by finite-difference time-domain (FDTD) simulation. The introduction of ZnSe into the noble metal Ag also introduced a charge-transfer (CT) effect into the system, and the CT path was proven with the two-dimensional correlation spectroscopy (2D-COS)-surface-enhanced Raman scattering (SERS) technique. In addition, the substrate exhibited excellent catalytic activity due to the CT effect. The catalyzed degradation of malachite green (MG) was due to the CT effect in the system, and the catalytic process was successfully monitored by in situ SERS. Most importantly, the catalytic degradation by Ag@ZnSe (x) with different parameters was proportional to the degree of CT (ρCT). The SERS and catalytic mechanisms were analyzed in depth with the 2D-COS-SERS technique, which was also useful in verifying the CT process. The catalytic sites for MG were successfully monitored with the 2D-COS-SERS technique. This study provides a reference for studies of the synergistic effects of the electromagnetic mechanism and CT, as well as a new perspective on photocatalysis with dye molecules and monitoring of the catalytic processes.
Collapse
Affiliation(s)
- Qi Chu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
| | - Wei Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
| | - Yucun Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
12
|
Choi BK, Kim J, Luo Z, Kim J, Kim JH, Hyeon T, Mehraeen S, Park S, Park J. Shape Transformation Mechanism of Gold Nanoplates. ACS NANO 2023; 17:2007-2018. [PMID: 36692347 DOI: 10.1021/acsnano.2c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Shape control is of key importance in utilizing the structure-property relationship of nanocrystals. The high surface-to-volume ratio of nanocrystals induces dynamic surface reactions on exposed facets of nanocrystals, such as adsorption, desorption, and diffusion of surface atoms, all of which are important in overall shape transformation. However, it is difficult to track shape transformation of nanocrystals and understand the underlying mechanism at the level of distinguishing events on individual facets. Herein, we investigate changes of individual surface-exposed facets during diverse shape transformations of Au nanocrystals using liquid phase TEM in various chemical potentials and kinetic Monte Carlo simulations. The results reveal that the diffusion of surface atoms on nanocrystals is the governing factor in determining the final structure in shape transformation, causing the fast transformation of unstable facets to truncated morphology with minimized surface energy. The role of surface diffusion introduced here can be further applied to understanding the formation mechanism of variously shaped nanocrystals.
Collapse
Affiliation(s)
- Back Kyu Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Zhen Luo
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Joodeok Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
| | - Shafigh Mehraeen
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, 145, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16229, Republic of Korea
| |
Collapse
|
13
|
Jung I, Kim J, Lee S, Park W, Park S. Multiple Stepwise Synthetic Pathways toward Complex Plasmonic 2D and 3D Nanoframes for Generation of Electromagnetic Hot Zones in a Single Entity. Acc Chem Res 2023; 56:270-283. [PMID: 36693060 DOI: 10.1021/acs.accounts.2c00670] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ConspectusRational design of nanocrystals with high controllability via wet chemistry is of critical importance in all areas of nanoscience and nanotechnology research. Specifically, morphologically complex plasmonic nanoparticles have received considerable attention because light-matter interactions are strongly associated with the size and shape of nanoparticles. Among many types of nanostructures, plasmonic nanoframes (NFs) with controllable structural intricacy could be excellent candidates as strong light-entrappers with inner voids as well as high surface area, leading to highly effective interaction with light and analytes compared to their solid counterparts. However, so far studies on single-rim-based NFs have suffered from insufficient near-field focusing capability due to their structural simplicity (e.g., a single rim or NF molded from simple platonic solids), which necessitates a conceptually new NF architecture. If one considers a stereoscopic nanostructure with dual, triple, and multiple resonant intra-nanogaps on each crystallographic facet of nanocrystals, unprecedented physicochemical properties could be expected. Realizing such complex multiple NFs with intraparticle surface plasmon coupling via localized surface plasmon resonance is very challenging due to the lack of synthetic strategic principles with systematic structural control, all of which require a deep understanding of surface chemistry. Moreover, realizing those complex architectures with high homogeneity in size and shape via a bottom-up method where diverse particle interactions are involved is more challenging. Although there have been several reports on NFs used for catalysis, techniques for production of structurally complex NFs with high uniformity and an understanding of the correlation between such complexity in a single plasmonic entity and electromagnetic near-field focusing have remained highly elusive.In this Account, we will summarize and highlight the rational synthetic pathways for the design of complex two-dimensional (2D) and three-dimensional (3D) NFs with unique inner rim structures and characterize their optical properties. This systematic strategy is based on publications from our group during the last 10 years. First, we will introduce a chemical step of shape transformation of triangular Au nanoplates to circular and hexagonal plates, which are used as sacrificial layers for the formation of NFs. Then, we will describe the methods on how to synthesize monorim-based plasmonic NFs using Pt scaffolds with different shapes and correlate with their electromagnetic near-field. Then, we will describe a multiple stepwise synthetic method for the formation of 2D complex NFs wherein different starting Au nanocrystals evolved from systematic shape transformation are used to produce circular, triangular, hexagonal, crescent, and Y-shaped inner hot zones. Then, we will discuss how one can synthesize NFs with multiple rims wherein rims with different diameters are concentrically connected, by exploiting chemical toolkits such as eccentric and concentric growth of Au, borrowing the concept of total synthesis that is frequently adopted in organic chemistry. We then introduce dual-rim-faceted NFs and frame-in-frame 3D matryoshka NF geometries via well-faceted growth of Au with high control of intra-nanogaps. Finally, and importantly, we will provide examples of more advanced hierarchical NF architectures produced by controlling geometrical shapes of nanoparticles, number of rims, and different components, leading to the expansion of the NF library.
