1
|
Cai Y, Shang Y, Lu M, Jin D, Zhou J. Polarized Upconversion of sub-100 nm Single Nanoparticles. NANO LETTERS 2024; 24:10915-10920. [PMID: 39167685 DOI: 10.1021/acs.nanolett.4c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Upconversion nanoparticles are popular as imaging probes due to their advantages in photostability and controllable emission dimensions. However, upconversion polarization remains largely uncharted with previous reports limited to microstructures. In this work, we report the observation of polarized upconversion emissions from β-NaYF4 single nanostructures below 100 nm. At the sub-100 nm scale, nanorods, nanodiscs, and nanoplates exhibit distinctive polarization degrees despite the same doping concentrations of lanthanides. We find this varied polarization degree results from the crystallographic orientation of nanostructure in relation to the light field and can be linked to the distinctive emission spectrum profile with varied Stark splitting transition ratios from Er3+. Our findings provide a comprehensive understanding of the polarization properties of upconversion nanoparticles, revealing a previously unexplored aspect of light emission. This discovery expands our knowledge of upconversion nanoparticles and also opens new possibilities for their use in future imaging and sensing applications, where polarization sensitivity is crucial.
Collapse
Affiliation(s)
- Yangjian Cai
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen Guangdong 518055, P. R. China
| | - Yunfei Shang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ming Lu
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
2
|
Maturi F, Raposo Filho RS, Brites CDS, Fan J, He R, Zhuang B, Liu X, Carlos LD. Deciphering Density Fluctuations in the Hydration Water of Brownian Nanoparticles via Upconversion Thermometry. J Phys Chem Lett 2024; 15:2606-2615. [PMID: 38420927 PMCID: PMC10926164 DOI: 10.1021/acs.jpclett.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
We investigate the intricate relationship among temperature, pH, and Brownian velocity in a range of differently sized upconversion nanoparticles (UCNPs) dispersed in water. These UCNPs, acting as nanorulers, offer insights into assessing the relative proportion of high-density and low-density liquid in the surrounding hydration water. The study reveals a size-dependent reduction in the onset temperature of liquid-water fluctuations, indicating an augmented presence of high-density liquid domains at the nanoparticle surfaces. The observed upper-temperature threshold is consistent with a hypothetical phase diagram of water, validating the two-state model. Moreover, an increase in pH disrupts the organization of water molecules, similar to external pressure effects, allowing simulation of the effects of temperature and pressure on hydrogen bonding networks. The findings underscore the significance of the surface of suspended nanoparticles for understanding high- to low-density liquid fluctuations and water behavior at charged interfaces.
Collapse
Affiliation(s)
- Fernando
E. Maturi
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Chemistry, São Paulo State University
(UNESP), 14800-060 Araraquara, SP, Brazil
| | - Ramon S. Raposo Filho
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos D. S. Brites
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jingyue Fan
- Department
of Chemistry, National University of Singapore, Singapore 117543
| | - Ruihua He
- Department
of Chemistry, National University of Singapore, Singapore 117543
| | - Bilin Zhuang
- Harvey
Mudd College, 301 Platt
Boulevard, Claremont, California 91711, United States
| | - Xiaogang Liu
- Department
of Chemistry, National University of Singapore, Singapore 117543
| | - Luís D. Carlos
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
4
|
Ortiz-Rivero E, Orozco-Barrera S, Chatterjee H, González-Gómez CD, Caro C, García-Martín ML, González PH, Rica RA, Gámez F. Light-to-Heat Conversion of Optically Trapped Hot Brownian Particles. ACS NANO 2023; 17:24961-24971. [PMID: 38048481 PMCID: PMC10754033 DOI: 10.1021/acsnano.3c07086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Anisotropic hybrid nanostructures stand out as promising therapeutic agents in photothermal conversion-based treatments. Accordingly, understanding local heat generation mediated by light-to-heat conversion of absorbing multicomponent nanoparticles at the single-particle level has forthwith become a subject of broad and current interest. Nonetheless, evaluating reliable temperature profiles around a single trapped nanoparticle is challenging from all of the experimental, computational, and fundamental viewpoints. Committed to filling this gap, the heat generation of an anisotropic hybrid nanostructure is explored by means of two different experimental approaches from which the local temperature is measured in a direct or indirect way, all in the context of hot Brownian motion theory. The results were compared with analytical results supported by the numerical computation of the wavelength-dependent absorption efficiencies in the discrete dipole approximation for scattering calculations, which has been extended to inhomogeneous nanostructures. Overall, we provide a consistent and comprehensive view of the heat generation in optical traps of highly absorbing particles from the viewpoint of the hot Brownian motion theory.
