1
|
Shigetoh K, Hirata Y, Muramoto N, Ishida N. Destruction of virus particles via mechanical and chemical virucidal activity of nanocolumnar copper thin films. Mater Today Bio 2025; 32:101803. [PMID: 40391021 PMCID: PMC12088778 DOI: 10.1016/j.mtbio.2025.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/05/2025] [Accepted: 04/24/2025] [Indexed: 05/21/2025] Open
Abstract
Human-generated droplets, which facilitate the transmission of viral infections, include large droplets and aerosols. The drying rates of these droplets upon adhesion to a surface vary significantly owing to the wide range of their sizes (∼nine orders of magnitude). Consequently, combating viruses requires distinct strategies under wet and dry conditions. However, studies that account for these two contrasting conditions are lacking. In the present study, we replicated these conditions and investigated the topographical properties of enveloped bacteriophages as an indicator of viral integrity via high-speed atomic force microscopy. Under wet conditions, a reduction in the virus particle volume was observed only on a nanocolumnar copper (NC-Cu) thin film and not on a chemically stable nanocolumnar cupric oxide (NC-CuO) thin film. In contrast, under dry conditions, virus particles lost their shape integrity on both NC-CuO and NC-Cu films. The deformation of virus particles on the NC-CuO film under dry conditions suggests a mechanism distinct from the chemical activity of Cu (i.e., mechanical activity). These results indicate that dry conditions trigger the mechanical activity of nanostructured surfaces. This highlights the significance of nanostructure-induced mechanical activity in virus inactivation under dry conditions, such as those involving viruses in small droplets or aerosols.
Collapse
Affiliation(s)
- Keisuke Shigetoh
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Yusuke Hirata
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Nobuhiko Muramoto
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Nobuhiro Ishida
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
2
|
Ray A, Simpson JD, Demir I, Gisbert VG, Gomes DB, Amadei F, Alsteens D. From viral assembly to host interaction: AFM's contributions to virology. J Virol 2025; 99:e0087324. [PMID: 39655953 PMCID: PMC11784315 DOI: 10.1128/jvi.00873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Viruses represent a diverse pool of obligate parasites that infect virtually every known organism, as such, their study is incredibly valuable for a range of fields including public health, medicine, agriculture, and ecology, and the development of biomedical technologies. Having evolved over millions of years, each virus has a unique and often complicated biology, that must be characterized on a case-by-case basis, even between strains of the same taxon. Owing to its nanoscale spatial resolution, atomic force microscopy (AFM) represents a powerful tool for exploring virus biology, including structural features, kinetics of binding to host cell ligands, virion self-assembly, and budding behaviors. Through the availability of numerous chemistries and advances in imaging modes, AFM is able to explore the complex web of host-virus interactions and life-cycle at a single virus level, exploring features at the level of individual bonds and molecules. Due to the wide array of techniques developed and data analysis approaches available, AFM can provide information that cannot be furnished by other modalities, especially at a single virus level. Here, we highlight the unique methods and information that can be obtained through the use of AFM, demonstrating both its utility and versatility in the study of viruses. As the technology continues to rapidly evolve, AFM is likely to remain an integral part of research, providing unique and important insight into many aspects of virology.
Collapse
Affiliation(s)
- Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joshua D. Simpson
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Irem Demir
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Victor G. Gisbert
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David B. Gomes
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Federico Amadei
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
3
|
García‐Arribas AB, Ibáñez‐Freire P, Carlero D, Palacios‐Alonso P, Cantero‐Reviejo M, Ares P, López‐Polín G, Yan H, Wang Y, Sarkar S, Chhowalla M, Oksanen HM, Martín‐Benito J, de Pablo PJ, Delgado‐Buscalioni R. Broad Adaptability of Coronavirus Adhesion Revealed from the Complementary Surface Affinity of Membrane and Spikes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404186. [PMID: 39231361 PMCID: PMC11538687 DOI: 10.1002/advs.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Indexed: 09/06/2024]
Abstract
Coronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus-surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption-free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse-grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane-surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption-free energies.
Collapse
Affiliation(s)
- Aritz B. García‐Arribas
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ibáñez‐Freire
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Diego Carlero
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología CSICMadrid28049Spain
| | - Pablo Palacios‐Alonso
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Miguel Cantero‐Reviejo
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ares
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Guillermo López‐Polín
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Han Yan
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Yan Wang
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Soumya Sarkar
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Manish Chhowalla
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Hanna M. Oksanen
- Faculty of Biological and Environmental SciencesVijkki BiocenterUniversity of HelsinkiHelsinki00014Finland
| | - Jaime Martín‐Benito
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pedro J. de Pablo
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| | - Rafael Delgado‐Buscalioni
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| |
Collapse
|
4
|
Bae J, Bednar P, Zhu R, Bong C, Bak MS, Stainer S, Kim K, Lee J, Yoon C, Lee Y, Ojowa OT, Lehner M, Hinterdorfer P, Ruzek D, Park S, Oh YJ. Mechanisms of Plasma Ozone and UV-C Sterilization of SARS-CoV-2 Explored through Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49176-49185. [PMID: 39240691 PMCID: PMC11420863 DOI: 10.1021/acsami.4c11057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/08/2024]
Abstract
Ultraviolet-C (UV-C) radiation and ozone gas are potential mechanisms employed to inactivate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), each exhibiting distinct molecular-level modalities of action. To elucidate these disparities and deepen our understanding, we delve into the intricacies of SARS-CoV-2 inactivation via UV-C and ozone gas treatments, exploring their distinct molecular-level impacts utilizing a suite of advanced techniques, including biological atomic force microscopy (Bio-AFM) and single virus force spectroscopy (SVFS). Whereas UV-C exhibited no perceivable alterations in virus size or surface topography, ozone gas treatment elucidated pronounced changes in both parameters, intensifying with prolonged exposure. Furthermore, a nuanced difference was observed in virus-host cell binding post-treatment: ozone gas distinctly reduced SARS-CoV-2 binding to host cells, while UV-C maintained the status quo. The results derived from these methodical explorations underscore the pivotal role of advanced Bio-AFM techniques and SVFS in enhancing our understanding of virus inactivation mechanisms, offering invaluable insights for future research and applications in viral contamination mitigation.