Collapse
Affiliation(s)
- Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Institute of Basic Science, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Institute of Basic Science, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
14
|
Yang H, Li J, Rao Y, Yang L, Xue Y, Zhang Y, Yang Z, Li J. Ultrasensitive multiplex SERS immunoassay based on porous Au-Ag alloy nanoparticle-amplified Raman signal probe and encoded photonic crystal beads. Mikrochim Acta 2022; 190:13. [PMID: 36478275 DOI: 10.1007/s00604-022-05539-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
An ultrasensitive multiplex surface-enhanced Raman scattering (SERS) immunoassay was developed using porous Au-Ag alloy nanoparticles (p-AuAg NPs) as Raman signal amplification probe coupling with encoded photonic crystal microsphere. p-AuAg NPs were synthesized and modified with the second antibody (Ab2) and Raman tag (mercaptobenzoic acid, MBA) to prepare a Raman signal-amplified probe. The high porosity of the p-AuAg NPs enables significant coupling of the localized surface plasmon resonance and thus abundant inherent hotspots for Raman signal enhancement. 3D-ordered silver nanoparticles-coated silica photonic crystal beads (Ag/SPCBs) were prepared as encoded SERS substrate for multiplex detection using their reflection peaks. The signal-amplified probe was used for multiplex detection of tumor markers carcinoembryonic antigen (CEA) and alpha fetoprotein (AFP). The wide linear ranges of 10-7-103 ng/mL for CEA and 10-4-103 ng/mL for AFP with detection limits of 1.22 × 10-8 ng/mL and 2.47 × 10-5 ng/mL for CEA and AFP at a signal-to-noise ratio of 3 were obtained. The proposed multiplex SERS immunoassay method displays ultrahigh sensitivity, wide linear range, and excellent specificity, which can be successfully applied to measure clinical serum samples with satisfactory results. The research provides a novel SERS signal enhancement strategy for the multiplex bioassay.