Collapse
Affiliation(s)
- Elisa Ortiz-Rivero
- Nanomaterials
for Bioimaging Group, Departamento de Física de Materiales,
& Instituto de materiales Nicolás Cabrera & Institute
for Advanced Research in Chemical Sciences,, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Sergio Orozco-Barrera
- Universidad
de Granada, Nanoparticles Trapping
Laboratory, Research Unit Modeling Nature (MNat) and Department of
Applied Physics, 18071 Granada, Spain
| | - Hirak Chatterjee
- Universidad
de Granada, Nanoparticles Trapping
Laboratory, Research Unit Modeling Nature (MNat) and Department of
Applied Physics, 18071 Granada, Spain
| | - Carlos D. González-Gómez
- Universidad
de Granada, Nanoparticles Trapping
Laboratory, Research Unit Modeling Nature (MNat) and Department of
Applied Physics, 18071 Granada, Spain
- Universidad
de Málaga, Department of Applied
Physics II, 29071 Málaga, Spain
| | - Carlos Caro
- Biomedical
Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress
and Health-FPS, 41092 Sevilla, Spain
- Biomedical
Research Institute of Málaga and Nanomedicine Platform (IBIMA-BIONAND
Platform), University of Málaga, C/Severo Ochoa 35, 29590 Málaga, Spain
| | - María-Luisa García-Martín
- Biomedical
Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress
and Health-FPS, 41092 Sevilla, Spain
- Biomedical
Research Institute of Málaga and Nanomedicine Platform (IBIMA-BIONAND
Platform), University of Málaga, C/Severo Ochoa 35, 29590 Málaga, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials & Nanomedicine
(CIBER-BBN), 28029 Madrid, Spain
| | - Patricia Haro González
- Nanomaterials
for Bioimaging Group, Departamento de Física de Materiales,
& Instituto de materiales Nicolás Cabrera & Institute
for Advanced Research in Chemical Sciences,, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Raúl A. Rica
- Universidad
de Granada, Nanoparticles Trapping
Laboratory, Research Unit Modeling Nature (MNat) and Department of
Applied Physics, 18071 Granada, Spain
| | - Francisco Gámez
- Department
of Physical Chemistry, Universidad Complutense
de Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Zhang M, Huang P, Zheng W, Song X, Shang X, Zhang W, Yang D, Yi X, Chen X. Lanthanide-Doped KMgF 3 Upconversion Nanoparticles for Photon Avalanche Luminescence with Giant Nonlinearities. NANO LETTERS 2023; 23:8576-8584. [PMID: 37683074 DOI: 10.1021/acs.nanolett.3c02377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Lanthanide (Ln3+)-doped photon avalanche (PA) upconversion nanoparticles (UCNPs) have great prospects in many advanced technologies; however, realizing efficient PA luminescence in Ln3+-doped UCNPs remains challenging due to the deleterious surface and lattice quenching effect. Herein, we report a unique strategy based on the pyrolysis of KHF2 for the controlled synthesis of aliovalent Ln3+-doped KMgF3 UCNPs, which can effectively protect Ln3+ from luminescence quenching by surface and internal OH- defects and thereby boost upconversion luminescence. This enables us to realize efficient PA luminescence from Tm3+ at 802 nm in KMgF3: Tm3+ UCNPs upon 1064 nm excitation, with a giant nonlinearity of ∼27, a PA response time of 281 ms, and an excitation threshold of 16.6 kW cm-2. This work may open up a new avenue for exploring highly nonlinear PA luminescence through aliovalent Ln3+ doping and crystal lattice engineering toward diverse emerging applications.