Collapse
Affiliation(s)
- Jinseung Bae
- School of
Mechanical Engineering, Sungkyunkwan University
(SKKU), Suwon 16419, Republic of Korea
| | - Petr Bednar
- Veterinary
Research Institute, CZ-62100 Brno, Czech
Republic
- Department
of Medical Biology, Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
- Department
of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Rong Zhu
- Institute
of Biophysics, Johannes Kepler University
Linz, Linz A-4020, Austria
| | - Cheolwoo Bong
- School of
Mechanical Engineering, Sungkyunkwan University
(SKKU), Suwon 16419, Republic of Korea
| | - Moon Soo Bak
- School of
Mechanical Engineering, Sungkyunkwan University
(SKKU), Suwon 16419, Republic of Korea
| | - Sarah Stainer
- Institute
of Biophysics, Johannes Kepler University
Linz, Linz A-4020, Austria
| | | | - Junghun Lee
- Samsung
Electronics, Suwon 16677, Republic
of Korea
| | - Chulsoo Yoon
- Samsung
Electronics, Suwon 16677, Republic
of Korea
| | - Yugyeong Lee
- Department
of Biomedical Engineering, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | | | - Maximilian Lehner
- Institute
of Biophysics, Johannes Kepler University
Linz, Linz A-4020, Austria
| | - Peter Hinterdorfer
- Institute
of Biophysics, Johannes Kepler University
Linz, Linz A-4020, Austria
| | - Daniel Ruzek
- Veterinary
Research Institute, CZ-62100 Brno, Czech
Republic
- Department
of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
- Institute
of Parasitology, Biology Centre of the Czech
Academy of Sciences, CZ-370
05 Ceske Budejovice, Czech Republic
| | - Sungsu Park
- School of
Mechanical Engineering, Sungkyunkwan University
(SKKU), Suwon 16419, Republic of Korea
- Department
of Biomedical Engineering, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Yoo Jin Oh
- Institute
of Biophysics, Johannes Kepler University
Linz, Linz A-4020, Austria
| |
Collapse
|
5
|
Chitty C, Kuliga K, Xue WF. Atomic force microscopy 3D structural reconstruction of individual particles in the study of amyloid protein assemblies. Biochem Soc Trans 2024; 52:761-771. [PMID: 38600027 DOI: 10.1042/bst20230857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Recent developments in atomic force microscopy (AFM) image analysis have made three-dimensional (3D) structural reconstruction of individual particles observed on 2D AFM height images a reality. Here, we review the emerging contact point reconstruction AFM (CPR-AFM) methodology and its application in 3D reconstruction of individual helical amyloid filaments in the context of the challenges presented by the structural analysis of highly polymorphous and heterogeneous amyloid protein structures. How individual particle-level structural analysis can contribute to resolving the amyloid polymorph structure-function relationships, the environmental triggers leading to protein misfolding and aggregation into amyloid species, the influences by the conditions or minor fluctuations in the initial monomeric protein structure on the speed of amyloid fibril formation, and the extent of the different types of amyloid species that can be formed, are discussed. Future perspectives in the capabilities of AFM-based 3D structural reconstruction methodology exploiting synergies with other recent AFM technology advances are also discussed to highlight the potential of AFM as an emergent general, accessible and multimodal structural biology tool for the analysis of individual biomolecules.
Collapse
Affiliation(s)
- Claudia Chitty
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| | - Kinga Kuliga
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| | - Wei-Feng Xue
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| |
Collapse
|
6
|
de Pablo PJ, Mateu MG. Mechanical Properties of Viruses. Subcell Biochem 2024; 105:629-691. [PMID: 39738960 DOI: 10.1007/978-3-031-65187-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Structural biology techniques have greatly contributed to unveiling the interplay between molecular structure, physico-chemical properties, and biological function of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical features of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength, and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of some physical properties of viruses and their contribution to virus function. Virus particles are subjected to internal and external forces and they may have adapted to withstand, and even use those forces. This chapter focuses on the mechanical properties of virus particles, their structural determinants, their use to study virus function, and some possible biological implications, of which several examples are provided.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Department of Physics of the Condensed Matter, C03, and IFIMAC (Instituto de Física de la Materia Condensada), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
de Pablo PJ. Atomic Force Microscopy of Viruses. Subcell Biochem 2024; 105:329-357. [PMID: 39738951 DOI: 10.1007/978-3-031-65187-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Atomic force microscopy (AFM) makes it possible to obtain images at nanometric resolution, and to accomplish the manipulation and physical characterization of specimens, including the determination of their mechanical and electrostatic properties. AFM has an ample range of applications, from materials science to biology. The specimen, supported on a solid surface, can be imaged and manipulated while working in air, ultra-high vacuum or, most importantly for virus studies, in liquid. The adaptability of AFM is also favored by the large variety of specimens of very different sizes that it can deal with, such as atoms, molecules, and molecular complexes including viruses and cells. AFM allows, in addition, the possibility to observe dynamics in real time. Indeed, AFM facilitates single molecule experiments enabling not only to see but also to touch the material under study (i.e., mechanical manipulations) and constitutes a fundamental source of information for materials characterization. In particular, the study of the mechanical properties of viruses and other biomolecular aggregates at the nanoscale is providing humongous information This helps to elaborate mechano-chemical structure/function models of complex protein aggregates, expanding and complementing the information obtained by other techniques.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Department of Physics of the Condensed Matter, C03 and IFIMAC (Instituto de Física de la Materia Condensada). Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Nonn A, Kiss B, Pezeshkian W, Tancogne-Dejean T, Cerrone A, Kellermayer M, Bai Y, Li W, Wierzbicki T. Inferring mechanical properties of the SARS-CoV-2 virus particle with nano-indentation tests and numerical simulations. J Mech Behav Biomed Mater 2023; 148:106153. [PMID: 37865016 DOI: 10.1016/j.jmbbm.2023.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023]
Abstract
The pandemic caused by the SARS-CoV-2 virus has claimed more than 6.5 million lives worldwide. This global challenge has led to accelerated development of highly effective vaccines tied to their ability to elicit a sustained immune response. While numerous studies have focused primarily on the spike (S) protein, less is known about the interior of the virus. Here we propose a methodology that combines several experimental and simulation techniques to elucidate the internal structure and mechanical properties of the SARS-CoV-2 virus. The mechanical response of the virus was analyzed by nanoindentation tests using a novel flat indenter and evaluated in comparison to a conventional sharp tip indentation. The elastic properties of the viral membrane were estimated by analytical solutions, molecular dynamics (MD) simulations on a membrane patch and by a 3D Finite Element (FE)-beam model of the virion's spike protein and membrane molecular structure. The FE-based inverse engineering approach provided a reasonable reproduction of the mechanical response of the virus from the sharp tip indentation and was successfully verified against the flat tip indentation results. The elastic modulus of the viral membrane was estimated in the range of 7-20 MPa. MD simulations showed that the presence of proteins significantly reduces the fracture strength of the membrane patch. However, FE simulations revealed an overall high fracture strength of the virus, with a mechanical behavior similar to the highly ductile behavior of engineering metallic materials. The failure mechanics of the membrane during sharp tip indentation includes progressive damage combined with localized collapse of the membrane due to severe bending. Furthermore, the results support the hypothesis of a close association of the long membrane proteins (M) with membrane-bound hexagonally packed ribonucleoproteins (RNPs). Beyond improved understanding of coronavirus structure, the present findings offer a knowledge base for the development of novel prevention and treatment methods that are independent of the immune system.
Collapse
Affiliation(s)
- Aida Nonn
- CMM Lab, Faculty of Mechanical Engineering, OTH Regensburg, 93053, Regensburg, Germany.
| | - Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, H-1094, Hungary; ELKH-SE Biophysical Virology Research Group, Budapest, H-1094, Hungary
| | - Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | | | - Albert Cerrone
- Computational Hydraulics Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Miklos Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, H-1094, Hungary; ELKH-SE Biophysical Virology Research Group, Budapest, H-1094, Hungary
| | - Yuanli Bai
- Department of Mechanical and Aerospace of Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL, 32816, USA
| | - Wei Li
- Impact and Crashworthiness Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tomasz Wierzbicki
- Impact and Crashworthiness Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Cantero M, Cvirkaite-Krupovic V, Krupovic M, de Pablo PJ. Mechanical tomography of an archaeal lemon-shaped virus reveals membrane-like fluidity of the capsid and liquid nucleoprotein cargo. Proc Natl Acad Sci U S A 2023; 120:e2307717120. [PMID: 37824526 PMCID: PMC10589707 DOI: 10.1073/pnas.2307717120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Archaeal lemon-shaped viruses have unique helical capsids composed of highly hydrophobic protein strands which can slide past each other resulting in remarkable morphological reorganization. Here, using atomic force microscopy, we explore the biomechanical properties of the lemon-shaped virions of Sulfolobus monocaudavirus 1 (SMV1), a double-stranded DNA virus which infects hyperthermophilic (~80 °C) and acidophilic (pH ~ 2) archaea. Our results reveal that SMV1 virions are extremely soft and withstand repeated extensive deformations, reaching remarkable strains of 80% during multiple cycles of consecutive mechanical assaults, yet showing scarce traces of disruption. SMV1 virions can reversibly collapse wall-to-wall, reducing their volume by ~90%. Beyond revealing the exceptional malleability of the SMV1 protein shell, our data also suggest a fluid-like nucleoprotein cargo which can flow inside the capsid, resisting and accommodating mechanical deformations without further alteration. Our experiments suggest a packing fraction of the virus core to be as low as 11%, with the amount of the accessory proteins almost four times exceeding that of the viral genome. Our findings indicate that SMV1 protein capsid displays biomechanical properties of lipid membranes, which is not found among protein capsids of other viruses. The remarkable malleability and fluidity of the SMV1 virions are likely necessary for the structural transformations during the infection and adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Miguel Cantero
- Departamento de Física de la Materia Condensada C03, Universidad Autónoma de Madrid, Madrid28049, Spain
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris75015, France
| | - Pedro J. de Pablo
- Departamento de Física de la Materia Condensada C03, Universidad Autónoma de Madrid, Madrid28049, Spain
- Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid28049, Spain
| |
Collapse
|
10
|
Chiang W, Stout A, Yanchik-Slade F, Li H, Terrando N, Nilsson BL, Gelbard HA, Krauss TD. Quantum Dot Biomimetic for SARS-CoV-2 to Interrogate Blood-Brain Barrier Damage Relevant to NeuroCOVID Brain Inflammation. ACS APPLIED NANO MATERIALS 2023; 6:15094-15107. [PMID: 37649833 PMCID: PMC10463222 DOI: 10.1021/acsanm.3c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Despite limited evidence for infection of SARS-CoV-2 in the central nervous system, cognitive impairment is a common complication reported in "recovered" COVID-19 patients. Identification of the origins of these neurological impairments is essential to inform therapeutic designs against them. However, such studies are limited, in part, by the current status of high-fidelity probes to visually investigate the effects of SARS-CoV-2 on the system of blood vessels and nerve cells in the brain, called the neurovascular unit. Here, we report that nanocrystal quantum dot micelles decorated with spike protein (COVID-QDs) are able to interrogate neurological damage due to SARS-CoV-2. In a transwell co-culture model of the neurovascular unit, exposure of brain endothelial cells to COVID-QDs elicited an inflammatory response in neurons and astrocytes without direct interaction with the COVID-QDs. These results provide compelling evidence of an inflammatory response without direct exposure to SARS-CoV-2-like nanoparticles. Additionally, we found that pretreatment with a neuro-protective molecule prevented endothelial cell damage resulting in substantial neurological protection. These results will accelerate studies into the mechanisms by which SARS-CoV-2 mediates neurologic dysfunction.
Collapse
Affiliation(s)
- Wesley Chiang
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Angela Stout
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Francine Yanchik-Slade
- Department of Chemistry and The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Herman Li
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Niccolò Terrando
- Department
of Anesthesiology, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Bradley L. Nilsson
- Department of Chemistry and The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Harris A. Gelbard
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Todd D. Krauss
- Department of Chemistry and The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
11
|
Farkas CB, Dudás G, Babinszky GC, Földi L. Analysis of the Virus SARS-CoV-2 as a Potential Bioweapon in Light of International Literature. Mil Med 2023; 188:531-540. [PMID: 35569934 PMCID: PMC9384074 DOI: 10.1093/milmed/usac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/06/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION As of early 2022, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic still represents a worldwide medical emergency situation. The ongoing vaccination programs can slow down the spread of the virus; however, from time to time, the newly emerging variants of concern and antivaccination movements carry the possibility for the disease to remain in our daily lives. After the appearance of SARS-CoV-2, there was scholarly debate whether the virus was of natural origin, or it emerged from a laboratory, some even thinking the agent's potential biological weapon properties suggest the latter scenario. Later, the bioweapon theory was dismissed by the majority of experts, but the question remains that despite its natural origin, how potent a biological weapon the SARS-CoV-2 virus can become over time. MATERIALS AND METHODS Based on 12 bioweapon threat assessment criteria already published in 2018, we performed a literature search and review, focusing on relevant potential bioweapon properties of the virus SARS-CoV-2. Instead of utilizing a survey among experts, we tried to qualify and quantify characteristics according to the available data found in peer-reviewed papers. We also identified other key elements not mentioned in the original 12 bioweapon criteria, which can play an important role in assessing future biological weapons. RESULTS According to the international literature we analyzed, SARS-CoV-2 is a moderately infectious agent (ID50 estimated between 100 and 1,000), with high infection-to-disease ratio (35%-45% rate of asymptomatic infected) and medium incubation period (1-34 days, mean 6-7 days). Its morbidity and mortality rate can be categorized as medium (high morbidity rate with significant mortality rate). It can be easily produced in large quantities, has high aerosol stability, and has moderate environmental stability. Based on laboratory experiments and statistical model analysis, it can form and is contagious with droplet nuclei, and with spray technique utilization, it could be weaponized effectively. Several prophylactic countermeasures are available in the form of vaccines; however, specific therapeutic options are much more limited. In connection with the original assessment criteria, the SARS-CoV-2 only achieved a "0" score on the ease of detection because of readily available, relatively sensitive, and specific rapid antigen tests. Based on the pandemic experience, we also propose three new assessment categories: one that establishes a mean to measure the necessary quarantine restrictions related to a biological agent, another one that can represent the personal protective equipment required to work safely with a particular agent, and a third one that quantifies the overall disruptive capability, based on previous real-life experiences. These factors could further specify the threat level related to potential biological weapons. CONCLUSIONS Our results show that the virus can become a potent bioweapon candidate in the future, achieving a total score of 24 out of 36 on the original 12 criteria. The SARS-CoV-2 has already proven its pandemic generating potential and, despite worldwide efforts, still remains an imminent threat. In order to be prepared for the future possibility of the virus arising as a bioweapon, we must remain cautious and take the necessary countermeasures.
Collapse
Affiliation(s)
- Csaba Bence Farkas
- Department of Pathology, Medical Centre, Hungarian Defence Forces, Budapest 1134, Hungary
| | - Gábor Dudás
- Mobile Biological Laboratory, Medical Centre, Hungarian Defence Forces, Budapest 1134, Hungary
| | - Gergely Csaba Babinszky
- Mobile Biological Laboratory, Medical Centre, Hungarian Defence Forces, Budapest 1134, Hungary
| | - László Földi
- Department of Operations and Support, Faculty of Military Sciences and Officer Training, University of Public Service, Budapest 1101, Hungary
| |
Collapse
|
12
|
Evans CT, Payton O, Picco L, Allen MJ. Visualisation of microalgal-viral interactions by high-speed atomic force microscopy. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Visualization of viruses and their hosts has been paramount to their study and understanding. The direct observation of the morphological dynamics of infection is a highly desired capability and the focus of instrument development across a variety of microscopy technologies. This study demonstrates progress that has been made in exploiting the capabilities offered by HS-AFM to characterise the interactions between coccolithoviruses and their globally important coccolithophore hosts. We observe whole Emiliania huxleyi Virus capsids, transient binding to Emiliania huxleyi derived supported lipid bilayers, and host-virus binding in real-time in an environmentally relevant, aqueous environment.