Collapse
Affiliation(s)
- Huizhen Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Jiayin Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yan Rao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Linan Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yadong Xue
- Jinhua Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Zhanjun Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| | - Juan Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| |
Collapse
|
15
|
Ramezanzadeh S, Akbarzadeh H, Mehrjouei E, Shamkhali AN, Abbaspour M, Salemi S. Yolk-shell nanoparticles with different cores: A molecular dynamics study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Bhaskar S, Rai A, Ganesh KM, Reddy R, Reddy N, Ramamurthy SS. Sericin-Based Bio-Inspired Nano-Engineering of Heterometallic AgAu Nanocubes for Attomolar Mefenamic Acid Sensing in the Mobile Phone-Based Surface Plasmon-Coupled Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12035-12049. [PMID: 36122249 DOI: 10.1021/acs.langmuir.2c01894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Engineering photo-plasmonic platforms with heterometallic nanohybrids are of paramount significance for realizing augmented sensitivity in fluorescence-based analytical detection. Although myriad nanomaterials with versatile functionalities have been explored in this regard in the surface plasmon-coupled emission (SPCE) interface, light harvesting using nano-antennas synthesized via sustainable bio-inspired routes still remains a high priority in current research. Our study provides a rational design for in situ fabrication of nanoparticles of silver, gold, and their plasmonic hybrids using biocompatible, non-hazardous sericin protein (obtained Bombyx mori) as the reducing and capping agent. The one-pot, user-eco-friendly technology demonstrated here utilizes UV irradiation to promote the photo-induced electron transfer mechanism, thereby yielding nanomaterials of tunable optoelectronic functionalities. The resulting homometallic and heterometallic nanohybrids with robust localized surface plasmon resonances (LSPR) showed strong light-confining attributes when interfaced with the propagating surface plasmon polaritons (SPPs) of the SPCE platform, thereby yielding tunable, highly directional, polarized, and amplified fluorescence emission. The experimentally obtained emission profiles displayed an excellent correlation with the theoretically obtained dispersion diagrams validating the spectro-plasmonic results. The abundant hotspots from AgAu nanocubes presented in excess of 1300-fold dequenched fluorescence enhancement and were utilized for cost-effective and real-time mobile phone-based sensing of biologically relevant mefenamic acid at an attomolar limit of detection. We believe that this superior biosensing performance accomplished using the frugal bioinspired nano-engineering at hybrid interfaces would open new doors for developing nanofabrication protocols with the quintessential awareness of the principles of green nanotechnology, consequently eliminating hazardous chemicals and solvents in the development of point-of-care diagnostic tools.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aayush Rai
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Kalathur Mohan Ganesh
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Roopa Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Narendra Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| |
Collapse
|
17
|
Hilal H, Zhao Q, Kim J, Lee S, Haddadnezhad M, Yoo S, Lee S, Park W, Park W, Lee J, Lee JW, Jung I, Park S. Three-dimensional nanoframes with dual rims as nanoprobes for biosensing. Nat Commun 2022; 13:4813. [PMID: 35974015 PMCID: PMC9381508 DOI: 10.1038/s41467-022-32549-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional (3D) nanoframe structures are very appealing because their inner voids and ridges interact efficiently with light and analytes, allowing for effective optical-based sensing. However, the realization of complex nanoframe architecture with high yield is challenging because the systematic design of such a complicated nanostructure lacks an appropriate synthesis protocol. Here, we show the synthesis method for complex 3D nanoframes wherein two-dimensional (2D) dual-rim nanostructures are engraved on each facet of octahedral nanoframes. The synthetic scheme proceeds through multiple executable on-demand steps. With Au octahedral nanoparticles as a sacrificial template, sequential processes of edge-selective Pt deposition and inner Au etching lead to Pt octahedral mono-rim nanoframes. Then, adlayers of Au are grown on Pt skeletons via the Frank-van der Merwe mode, forming sharp and well-developed edges. Next, Pt selective deposition on both the inner and outer boundaries leads to tunable geometric patterning on Au. Finally, after the selective etching of Au, Pt octahedral dual-rim nanoframes with highly homogeneous size and shape are achieved. In order to endow plasmonic features, Au is coated around Pt frames while retaining their geometric shape. The resultant plasmonic dual-rim engraved nanoframes possess strong light entrapping capability verified by single-particle surface-enhanced Raman scattering (SERS) and show the potential of nanoprobes for biosensing through SERS-based immunoassay. Most SERS-active nanostructures suffer from low robustness against misalignment to field polarization. Here, the authors demonstrate three-dimensional nanoframes of octahedral geometry, with two rims engraved on each facet, as polarization-independent SERS nanoprobes.
Collapse
Affiliation(s)
- Hajir Hilal
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | | | - Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woongkyu Park
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, 61007, Republic of Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Joong Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Department of Chemistry and Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
18
|
Kim J, Hilal H, Haddadnezhad M, Lee J, Park W, Park W, Lee JW, Jung I, Park S. Plasmonic All-Frame-Faceted Octahedral Nanoframes with Eight Engraved Y-Shaped Hot Zones. ACS NANO 2022; 16:9214-9221. [PMID: 35446559 DOI: 10.1021/acsnano.2c01543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the synthesis of all-frame-faceted octahedral nanoframes containing eight Y-shaped hot zones in a single entity where electromagnetic near-field focusing can be maximized. To realize such state-of-the-art complex nanoframes, a series of multiple stepwise bottom-up processes were executed by exploiting Au octahedral nanoparticles as the initial template. By rationally controlling the chemical reactivity of different surface facets (i.e., vertexes, edges, and terraces), the Au octahedral nanoparticles went through controlled shape transformations, leading to Au-engraved nanoparticles wherein 24 edges wrap the octahedral Au nanoparticle core. Those edges were then selectively decorated with Pt, leading to the formation of eight Pt tripods in a single entity. After etching the central Au, 3D Pt tripod frame-faceted octahedral nanoframes were achieved with high integrity. By harnessing the obtained Pt nanoframes as a scaffold, AuAg alloy-based plasmonic all-frame-faceted nanoframes were obtained after the co-reduction of Ag and Au, which generated multiple hot zones within multiple surface intra-nanogaps, creating a single-particle, surface-enhanced Raman spectroscopy enhancer platform.