Collapse
Affiliation(s)
- Meiran Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorong Song
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoying Shang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Wen Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dengfeng Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaodong Yi
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Fernandez-Rodriguez MA, Orozco-Barrera S, Sun W, Gámez F, Caro C, García-Martín ML, Rica RA. Hot Brownian Motion of Thermoresponsive Microgels in Optical Tweezers Shows Discontinuous Volume Phase Transition and Bistability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301653. [PMID: 37158287 DOI: 10.1002/smll.202301653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Microgels are soft microparticles that often exhibit thermoresponsiveness and feature a transformation at a critical temperature, referred to as the volume phase transition temperature. Whether this transformation occurs as a smooth or as a discontinuous one is still a matter of debate. This question can be addressed by studying individual microgels trapped in optical tweezers. For this aim, composite particles are obtained by decorating Poly-N-isopropylacrylamide (pNIPAM) microgels with iron oxide nanocubes. These composites become self-heating when illuminated by the infrared trapping laser, performing hot Brownian motion within the trap. Above a certain laser power, a single decorated microgel features a volume phase transition that is discontinuous, while the usual continuous sigmoidal-like dependence is recovered after averaging over different microgels. The collective sigmoidal behavior enables the application of a power-to-temperature calibration and provides the effective drag coefficient of the self-heating microgels, thus establishing these composite particles as potential micro-thermometers and micro-heaters. Moreover, the self-heating microgels also exhibit an unexpected and intriguing bistability behavior above the critical temperature, probably due to partial collapses of the microgel. These results set the stage for further studies and the development of applications based on the hot Brownian motion of soft particles.
Collapse
Affiliation(s)
- Miguel Angel Fernandez-Rodriguez
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Laboratory of Surface and Interface Physics, Department of Applied Physics, Faculty of Sciences, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| | - Sergio Orozco-Barrera
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
| | - Wei Sun
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Department of Physics, Yanshan University, Qinhuangdao, 066004, China
| | - Francisco Gámez
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
| | - Carlos Caro
- Department of Physical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - María L García-Martín
- Department of Physical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Instituto de Investigación Bioméadica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/ Severo Ochoa, 35, 29590, Málaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Raúl Alberto Rica
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| |
Collapse
|
7
|
Manca M, Zhang C, Vasconcelos de Melo Freire R, Scheffold F, Salentinig S. Single particle investigation of triolein digestion using optical manipulation, polarized video microscopy, and SAXS. J Colloid Interface Sci 2023; 649:1039-1046. [PMID: 37406476 DOI: 10.1016/j.jcis.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023]
Abstract
HYPOTHESIS Understanding how soft colloids, such as food emulsion droplets, transform based on their environment is critical for various applications, including drug and nutrient delivery and biotechnology. However, the mechanisms behind colloidal transformations within individual oil droplets still need to be better understood. EXPERIMENTS This study employs optical micromanipulation with microfluidics and polarized optical video microscopy to investigate the pancreatic lipase- and pH-triggered colloidal transformations in a single triolein droplet. Small-angle X-ray scattering (SAXS) provides complementary statistical insights and allows for detailed structural assignment. FINDINGS Optical video microscopy recorded the transformation of individual triolein emulsion droplets, with the smooth surface of these spherical particles becoming rough and the entire volume eventually being affected. The polarized microscopy revealed the coexistence of at least two distinct structures in a single particle during digestion, with their ratio and distribution altered by pH. The SAXS analysis assigned the optical anisotropy to emulsified inverse hexagonal- and multilamellar phases, coexisting with isotropic structures such as the micellar cubic phase. These results can help understand the phase transformations inside an emulsion droplet during triglyceride digestion and guide the design of advanced food emulsions.
Collapse
Affiliation(s)
- Marco Manca
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Chi Zhang
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | | | - Frank Scheffold
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
8
|
Zembrzycki K, Pawłowska S, Pierini F, Kowalewski TA. Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime. Polymers (Basel) 2023; 15:polym15030787. [PMID: 36772088 PMCID: PMC9920121 DOI: 10.3390/polym15030787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The four most popular water models in molecular dynamics were studied in large-scale simulations of Brownian motion of colloidal particles in optical tweezers and then compared with experimental measurements in the same time scale. We present the most direct comparison of colloidal polystyrene particle diffusion in molecular dynamics simulations and experimental data on the same time scales in the ballistic regime. The four most popular water models, all of which take into account electrostatic interactions, are tested and compared based on yielded results and resources required. Three different conditions were simulated: a freely moving particle and one in a potential force field with two different strengths based on 1 pN/nm and 10 pN/nm. In all cases, the diameter of the colloidal particle was 50 nm. The acquired data were compared with experimental measurements performed using optical tweezers with position capture rates as high as 125 MHz. The experiments were performed in pure water on polystyrene particles with a 1 μm diameter in special microchannel cells.