Collapse
|
13
|
Groma V, Kugler S, Farkas Á, Füri P, Madas B, Nagy A, Erdélyi T, Horváth A, Müller V, Szántó-Egész R, Micsinai A, Gálffy G, Osán J. Size distribution and relationship of airborne SARS-CoV-2 RNA to indoor aerosol in hospital ward environments. Sci Rep 2023; 13:3566. [PMID: 36864124 PMCID: PMC9980870 DOI: 10.1038/s41598-023-30702-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/28/2023] [Indexed: 03/04/2023] Open
Abstract
Aerosol particles proved to play a key role in airborne transmission of SARS-CoV-2 viruses. Therefore, their size-fractionated collection and analysis is invaluable. However, aerosol sampling in COVID departments is not straightforward, especially in the sub-500-nm size range. In this study, particle number concentrations were measured with high temporal resolution using an optical particle counter, and several 8 h daytime sample sets were collected simultaneously on gelatin filters with cascade impactors in two different hospital wards during both alpha and delta variants of concern periods. Due to the large number (152) of size-fractionated samples, SARS-CoV-2 RNA copies could be statistically analyzed over a wide range of aerosol particle diameters (70-10 µm). Our results revealed that SARS-CoV-2 RNA is most likely to exist in particles with 0.5-4 µm aerodynamic diameter, but also in ultrafine particles. Correlation analysis of particulate matter (PM) and RNA copies highlighted the importance of indoor medical activity. It was found that the daily maximum increment of PM mass concentration correlated the most with the number concentration of SARS-CoV-2 RNA in the corresponding size fractions. Our results suggest that particle resuspension from surrounding surfaces is an important source of SARS-CoV-2 RNA present in the air of hospital rooms.
Collapse
Affiliation(s)
- V Groma
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary
| | - Sz Kugler
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary
| | - Á Farkas
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary
| | - P Füri
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary
| | - B Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary
| | - A Nagy
- Department of Applied and Nonlinear Optics, Wigner Research Centre for Physics, Budapest, 1121, Hungary
| | - T Erdélyi
- Department of Pulmonology, Semmelweis University, Budapest, 1085, Hungary
| | - A Horváth
- Department of Pulmonology, Semmelweis University, Budapest, 1085, Hungary
- Pest County Pulmonology Hospital, Törökbálint, 2045, Hungary
| | - V Müller
- Department of Pulmonology, Semmelweis University, Budapest, 1085, Hungary
| | | | | | - G Gálffy
- Pest County Pulmonology Hospital, Törökbálint, 2045, Hungary
| | - J Osán
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary.
| |
Collapse
|
14
|
Gupta S, Santangelo CD, Patteson AE, Schwarz JM. How cells wrap around virus-like particles using extracellular filamentous protein structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526272. [PMID: 36778225 PMCID: PMC9915516 DOI: 10.1101/2023.01.30.526272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nanoparticles, such as viruses, can enter cells via endocytosis. During endocytosis, the cell surface wraps around the nanoparticle to effectively eat it. Prior focus has been on how nanoparticle size and shape impacts endocytosis. However, inspired by the noted presence of extracellular vimentin affecting viral and bacteria uptake, as well as the structure of coronaviruses, we construct a computational model in which both the cell-like construct and the virus-like construct contain filamentous protein structures protruding from their surfaces. We then study the impact of these additional degrees of freedom on viral wrapping. We find that cells with an optimal density of filamentous extracellular components (ECCs) are more likely to be infected as they uptake the virus faster and use relatively less cell surface area per individual virus. At the optimal density, the cell surface folds around the virus, and folds are faster and more efficient at wrapping the virus than crumple-like wrapping. We also find that cell surface bending rigidity helps generate folds, as bending rigidity enhances force transmission across the surface. However, changing other mechanical parameters, such as the stretching stiffness of filamentous ECCs or virus spikes, can drive crumple-like formation of the cell surface. We conclude with the implications of our study on the evolutionary pressures of virus-like particles, with a particular focus on the cellular microenvironment that may include filamentous ECCs.
Collapse
Affiliation(s)
- Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
| | | | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
- Indian Creek Farm, Ithaca, NY USA
| |
Collapse
|
15
|
Lim K, Nishide G, Sajidah ES, Yamano T, Qiu Y, Yoshida T, Kobayashi A, Hazawa M, Ando T, Hanayama R, Wong RW. Nanoscopic Assessment of Anti-SARS-CoV-2 Spike Neutralizing Antibody Using High-Speed AFM. NANO LETTERS 2023; 23:619-628. [PMID: 36641798 PMCID: PMC9881159 DOI: 10.1021/acs.nanolett.2c04270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Anti-spike neutralizing antibodies (S NAbs) have been developed for prevention and treatment against COVID-19. The nanoscopic characterization of the dynamic interaction between spike proteins and S NAbs remains difficult. By using high-speed atomic force microscopy (HS-AFM), we elucidate the molecular property of an S NAb and its interaction with spike proteins. The S NAb appeared as monomers with a Y conformation at low density and formed hexameric oligomers at high density. The dynamic S NAb-spike protein interaction at RBD induces neither RBD opening nor S1 subunit shedding. Furthermore, the interaction was stable at endosomal pH. These findings indicated that the S NAb could have a negligible risk of antibody-dependent enhancement. Dynamic movement of spike proteins on small extracellular vesicles (S sEV) resembled that on SARS-CoV-2. The sensitivity of variant S sEVs to S NAb could be evaluated using HS-AFM. Altogether, we demonstrate a nanoscopic assessment platform for evaluating the binding property of S NAbs.
Collapse
Affiliation(s)
- Keesiang Lim
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Goro Nishide
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative,
WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Elma Sakinatus Sajidah
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Tomoyoshi Yamano
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department
of Immunology, Kanazawa University Graduate
School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yujia Qiu
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Takeshi Yoshida
- Department
of Immunology, Kanazawa University Graduate
School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Akiko Kobayashi
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University,
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaharu Hazawa
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University,
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Rikinari Hanayama
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department
of Immunology, Kanazawa University Graduate
School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Richard W. Wong
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University,
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
16
|
El-Moghazy AY, Amaly N, Sun G, Nitin N. Development and clinical evaluation of commercial glucose meter coupled with nanofiber based immuno-platform for self-diagnosis of SARS-CoV-2 in saliva. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Varga Z, Madai M, Kemenesi G, Beke-Somfai T, Jakab F. Single-particle detection of native SARS-CoV-2 virions by microfluidic resistive pulse sensing. Colloids Surf B Biointerfaces 2022; 218:112716. [PMID: 35907357 PMCID: PMC9306222 DOI: 10.1016/j.colsurfb.2022.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Microfluidic resistive pulse sensing (MRPS) was used to determine the size -distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on detecting nearly 30,000 single virions. However, the ultrastructure of SARS-CoV-2 is thoroughly described, but ensemble properties of SARS-CoV-2, e.g., its particle size distribution, are sparsely reported. According to the MRPS results, the size distribution of SARS-CoV-2 follows a log-normal function with a mean value of 85.1 nm, which corresponds to an approximate diameter of the viral envelope. This result also confirms the low number (< 50) of spike proteins on the surface of the virions.