Collapse
Affiliation(s)
- Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Woongkyu Park
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, South Korea
| | - Joong-Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University. Gwangju 61186, South Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
19
|
Cheng F, Gu W, Zhang H, Song C, Zhu Y, Ge F, Qu K, Xu H, Wu XJ, Wang L. Direct synthesis of Au-Ag nanoframes by galvanic replacement via a continuous concaving process. NANOSCALE 2022; 14:8825-8832. [PMID: 35686613 DOI: 10.1039/d2nr01600a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlled synthesis of noble-metal nanoframes is of great interest due to their promising applications in plasmonics and catalysis. However, the synthesis is largely limited to a multiple-step approach involving selective deposition followed by selective etching. Here we report a facile and general strategy to synthesize Au-Ag nanoframes based on a direct galvanic replacement reaction between Ag nanoparticles and a gold(I) complex, sodium aurothiosulfate, without an extra etching process. The formation of Au-Ag nanoframes in our approach undergoes a continuous concaving and hollowing-out process from Ag templates, which is related to selective Au deposition and the Kirkendall effect. As a proof-of-concept, it was shown that Au-Ag nanoframes with different dimensions can be prepared from the corresponding Ag nanocolloids using our strategy. The prepared wire-like Au-Ag nanoframes show superior single-particle surface-enhanced Raman scattering due to the linear narrow nanogaps within the nanoframes. We believe this study signifies a new approach by mediating galvanic replacement to prepare noble-metal nanoframes with precise controllability, which may enable a variety of applications in plasmonics and catalysis.
Collapse
Affiliation(s)
- Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Wenjie Gu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Han Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Kuiming Qu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Hai Xu
- Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Science, Changchun 130033, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100040, P. R. China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| |
Collapse
|
20
|
Wang Y, Satyavolu NSR, Yang H, Lu Y. Kinetic Reconstruction of DNA-Programed Plasmonic Metal Nanostructures with Predictable Shapes and Optical Properties. J Am Chem Soc 2022; 144:4410-4421. [PMID: 35234474 DOI: 10.1021/jacs.1c11333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is desirable to rationally engineer plasmonic metal nanostructures with sets of structural parameters that lead to specific functions. However, it is still challenging to predict the nanostructured outcome of a synthesis reaction by design because not only the exact kinetic path for the structural evolution is very complicated but also the relationships among various functional and structural parameters are often tangled. It is necessary to deconvolute the structure-function relationships and understand the co-evolution of structural and functional parameters as the nanostructures grow. DNA is a programable biomolecular capping ligand that was shown to be capable of precisely controlling the evolution of metal nanostructures. In this study, we systematically analyzed the evolution of two structural parameters and several functional parameters in the growth of Au-Ag nanostructures controlled by two DNA sequences. We deconvoluted the contributions from the two structural parameters in affecting the plasmonic properties in different kinetic and geometric domains. We further designed new nanostructures by exchanging DNA sequences in the growth environment, which also changed their evolution pathways. The resulting structural and functional parameters could be predictively tuned by the timing of the exchange. This study demonstrates the powerful toolbox provided by programable biomolecules in producing novel nanostructures in a predictable manner. It also shows that by understanding the kinetic evolution of the structural parameters and their relationships with the function parameters, it is possible to design the precise combinations of structural and functional parameters in the nanostructured products.