Collapse
Affiliation(s)
- Krzysztof Zembrzycki
- Department of Biosystem and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
- Correspondence: (K.Z.); (F.P.)
| | - Sylwia Pawłowska
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Filippo Pierini
- Department of Biosystem and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
- Correspondence: (K.Z.); (F.P.)
| | - Tomasz Aleksander Kowalewski
- Department of Biosystem and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
9
|
Lu D, Retama JR, Marin R, Marqués MI, Calderón OG, Melle S, Haro-González P, Jaque D. Thermoresponsive Polymeric Nanolenses Magnify the Thermal Sensitivity of Single Upconverting Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202452. [PMID: 35908155 DOI: 10.1002/smll.202202452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Lanthanide-based upconverting nanoparticles (UCNPs) are trustworthy workhorses in luminescent nanothermometry. The use of UCNPs-based nanothermometers has enabled the determination of the thermal properties of cell membranes and monitoring of in vivo thermal therapies in real time. However, UCNPs boast low thermal sensitivity and brightness, which, along with the difficulty in controlling individual UCNP remotely, make them less than ideal nanothermometers at the single-particle level. In this work, it is shown how these problems can be elegantly solved using a thermoresponsive polymeric coating. Upon decorating the surface of NaYF4 :Er3+ ,Yb3+ UCNPs with poly(N-isopropylacrylamide) (PNIPAM), a >10-fold enhancement in optical forces is observed, allowing stable trapping and manipulation of a single UCNP in the physiological temperature range (20-45 °C). This optical force improvement is accompanied by a significant enhancement of the thermal sensitivity- a maximum value of 8% °C+1 at 32 °C induced by the collapse of PNIPAM. Numerical simulations reveal that the enhancement in thermal sensitivity mainly stems from the high-refractive-index polymeric coating that behaves as a nanolens of high numerical aperture. The results in this work demonstrate how UCNP nanothermometers can be further improved by an adequate surface decoration and open a new avenue toward highly sensitive single-particle nanothermometry.
Collapse
Affiliation(s)
- Dasheng Lu
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Jorge Rubio Retama
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Manuel I Marqués
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Departamento de Física de Materiales and IFIMAC, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Oscar G Calderón
- Departamento de Óptica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, 28037, Spain
| | - Sonia Melle
- Departamento de Óptica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, 28037, Spain
| | - Patricia Haro-González
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| |
Collapse
|
10
|
Temperature Effects on Optical Trapping Stability. MICROMACHINES 2021; 12:mi12080954. [PMID: 34442576 PMCID: PMC8400024 DOI: 10.3390/mi12080954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 01/11/2023]
Abstract
In recent years, optically trapped luminescent particles have emerged as a reliable probe for contactless thermal sensing because of the dependence of their luminescence on environmental conditions. Although the temperature effect in the optical trapping stability has not always been the object of study, the optical trapping of micro/nanoparticles above room temperature is hindered by disturbances caused by temperature increments of even a few degrees in the Brownian motion that may lead to the release of the particle from the trap. In this report, we summarize recent experimental results on thermal sensing experiments in which micro/nanoparticles are used as probes with the aim of providing the contemporary state of the art about temperature effects in the stability of potential trapping processes.
Collapse
|
11
|
Han S, Yi Z, Zhang J, Gu Q, Liang L, Qin X, Xu J, Wu Y, Xu H, Rao A, Liu X. Photon upconversion through triplet exciton-mediated energy relay. Nat Commun 2021; 12:3704. [PMID: 34140483 PMCID: PMC8211736 DOI: 10.1038/s41467-021-23967-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Exploration of upconversion luminescence from lanthanide emitters through energy migration has profound implications for fundamental research and technology development. However, energy migration-mediated upconversion requires stringent experimental conditions, such as high power excitation and special migratory ions in the host lattice, imposing selection constraints on lanthanide emitters. Here we demonstrate photon upconversion of diverse lanthanide emitters by harnessing triplet exciton-mediated energy relay. Compared with gadolinium-based systems, this energy relay is less dependent on excitation power and enhances the emission intensity of Tb3+ by 158-fold. Mechanistic investigations reveal that emission enhancement is attributable to strong coupling between lanthanides and surface molecules, which enables fast triplet generation (<100 ps) and subsequent near-unity triplet transfer efficiency from surface ligands to lanthanides. Moreover, the energy relay approach supports long-distance energy transfer and allows upconversion modulation in microstructures. These findings enhance fundamental understanding of energy transfer at molecule-nanoparticle interfaces and open exciting avenues for developing hybrid, high-performance optical materials.
Collapse
Affiliation(s)
- Sanyang Han
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jiangbin Zhang
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
| | - Qifei Gu
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Liangliang Liang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Jiahui Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yiming Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, China.
| | - Akshay Rao
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China.
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, China.
| |
Collapse
|