Collapse
Affiliation(s)
- Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.
| | - Mónika Madai
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| | - Tamás Beke-Somfai
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
18
|
Gourdelier M, Swain J, Arone C, Mouttou A, Bracquemond D, Merida P, Saffarian S, Lyonnais S, Favard C, Muriaux D. Optimized production and fluorescent labeling of SARS-CoV-2 virus-like particles. Sci Rep 2022; 12:14651. [PMID: 36030323 PMCID: PMC9419636 DOI: 10.1038/s41598-022-18681-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2 is an RNA enveloped virus responsible for the COVID-19 pandemic that conducted in 6 million deaths worldwide so far. SARS-CoV-2 particles are mainly composed of the 4 main structural proteins M, N, E and S to form 100 nm diameter viral particles. Based on productive assays, we propose an optimal transfected plasmid ratio mimicking the viral RNA ratio in infected cells. This allows SARS-CoV-2 Virus-Like Particle (VLPs) formation composed of the viral structural proteins M, N, E and mature S. Furthermore, fluorescent or photoconvertible VLPs were generated by adding a fluorescent protein tag on N or M mixing with unlabeled viral proteins and characterized by western blots, atomic force microscopy coupled to fluorescence and immuno-spotting. Thanks to live fluorescence and super-resolution microscopies, we quantified VLPs size and concentration. SARS-CoV-2 VLPs present a diameter of 110 and 140 nm respectively for MNE-VLPs and MNES-VLPs with a concentration of 10e12 VLP/ml. In this condition, we were able to establish the incorporation of the Spike in the fluorescent VLPs. Finally, the Spike functionality was assessed by monitoring fluorescent MNES-VLPs docking and internalization in human pulmonary cells expressing or not the receptor hACE2. Results show a preferential maturation of S on N(GFP) labeled VLPs and an hACE2-dependent VLP internalization and a potential fusion in host cells. This work provides new insights on the use of non-fluorescent and fluorescent VLPs to study and visualize the SARS-CoV-2 viral life cycle in a safe environment (BSL-2 instead of BSL-3). Moreover, optimized SARS-CoV-2 VLP production can be further adapted to vaccine design strategies.
Collapse
Affiliation(s)
- Manon Gourdelier
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Jitendriya Swain
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Coline Arone
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Anita Mouttou
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - David Bracquemond
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Peggy Merida
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Saveez Saffarian
- Department of Physics and Astronomy, Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Delphine Muriaux
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France.
- CEMIPAI, Université de Montpellier, CNRS UAR3725, Montpellier, France.
| |
Collapse
|
19
|
Warsame C, Valerini D, Llavori I, Barber AH, Goel S. Modal analysis of novel coronavirus (SARS COV-2) using finite element methodology. J Mech Behav Biomed Mater 2022; 135:105406. [PMID: 36075162 PMCID: PMC9391233 DOI: 10.1016/j.jmbbm.2022.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
Many new engineering and scientific innovations have been proposed to date to passivate the novel coronavirus (SARS CoV-2), with the aim of curing the related disease that is now recognised as COVID-19. Currently, vaccine development remains the most reliable solution available. Efforts to provide solutions as alternatives to vaccinations are growing and include established control of behaviours such as self-isolation, social distancing, employing facial masks and use of antimicrobial surfaces. The work here proposes a novel engineering method employing the concept of resonant frequencies to denature SARS CoV-2. Specifically, “modal analysis” is used to computationally analyse the Eigenvalues and Eigenvectors i.e. frequencies and mode shapes to denature COVID-19. An average virion dimension of 63 nm with spike proteins number 6, 7 and 8 were examined, which revealed a natural frequency of a single virus in the range of 88–125 MHz. The information derived about the natural frequency of the virus through this study will open newer ways to exploit medical solutions to combat future pandemics.
Collapse
|
20
|
Monitoring SARS-CoV-2 Surrogate TGEV Individual Virions Structure Survival under Harsh Physicochemical Environments. Cells 2022; 11:cells11111759. [PMID: 35681454 PMCID: PMC9179875 DOI: 10.3390/cells11111759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Effective airborne transmission of coronaviruses via liquid microdroplets requires a virion structure that must withstand harsh environmental conditions. Due to the demanding biosafety requirements for the study of human respiratory viruses, it is important to develop surrogate models to facilitate their investigation. Here we explore the mechanical properties and nanostructure of transmissible gastroenteritis virus (TGEV) virions in liquid milieu and their response to different chemical agents commonly used as biocides. Our data provide two-fold results on virus stability: First, while particles with larger size and lower packing fraction kept their morphology intact after successive mechanical aggressions, smaller viruses with higher packing fraction showed conspicuous evidence of structural damage and content release. Second, monitoring the structure of single TGEV particles in the presence of detergent and alcohol in real time revealed the stages of gradual degradation of the virus structure in situ. These data suggest that detergent is three orders of magnitude more efficient than alcohol in destabilizing TGEV virus particles, paving the way for optimizing hygienic protocols for viruses with similar structure, such as SARS-CoV-2.
Collapse
|
21
|
Shahzad S, Willcox M. The Possible Role of Prion-Like Viral Protein Domains on the Emergence of Novel Viruses as SARS-CoV-2. J Mol Evol 2022; 90:227-230. [PMID: 35362781 PMCID: PMC8972983 DOI: 10.1007/s00239-022-10054-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/24/2022] [Indexed: 01/21/2023]
Abstract
Self-replicating proteins or prions deviate from the central dogma of replication. The discovery of prion-like domains in coronavirus SARS-CoV-2 suggests their possible role in viral evolution. Here, we have outlined the possible role of self-replicating protein-like domains in the emergence of novel viruses. Further studies are needed to understand the function of these viral self-replicating protein-like domains and whether they could be antiviral target(s) for the development of effective antiviral agents in the future.
Collapse
Affiliation(s)
- Shakeel Shahzad
- Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW 2052 Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales Sydney, Sydney, NSW 2052 Australia
| |
Collapse
|
22
|
In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds. COMPUTATION 2022. [DOI: 10.3390/computation10040051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Some clinical studies have indicated activity of ivermectin, a macrocyclic lactone, against COVID-19, but a biological mechanism initially proposed for this anti-viral effect is not applicable at physiological concentrations. This in silico investigation explores potential modes of action of ivermectin and 14 related compounds, by which the infectivity and morbidity of the SARS-CoV-2 virus may be limited. Binding affinity computations were performed for these agents on several docking sites each for models of (1) the spike glycoprotein of the virus, (2) the CD147 receptor, which has been identified as a secondary attachment point for the virus, and (3) the alpha-7 nicotinic acetylcholine receptor (α7nAChr), an indicated point of viral penetration of neuronal tissue as well as an activation site for the cholinergic anti-inflammatory pathway controlled by the vagus nerve. Binding affinities were calculated for these multiple docking sites and binding modes of each compound. Our results indicate the high affinity of ivermectin, and even higher affinities for some of the other compounds evaluated, for all three of these molecular targets. These results suggest biological mechanisms by which ivermectin may limit the infectivity and morbidity of the SARS-CoV-2 virus and stimulate an α7nAChr-mediated anti-inflammatory pathway that could limit cytokine production by immune cells.