Collapse
Affiliation(s)
- Yiming Wang
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Nitya Sai Reddy Satyavolu
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Hong Yang
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Zhao Q, Yang H, Nie B, Luo Y, Shao J, Li G. Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3580-3590. [PMID: 34983178 DOI: 10.1021/acsami.1c22465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The metallic nanogap has been proved as an efficient architecture for surface-enhanced Raman scattering (SERS) applications. Although a lot of nanogap fabrication methods have been proposed in the last few decades, the economical and high-yield manufacturing of sub-10 nm gaps remains a challenge. Here, we present a convenient and cost-effective fabrication method for wafer-scale patterning of metallic nanogaps, which simply combines photolithographic metal patterning, swelling-induced nanocracking, and superimposition metal sputtering without requiring expensive nanofabrication equipment. By controlling the swelling time and metal deposition thickness, the gap size can be precisely defined, down to the sub-10 nm scale. Furthermore, we demonstrate that the fabricated nanogap array can be used as an excellent SERS substrate for molecule measurements and shows a high Raman enhancement factor of ∼108 and a high sensitivity for the detection of rhodamine 6G (R6G) molecules, even down to 10-14 M, indicating an extraordinary capability for single-molecule detection. Due to its high controllability and wafer-scale fabrication capability, this nanogap fabrication method offers a promising route for highly sensitive and economical SERS detections.
Collapse
Affiliation(s)
- Qiang Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
- Micro-/Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huan Yang
- Micro-/Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bangbang Nie
- Micro-/Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongsong Luo
- Micro-/Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinyou Shao
- Micro-/Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
22
|
Kim JM, Lee C, Lee Y, Lee J, Park SJ, Park S, Nam JM. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006966. [PMID: 34013617 DOI: 10.1002/adma.202006966] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Plasmonic gap nanostructures (PGNs) have been extensively investigated mainly because of their strongly enhanced optical responses, which stem from the high intensity of the localized field in the nanogap. The recently developed methods for the preparation of versatile nanogap structures open new avenues for the exploration of unprecedented optical properties and development of sensing applications relying on the amplification of various optical signals. However, the reproducible and controlled preparation of highly uniform plasmonic nanogaps and the prediction, understanding, and control of their optical properties, especially for nanogaps in the nanometer or sub-nanometer range, remain challenging. This is because subtle changes in the nanogap significantly affect the plasmonic response and are of paramount importance to the desired optical performance and further applications. Here, recent advances in the synthesis, assembly, and fabrication strategies, prediction and control of optical properties, and sensing applications of PGNs are discussed, and perspectives toward addressing these challenging issues and the future research directions are presented.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Chungyeon Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Yeonhee Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jinhaeng Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
23
|
Liu D, Xue C. Plasmonic Coupling Architectures for Enhanced Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005738. [PMID: 33891777 DOI: 10.1002/adma.202005738] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Plasmonic photocatalysis is a promising approach for solar energy transformation. Comparing with isolated metal nanoparticles, the plasmonic coupling architectures can provide further strengthened local electromagnetic field and boosted light-harvesting capability through optimal control over the composition, spacing, and orientation of individual nanocomponents. As such, when integrated with semiconductor photocatalysts, the coupled metal nanostructures can dramatically promote exciton generation and separation through plasmonic-coupling-driven charge/energy transfer toward superior photocatalytic efficiencies. Herein, the principles of the plasmonic coupling effect are presented and recent progress on the construction of plasmonic coupling architectures and their integration with semiconductors for enhanced photocatalytic reactions is summarized. In addition, the remaining challenges as to the rational design and utilization of plasmon coupling structures are elaborated, and some prospects to inspire new opportunities on the future development of plasmonic coupling structures for efficient and sustainable light-driven reactions are raised.
Collapse
Affiliation(s)
- Dong Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Can Xue
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
24
|
Li Z, Zhang J, Jin J, Yang F, Aleisa R, Yin Y. Creation and Reconstruction of Thermochromic Au Nanorods with Surface Concavity. J Am Chem Soc 2021; 143:15791-15799. [PMID: 34520190 DOI: 10.1021/jacs.1c07241] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conventional colloidal syntheses typically produce nanostructures with positive curvatures due to thermodynamic preference. Here, we demonstrate the creation of surface concavity in Au nanorods through seed-mediated growth in confined spaces and report their thermochromic responses to temperature changes. The unique surface concavity is created by templating against Fe3O4 nanorods, producing a new concavity-sensitive plasmonic band. Due to the high surface energy, the metastable nanorods can be reconstructed at a moderate temperature, enabling convenient and precise tuning of their plasmonic properties by aging in different solvents. Such structural reconstruction of concave Au nanorods enables the fabrication of thermochromic plasmonic films that can display images with vivid color changes or exhibit encrypted, invisible information upon aging. This templating strategy is universal in creating concave nanostructures, which may open the door to designing new nanostructures with promising applications in sensing, anticounterfeiting, information encryption, and displays.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521,United States
| | - Jian Zhang
- Department of Chemistry, University of California, Riverside, California 92521,United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Riverside, California 92521,United States
| | - Fan Yang
- Department of Chemistry, University of California, Riverside, California 92521,United States
| | - Rashed Aleisa
- Department of Chemistry, University of California, Riverside, California 92521,United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521,United States
| |
Collapse
|
25
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
26
|
Kulkarni AS, Huang L, Qian K. Material-assisted mass spectrometric analysis of low molecular weight compounds for biomedical applications. J Mater Chem B 2021; 9:3622-3639. [PMID: 33871513 DOI: 10.1039/d1tb00289a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Low molecular weight compounds play an important role in encoding the current physiological state of an individual. Laser desorption/ionization mass spectrometry (LDI MS) offers high sensitivity with low cost for molecular detection, but it is not able to cover small molecules due to the drawbacks of the conventional matrix. Advanced materials are better alternatives, showing little background interference and high LDI efficiency. Herein, we first classify the current materials with a summary of compositions and structures. Matrix preparation protocols are then reviewed, to enhance the selectivity and reproducibility of MS data better. Finally, we highlight the biomedical applications of material-assisted LDI MS, at the tissue, bio-fluid, and cellular levels. We foresee that the advanced materials will bring far-reaching implications in LDI MS towards real-case applications, especially in clinical settings.
Collapse
Affiliation(s)
- Anuja Shreeram Kulkarni
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China.
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China and School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
27
|
Lee S, Lee S, Son J, Kim JM, Lee J, Yoo S, Haddadnezhad M, Shin J, Kim J, Nam JM, Park S. Web-above-a-Ring (WAR) and Web-above-a-Lens (WAL): Nanostructures for Highly Engineered Plasmonic-Field Tuning and SERS Enhancement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101262. [PMID: 34160907 DOI: 10.1002/smll.202101262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Synthetic strategies of web-above-a-ring (WAR) and web-above-a-lens (WAL) nanostructures are reported. The WAR has a controllable gap between the nanoring core and a nanoweb with nanopores for the effective confinement of electromagnetic field in the nanogap and subsequent surface-enhanced Raman scattering (SERS) of Raman dyes inside the gap with high signal reproducibility, which are attributed to the generation of circular 3D hot zones along the rim of Pt@Au nanorings with wrapping nanoweb architecture. More specifically, Pt@Au nanorings are adopted as a plasmonic core for structural rigidity and built porous nanowebs above them through a controlled combination of galvanic exchange and the Kirkendall effect. Both nanoweb and nanolens structures are also formed on Pt@Au nanoring, which is WAL. structure. Remarkably, plasmonic hot zone, nanopores, and hot lens are formed inside a single WAL nanostructure, and these structural components are orchestrated to generate stronger SERS signals.
Collapse
Affiliation(s)
- Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Junghwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | | | - Jieun Shin
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| |
Collapse
|
28
|
Wang X, Liu C, Gao C, Yao K, Masouleh SSM, Berté R, Ren H, Menezes LDS, Cortés E, Bicket IC, Wang H, Li N, Zhang Z, Li M, Xie W, Yu Y, Fang Y, Zhang S, Xu H, Vomiero A, Liu Y, Botton GA, Maier SA, Liang H. Self-Constructed Multiple Plasmonic Hotspots on an Individual Fractal to Amplify Broadband Hot Electron Generation. ACS NANO 2021; 15:10553-10564. [PMID: 34114794 DOI: 10.1021/acsnano.1c03218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plasmonic nanoparticles are ideal candidates for hot-electron-assisted applications, but their narrow resonance region and limited hotspot number hindered the energy utilization of broadband solar energy. Inspired by tree branches, we designed and chemically synthesized silver fractals, which enable self-constructed hotspots and multiple plasmonic resonances, extending the broadband generation of hot electrons for better matching with the solar radiation spectrum. We directly revealed the plasmonic origin, the spatial distribution, and the decay dynamics of hot electrons on the single-particle level by using ab initio simulation, dark-field spectroscopy, pump-probe measurements, and electron energy loss spectroscopy. Our results show that fractals with acute tips and narrow gaps can support broadband resonances (400-1100 nm) and a large number of randomly distributed hotspots, which can provide unpolarized enhanced near field and promote hot electron generation. As a proof-of-concept, hot-electron-triggered dimerization of p-nitropthiophenol and hydrogen production are investigated under various irradiations, and the promoted hot electron generation on fractals was confirmed with significantly improved efficiency.