Collapse
|
23
|
Lawanprasert A, Simonson AW, Sumner SE, Nicol MJ, Pimcharoen S, Kirimanjeswara GS, Medina SH. Inhalable SARS-CoV-2 Mimetic Particles Induce Pleiotropic Antigen Presentation. Biomacromolecules 2022; 23:1158-1168. [PMID: 35080884 PMCID: PMC12087347 DOI: 10.1021/acs.biomac.1c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Indexed: 11/28/2022]
Abstract
Coronavirus disease 2019 (Covid-19) has caused over 5.5 million deaths worldwide, and viral mutants continue to ravage communities with limited access to injectable vaccines or high rates of vaccine hesitancy. Inhalable vaccines have the potential to address these distribution and compliance issues as they are less likely to require cold storage, avoid the use of needles, and can elicit localized immune responses with only a single dose. Alveolar macrophages represent attractive targets for inhalable vaccines as they are abundant within the lung mucosa (up to 95% of all immune cells) and are important mediators of mucosal immunity, and evidence suggests that they may be key cellular players in early Covid-19 pathogenesis. Here, we report inhalable coronavirus mimetic particles (CoMiP) designed to rapidly bind to, and be internalized by, alveolar macrophages to deliver nucleic acid-encoded viral antigens. Inspired by the SARS-CoV-2 virion structure, CoMiP carriers package nucleic acid cargo within an endosomolytic peptide envelope that is wrapped in a macrophage-targeting glycosaminoglycan coating. Through this design, CoMiP mimic several important features of the SARS-CoV-2 virion, particularly surface topography and macromolecular chemistry. As a result, CoMiP effect pleiotropic transfection of macrophages and lung epithelial cells in vitro with multiple antigen-encoding plasmids. In vivo immunization yields increased mucosal IgA levels within the respiratory tract of CoMiP vaccinated mice.
Collapse
Affiliation(s)
- Atip Lawanprasert
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Andrew W. Simonson
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Sarah E. Sumner
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - McKayla J. Nicol
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Sopida Pimcharoen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, Center for Infectious Disease Dynamics, and Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States; Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802-4400, United States; Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| |
Collapse
|
24
|
Scheim DE. A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at Its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody. Int J Mol Sci 2022; 23:2558. [PMID: 35269703 PMCID: PMC8910562 DOI: 10.3390/ijms23052558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Rouleaux (stacked clumps) of red blood cells (RBCs) observed in the blood of COVID-19 patients in three studies call attention to the properties of several enveloped virus strains dating back to seminal findings of the 1940s. For COVID-19, key such properties are: (1) SARS-CoV-2 binds to RBCs in vitro and also in the blood of COVID-19 patients; (2) although ACE2 is its target for viral fusion and replication, SARS-CoV-2 initially attaches to sialic acid (SA) terminal moieties on host cell membranes via glycans on its spike protein; (3) certain enveloped viruses express hemagglutinin esterase (HE), an enzyme that releases these glycan-mediated bindings to host cells, which is expressed among betacoronaviruses in the common cold strains but not the virulent strains, SARS-CoV, SARS-CoV-2 and MERS. The arrangement and chemical composition of the glycans at the 22 N-glycosylation sites of SARS-CoV-2 spike protein and those at the sialoglycoprotein coating of RBCs allow exploration of specifics as to how virally induced RBC clumping may form. The in vitro and clinical testing of these possibilities can be sharpened by the incorporation of an existing anti-COVID-19 therapeutic that has been found in silico to competitively bind to multiple glycans on SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- David E Scheim
- US Public Health Service, Commissioned Officer, Inactive Reserve, Blacksburg, VA 24060, USA
| |
Collapse
|
25
|
Bagrov DV, Glukhov GS, Moiseenko AV, Karlova MG, Litvinov DS, Zaitsev PА, Kozlovskaya LI, Shishova AA, Kovpak AA, Ivin YY, Piniaeva AN, Oksanich AS, Volok VP, Osolodkin DI, Ishmukhametov AA, Egorov AM, Shaitan KV, Kirpichnikov MP, Sokolova OS. Structural characterization of β-propiolactone inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particles. Microsc Res Tech 2022; 85:562-569. [PMID: 34498784 PMCID: PMC8646525 DOI: 10.1002/jemt.23931] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/22/2021] [Indexed: 12/23/2022]
Abstract
The severe COVID-19 pandemic drives the research toward the SARS-CoV-2 virion structure and the possible therapies against it. Here, we characterized the β-propiolactone inactivated SARS-CoV-2 virions using transmission electron microscopy (TEM) and atomic force microscopy (AFM). We compared the SARS-CoV-2 samples purified by two consecutive chromatographic procedures (size exclusion chromatography [SEC], followed by ion-exchange chromatography [IEC]) with samples purified by ultracentrifugation. The samples prepared using SEC and IEC retained more spikes on the surface than the ones prepared using ultracentrifugation, as confirmed by TEM and AFM. TEM showed that the spike (S) proteins were in the pre-fusion conformation. Notably, the S proteins could be recognized by specific monoclonal antibodies. Analytical TEM showed that the inactivated virions retained nucleic acid. Altogether, we demonstrated that the inactivated SARS-CoV-2 virions retain the structural features of native viruses and provide a prospective vaccine candidate.
Collapse
Affiliation(s)
- Dmitry V. Bagrov
- Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
- Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
| | | | - Andrey V. Moiseenko
- Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
- N. N. Semenov Federal Research Center for Chemical PhysicsRussian Academy of SciencesMoscowRussia
| | | | | | - Petr А. Zaitsev
- Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Liubov I. Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)MoscowRussia
- Institute of Translational Medicine and BiotechnologySechenov First Moscow State Medical UniversityMoscowRussia
| | - Anna A. Shishova
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)MoscowRussia
- Institute of Translational Medicine and BiotechnologySechenov First Moscow State Medical UniversityMoscowRussia
| | - Anastasia A. Kovpak
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)MoscowRussia
| | - Yury Y. Ivin
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)MoscowRussia
| | - Anastasia N. Piniaeva
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)MoscowRussia
| | | | - Viktor P. Volok
- Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)MoscowRussia
| | - Dmitry I. Osolodkin
- Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)MoscowRussia
- Institute of Translational Medicine and BiotechnologySechenov First Moscow State Medical UniversityMoscowRussia
| | - Aydar A. Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune‐and‐Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)MoscowRussia
- Institute of Translational Medicine and BiotechnologySechenov First Moscow State Medical UniversityMoscowRussia
| | - Alexey M. Egorov
- Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
- N. N. Semenov Federal Research Center for Chemical PhysicsRussian Academy of SciencesMoscowRussia
- Mechnikov Research Institute of Vaccines and SeraMoscowRussia
| | - Konstantin V. Shaitan
- Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
- N. N. Semenov Federal Research Center for Chemical PhysicsRussian Academy of SciencesMoscowRussia
| | | | - Olga S. Sokolova
- Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
- Biology DepartmentMSU‐BIT UniversityShenzhenChina
| |
Collapse
|
26
|
Penetration of the SARS-CoV-2 Spike Protein across the Blood–Brain Barrier, as Revealed by a Combination of a Human Cell Culture Model System and Optical Biosensing. Biomedicines 2022; 10:biomedicines10010188. [PMID: 35052867 PMCID: PMC8773803 DOI: 10.3390/biomedicines10010188] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/12/2022] [Indexed: 01/12/2023] Open
Abstract
Since the outbreak of the global pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), several clinical aspects of the disease have come into attention. Besides its primary route of infection through the respiratory system, SARS-CoV-2 is known to have neuroinvasive capacity, causing multiple neurological symptoms with increased neuroinflammation and blood–brain barrier (BBB) damage. The viral spike protein disseminates via circulation during infection, and when reaching the brain could possibly cross the BBB, which was demonstrated in mice. Therefore, its medical relevance is of high importance. The aim of this study was to evaluate the barrier penetration of the S1 subunit of spike protein in model systems of human organs highly exposed to the infection. For this purpose, in vitro human BBB and intestinal barrier cell–culture systems were investigated by an optical biosensing method. We found that spike protein crossed the human brain endothelial cell barrier effectively. Additionally, spike protein passage was found in a lower amount for the intestinal barrier cell layer. These observations were corroborated with parallel specific ELISAs. The findings on the BBB model could provide a further basis for studies focusing on the mechanism and consequences of spike protein penetration across the BBB to the brain.