Collapse
Affiliation(s)
- Xi Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University, Tianjin 300350, P.R. China
| | - Changxu Liu
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, D-80539 München, Germany
| | - Congcong Gao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Kaili Yao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Seyed Shayan Mousavi Masouleh
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Rodrigo Berté
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, D-80539 München, Germany
| | - Haoran Ren
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, D-80539 München, Germany
| | - Leonardo de S Menezes
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, D-80539 München, Germany
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife-PE, Brazil
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, D-80539 München, Germany
| | - Isobel C Bicket
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Haiyu Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Ning Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Zhenglong Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710061, P R. China
| | - Ming Li
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University, Changsha, Hunan 410083, P.R. China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P.R. China
| | - Yifu Yu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| | - Yurui Fang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P.R. China
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, P.R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P.R. China
| | - Alberto Vomiero
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, S-97187 Luleå, Sweden
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Venezia Mestre, Italy
| | - Yongchang Liu
- State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, P.R. China
| | - Gianluigi A Botton
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, D-80539 München, Germany
- Department of Physics, Imperial College London, London SW7 2AZ, England
| | - Hongyan Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
29
|
Lin JS, Radjenovic PM, Jin H, Li JF. Plasmonic Core-Shell Nanoparticle Enhanced Spectroscopies for Surface Analysis. Anal Chem 2021; 93:6573-6582. [PMID: 33885277 DOI: 10.1021/acs.analchem.1c00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Probing the properties and components of reactive surfaces is crucial for illustrating reaction mechanisms. However, common surface analysis techniques are restricted to in situ acquisition of surface information at the molecular scale in the human environment and industrial catalysis processes. Plasmonic spectroscopies are promising tools to solve this problem. This Feature is intended to introduce the plasmonic core-shell nanoparticle enhanced spectroscopies for qualitatively and quantitatively analyzing surface trace species. Four different working modalities are designed for meeting varied needs, involving in situ surface species detection, catalytic process monitoring, labeled sensing, and dual mode analysis. These newly developed plasmonic spectroscopies show great potential not only in fundamental research but also in practical applications.
Collapse
Affiliation(s)
- Jia-Sheng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Huaizhou Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China.,College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
30
|
Su H, Li X, Huang L, Cao J, Zhang M, Vedarethinam V, Di W, Hu Z, Qian K. Plasmonic Alloys Reveal a Distinct Metabolic Phenotype of Early Gastric Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007978. [PMID: 33742513 DOI: 10.1002/adma.202007978] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Indexed: 05/20/2023]
Abstract
Gastric cancer (GC) is a multifactorial process, accompanied by alterations in metabolic pathways. Non-invasive metabolic profiling facilitates GC diagnosis at early stage leading to an improved prognostic outcome. Herein, mesoporous PdPtAu alloys are designed to characterize the metabolic profiles in human blood. The elemental composition is optimized with heterogeneous surface plasmonic resonance, offering preferred charge transfer for photoinduced desorption/ionization and enhanced photothermal conversion for thermally driven desorption. The surface structure of PdPtAu is further tuned with controlled mesopores, accommodating metabolites only, rather than large interfering compounds. Consequently, the optimized PdPtAu alloy yields direct metabolic fingerprints by laser desorption/ionization mass spectrometry in seconds, consuming 500 nL of native plasma. A distinct metabolic phenotype is revealed for early GC by sparse learning, resulting in precise GC diagnosis with an area under the curve of 0.942. It is envisioned that the plasmonic alloy will open up a new era of minimally invasive blood analysis to improve the surveillance of cancer patients in the clinical setting.