Collapse
|
27
|
Lim K, Nishide G, Yoshida T, Watanabe‐Nakayama T, Kobayashi A, Hazawa M, Hanayama R, Ando T, Wong RW. Millisecond dynamic of SARS-CoV-2 spike and its interaction with ACE2 receptor and small extracellular vesicles. J Extracell Vesicles 2021; 10:e12170. [PMID: 34874124 PMCID: PMC8650025 DOI: 10.1002/jev2.12170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 spike protein (S) binds to human angiotensin-converting enzyme 2 (hACE2), allowing virus to dock on cell membrane follow by viral entry. Here, we use high-speed atomic force microscopy (HS-AFM) for real-time visualization of S, and its interaction with hACE2 and small extracellular vesicles (sEVs). Results show conformational heterogeneity of S, flexibility of S stalk and receptor-binding domain (RBD), and pH/temperature-induced conformational change of S. S in an S-ACE2 complex appears as an all-RBD up conformation. The complex acquires a distinct topology upon acidification. S and S2 subunit demonstrate different membrane docking mechanisms on sEVs. S-hACE2 interaction facilitates S to dock on sEVs, implying the feasibility of ACE2-expressing sEVs for viral neutralization. In contrary, S2 subunit docks on lipid layer and enters sEV using its fusion peptide, mimicking the viral entry scenario. Altogether, our study provides a platform that is suitable for real-time visualization of various entry inhibitors, neutralizing antibodies, and sEV-based decoy in blocking viral entry. Teaser: Comprehensive observation of SARS-CoV-2 spike and its interaction with receptor ACE2 and sEV-based decoy in real time using HS-AFM.
Collapse
Affiliation(s)
- Keesiang Lim
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Goro Nishide
- Division of Nano Life Science in the Graduate School of Frontier Science InitiativeWISE Program for Nano‐Precision MedicineScience and TechnologyKanazawa UniversityKanazawaIshikawaJapan
| | - Takeshi Yoshida
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | | | - Akiko Kobayashi
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Masaharu Hazawa
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| | - Rikinari Hanayama
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Department of ImmunologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Toshio Ando
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Richard W. Wong
- WPI‐Nano Life Science InstituteKanazawa UniversityKanazawaIshikawaJapan
- Cell‐Bionomics Research UnitInstitute for Frontier Science Initiative (INFINITI)Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
28
|
Péter B, Boldizsár I, Kovács GM, Erdei A, Bajtay Z, Vörös A, Ramsden JJ, Szabó I, Bősze S, Horvath R. Natural Compounds as Target Biomolecules in Cellular Adhesion and Migration: From Biomolecular Stimulation to Label-Free Discovery and Bioactivity-Based Isolation. Biomedicines 2021; 9:1781. [PMID: 34944597 PMCID: PMC8698624 DOI: 10.3390/biomedicines9121781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Plants and fungi can be used for medical applications because of their accumulation of special bioactive metabolites. These substances might be beneficial to human health, exerting also anti-inflammatory and anticancer (antiproliferative) effects. We propose that they are mediated by influencing cellular adhesion and migration via various signaling pathways and by directly inactivating key cell adhesion surface receptor sites. The evidence for this proposition is reviewed (by summarizing the natural metabolites and their effects influencing cellular adhesion and migration), along with the classical measuring techniques used to gain such evidence. We systematize existing knowledge concerning the mechanisms of how natural metabolites affect adhesion and movement, and their role in gene expression as well. We conclude by highlighting the possibilities to screen natural compounds faster and more easily by applying new label-free methods, which also enable a far greater degree of quantification than the conventional methods used hitherto. We have systematically classified recent studies regarding the effects of natural compounds on cellular adhesion and movement, characterizing the active substances according to their organismal origin (plants, animals or fungi). Finally, we also summarize the results of recent studies and experiments on SARS-CoV-2 treatments by natural extracts affecting mainly the adhesion and entry of the virus.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| | - Imre Boldizsár
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (I.B.); (G.M.K.)
- Department of Pharmacognosy, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (I.B.); (G.M.K.)
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.E.); (Z.B.)
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.E.); (Z.B.)
- MTA-ELTE Immunology Research Group, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary
| | - Alexandra Vörös
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| | - Jeremy J. Ramsden
- Clore Laboratory, University of Buckingham, Buckingham MK18 1EG, UK;
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (I.S.); (S.B.)
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (I.S.); (S.B.)
- National Public Health Center, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Group, Research Centre for Energy Research, Institute for Technical Physics and Materials Science, Konkoly-Thege u 29-33, 1120 Budapest, Hungary; (A.V.); (R.H.)
| |
Collapse
|
29
|
Effect of pepper extracts on the viability kinetics, topography and Quantitative NanoMechanics (QNM) of Campylobacter jejuni evaluated with AFM. Micron 2021; 152:103183. [PMID: 34801959 DOI: 10.1016/j.micron.2021.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Campylobacter jejuni is a pathogen bacterium that causes foodborne gastroenteritis in humans. However, phenolic compounds extracted from natural sources such as capsicum pepper plant (Capsicum annuum L. var. aviculare) could inhibit the growth of C. jejuni. Therefore, different extracts were prepared using ultrasonic extraction (USE), conventional extraction (CE) and thermosonic extraction (TSE). C. jejuni was then exposed to chili extracts to examine the antimicrobial effect and their growth/death bacterial kinetics were studied using different mathematical models. Atomic force microscopy was applied to investigate the microstructural and nanomechanical changes in the bacteria. Extracts obtained by TSE had the highest phenolic content (4.59 ± 0.03 mg/g of chili fresh weight [FW]) in comparison to USE (4.12 ± 0.05 mg/g of chili FW) and CE (4.28 ± 0.07 mg/g of chili FW). The inactivation of C. jejuni was more efficient when thermosonic extract was used. The Gompertz model was the most suitable mathematical model to describe the inactivation kinetics of C. jejuni. Roughness and nanomechanical analysis performed by atomic force microscopy (AFM) provided evidence that the chili extracts had significant effects on morphology, surface, and the reduced Young's modulus of C. jejuni. The novelty of this work was integrating growth/death bacterial kinetics of C. jejuni using different mathematical models and chili extracts, and its relationship with the morphological, topographic and nanomechanical changes estimated by AFM.
Collapse
|
30
|
Increased Expression of N2BA Titin Corresponds to More Compliant Myofibrils in Athlete's Heart. Int J Mol Sci 2021; 22:ijms222011110. [PMID: 34681770 PMCID: PMC8537917 DOI: 10.3390/ijms222011110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022] Open
Abstract
Long-term exercise induces physiological cardiac adaptation, a condition referred to as athlete’s heart. Exercise tolerance is known to be associated with decreased cardiac passive stiffness. Passive stiffness of the heart muscle is determined by the giant elastic protein titin. The adult cardiac muscle contains two titin isoforms: the more compliant N2BA and the stiffer N2B. Titin-based passive stiffness may be controlled by altering the expression of the different isoforms or via post-translational modifications such as phosphorylation. Currently, there is very limited knowledge about titin’s role in cardiac adaptation during long-term exercise. Our aim was to determine the N2BA/N2B ratio and post-translational phosphorylation of titin in the left ventricle and to correlate the changes with the structure and transverse stiffness of cardiac sarcomeres in a rat model of an athlete’s heart. The athlete’s heart was induced by a 12-week-long swim-based training. In the exercised myocardium the N2BA/N2B ratio was significantly increased, Ser11878 of the PEVK domain was hypophosphorlyated, and the sarcomeric transverse elastic modulus was reduced. Thus, the reduced passive stiffness in the athlete’s heart is likely caused by a shift towards the expression of the longer cardiac titin isoform and a phosphorylation-induced softening of the PEVK domain which is manifested in a mechanical rearrangement locally, within the cardiac sarcomere.