Collapse
Affiliation(s)
- Haiyang Su
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xinxing Li
- Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, 200065, P. R. China
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Jing Cao
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Vadanasundari Vedarethinam
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wen Di
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhiqian Hu
- Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, 200065, P. R. China
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
31
|
Lee S, Lee S, Kim JM, Son J, Cho E, Yoo S, Hilal H, Nam JM, Park S. Au nanolenses for near-field focusing. Chem Sci 2021; 12:6355-6361. [PMID: 34084434 PMCID: PMC8115063 DOI: 10.1039/d1sc00202c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a novel strategy for the synthesis of Pt@Au nanorings possessing near-field focusing capabilities at the center through which single-particle surface enhanced Raman scattering could be readily observed. We utilized Pt@Au nanorings as a light-absorber; the absorbed light could be focused at the center with the aid of a Au nanoporous structure. We synthesized the Au nanolens structure through a Galvanic exchange process between Au ions and Ag block at the inner domain of the Pt@Au nanoring. For this step, Ag was selectively pre-deposited at the inner domain of the Pt@Au nanorings through electrochemical potential-tuned growth control and different surface energies with regard to the inner and outer boundaries of the nanoring. Then, the central nanoporous architecture was fabricated through the Galvanic exchange of sacrificial Ag with Au ions leading to the resulting Au nanoring with a Au nanoporous structure at the center. We monitored the shape-transformation by observing their corresponding localized surface plasmon resonance (LSPR) profiles. By varying the rim thickness of the starting Pt@Au nanorings, the inner diameter of the nanolens was accordingly tuned to maximize near-field focusing, which enabled us to obtain the reproducible and light-polarization independent measurements of single-particle SERS. Through theoretical simulation, the near-field electromagnetic field focusing capability was visualized and confirmed through single-particle SERS measurement showing an enhancement factor of 1.9 × 108 to 1.0 × 109. We synthesized a Au nanolens with electromagnetic near-field focusing capability by integrating a Au nanoporous structure at the center of the Pt@Au nanoring via synthetic steps of eccentric growth of Ag and nanoscale Galvanic exchange reaction.![]()
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University Seoul 08826 South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University Seoul 08826 South Korea
| | - Eunbyeol Cho
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| | - Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University Seoul 08826 South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University Suwon 440-746 South Korea
| |
Collapse
|
32
|
Lee SB, Paek SM, Oh JM. Porous Hybrids Structure between Silver Nanoparticle and Layered Double Hydroxide for Surface-Enhanced Raman Spectroscopy. NANOMATERIALS 2021; 11:nano11020447. [PMID: 33578775 PMCID: PMC7916476 DOI: 10.3390/nano11020447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
Silver nanoparticle (AgNP), in terms of antibacterial, catalytic, electronic, and optical applications, is an attractive material. Especially, when prepared to furnish sharp edge and systematic particle orientation on the substrate, AgNPs can take advantage of surface-enhanced Raman spectroscopy (SERS). In this research, we suggested a synthetic method to immobilize the AgNP on metal oxide by utilizing Ag-thiolate and layered double hydroxide (LDH) as precursor and template, respectively. The layer-by-layer structure of LDH and Ag-thiolate transformed through reductive calcination to metal oxide and AgNP array. Physicochemical characterization, including powder X-ray diffraction, N2 adsorption–desorption, microscopies, and X-ray photoelectron spectroscopy, revealed that the AgNP with sufficient crystallinity and particle gap was obtained at relatively high calcination temperature, ~600 °C. UV-vis diffusion reflectance spectroscopy showed that the calcination temperature affected particle size and electronic structure of AgNP. The prepared materials were subjected to SERS tests toward 4-nitrothiophenol (4-NTP). The sample obtained at 600 °C exhibited 50 times higher substrate enhancement factor (SEF) than the one obtained at 400 °C, suggesting that the calcination temperature was a determining parameter to enhance SERS activity in current synthetic condition.
Collapse
Affiliation(s)
- Su-Bin Lee
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea;
| | - Seung-Min Paek
- Department of Chemistry, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (S.-M.P.); (J.-M.O.); Tel.: +82-53-950-5335 (S.-M.P.); +82-2-2260-4977 (J.-M.O.)
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea;
- Correspondence: (S.-M.P.); (J.-M.O.); Tel.: +82-53-950-5335 (S.-M.P.); +82-2-2260-4977 (J.-M.O.)
| |
Collapse
|
33
|
Tan H, Hu H, Huang L, Qian K. Plasmonic tweezers for optical manipulation and biomedical applications. Analyst 2020; 145:5699-5712. [DOI: 10.1039/d0an00577k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This comprehensive minireview highlights the recent research on the subtypes, optical manipulation, and biomedical applications of plasmonic tweezers.
Collapse
Affiliation(s)
- Hongtao Tan
- Department of Pancreatobiliary Surgery
- The First Affiliated Hospital of Harbin Medical University
- Harbin
- P. R. China
| | - Huiqian Hu
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Lin Huang
- Stem Cell Research Center
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|