Collapse
|
31
|
Adamczyk Z, Batys P, Barbasz J. SARS-CoV-2 virion physicochemical characteristics pertinent to abiotic substrate attachment. Curr Opin Colloid Interface Sci 2021; 55:101466. [PMID: 34093061 PMCID: PMC8169569 DOI: 10.1016/j.cocis.2021.101466] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structure, size, and main physicochemical characteristics of the SARS-CoV-2 virion with the spike transmembrane protein corona were discussed. Using these data, diffusion coefficients of the virion in aqueous media and in air were calculated. The structure and dimensions of the spike protein derived from molecular dynamic modeling and thorough cryo-electron microscopy measurements were also analyzed. The charge distribution over the molecule was calculated and shown to be largely heterogeneous. Although the stalk part is negatively charged, the top part of the spike molecule, especially the receptor binding domain, remains positively charged for a broad range of pH. It is underlined that such a charge distribution promotes the spike corona stability and enhances the virion attachment to receptors and surfaces, mostly negatively charged. The review is completed by the analysis of experimental data pertinent to the spike protein adsorption at abiotic surfaces comprising nanoparticle carrier particles. It is argued that these theoretical and experimental data can be used for developing quantitative models of virus attachment to surfaces, facilitating adequate analysis of future experimental results.
Collapse
|
32
|
Pietramellara G, Pathan SI, Datta R, Vranová V, Ceccherini M, Nannipieri P. Perspective on the status and behaviour of SARS-CoV-2 in soil. Saudi J Biol Sci 2021; 29:1014-1020. [PMID: 34608369 PMCID: PMC8482646 DOI: 10.1016/j.sjbs.2021.09.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022] Open
Abstract
Soil contamination by SARS-CoV-2 is highly probable because soil can collect several transporters of the virus, such as fallout aerosols, wastewaters, relatively purified sludges, and organic residues. However, the fate and status of SARS-CoV-2 in soil and the possible risks for human health through contaminated food are unknown. Therefore, this perspective paper discusses the challenges of determining the SARS-CoV-2 in soil and the mechanisms concerning its adsorption, movement, and infectivity in soil, considering what has already been reported by perspective papers published up to May 2021. These issues are discussed, drawing attention to the soil virus bibliography and considering the chemical structure of the virus. The mechanistic understanding of the status and behavior of SARS-CoV-2 in soil requires setting up an accurate determination method. In addition, future researches should provide insights into i) plant uptake and movement inside the plant, ii) virus adsorption and desorption in soil with the relative infectivity, and iii) its effects on soil functions. Models should simulate spatial localization of virus in the soil matrix.
Collapse
Affiliation(s)
- Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Firenze, P.le delle Cascine 24, 50144 Firenze, Italy
- Corresponding author at: Department of Agrifood Production and Environmental Sciences, Piazzale delle Cascine 28, 50144 Florence, Italy.
| | - Shamina Imran Pathan
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Firenze, P.le delle Cascine 24, 50144 Firenze, Italy
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Valerie Vranová
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - MariaTeresa Ceccherini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Firenze, P.le delle Cascine 24, 50144 Firenze, Italy
| | - Paolo Nannipieri
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Firenze, P.le delle Cascine 24, 50144 Firenze, Italy
| |
Collapse
|
33
|
Cardoso-Lima R, Souza PFN, Guedes MIF, Santos-Oliveira R, Rebelo Alencar LM. SARS-CoV-2 Unrevealed: Ultrastructural and Nanomechanical Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10762-10769. [PMID: 34351770 PMCID: PMC8370120 DOI: 10.1021/acs.langmuir.1c01488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Indexed: 05/28/2023]
Abstract
The ongoing outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) started in late 2019 and spread across the world, infecting millions of people, with over 3.3 million deaths worldwide. To fight back the virus, it is necessary to understand how the main structures work, especially those responsible for the virus infectivity pathogenicity. Here, using the most advanced atomic force microscopy techniques, SARS-CoV-2 viral particles were analyzed, with a special focus on their ultrastructure, adsorption conformation, and nanomechanical behavior. The results uncovered the aspects of the organization and the spatial distribution of the proteins on the surface of the viral particles. It also showed the compliant behavior of the membrane and ability to recover from mechanical injuries. At least three layers composing the membrane and their thickness were measured, protecting the virus from external stress. This study provides new insight into the ultrastructure of SARS-CoV-2 particles at the nanoscale, offering new prospects that could be employed for mapping viral surfaces. The understanding of the viruses' capacity to survive mechanical disruptions at any level and their ability to recover from such injuries can shed a light on the structure-function relationship and help us to find targets for drug action, especially for this virus that, to this day, has no course of treatment approved.
Collapse
Affiliation(s)
- Ruana Cardoso-Lima
- Department of Physics, Laboratory of Biophysics and
Nanosystems, Federal University of Maranhão, Campus
Bacanga, São Luís, Maranhão 65080-805,
Brazil
| | | | | | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and
Radiopharmacy, Zona Oeste State University, Rio de Janeiro, Rio
de Janeiro 23070200, Brazil
- Brazilian Nuclear Energy Commission,
Nuclear Engineering Institute, Rio de Janeiro, Rio de Janeiro
21941906, Brazil
| | - Luciana M. Rebelo Alencar
- Department of Physics, Laboratory of Biophysics and
Nanosystems, Federal University of Maranhão, Campus
Bacanga, São Luís, Maranhão 65080-805,
Brazil
| |
Collapse
|
34
|
Barczikai D, Domokos J, Szabó D, Molnar K, Juriga D, Krisch E, Nagy KS, Kohidai L, Helfer CA, Jedlovszky-Hajdu A, Puskas JE. Polyisobutylene-New Opportunities for Medical Applications. Molecules 2021; 26:molecules26175207. [PMID: 34500639 PMCID: PMC8434312 DOI: 10.3390/molecules26175207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022] Open
Abstract
This paper presents the results of the first part of testing a novel electrospun fiber mat based on a unique macromolecule: polyisobutylene (PIB). A PIB-based compound containing zinc oxide (ZnO) was electrospun into self-supporting mats of 203.75 and 295.5 g/m2 that were investigated using a variety of techniques. The results show that the hydrophobic mats are not cytotoxic, resist fibroblast cell adhesion and biofilm formation and are comfortable and easy to breathe through for use as a mask. The mats show great promise for personal protective equipment and other applications.
Collapse
Affiliation(s)
- Dóra Barczikai
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.B.); (D.J.); (K.S.N.)
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (J.D.); (D.S.)
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (J.D.); (D.S.)
| | - Kristof Molnar
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, 222 FABE, 1680 Madison Avenue, Wooster, OH 44691, USA; (K.M.); (E.K.); (C.A.H.)
| | - David Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.B.); (D.J.); (K.S.N.)
| | - Eniko Krisch
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, 222 FABE, 1680 Madison Avenue, Wooster, OH 44691, USA; (K.M.); (E.K.); (C.A.H.)
| | - Krisztina S. Nagy
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.B.); (D.J.); (K.S.N.)
| | - Laszlo Kohidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Carin A. Helfer
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, 222 FABE, 1680 Madison Avenue, Wooster, OH 44691, USA; (K.M.); (E.K.); (C.A.H.)
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.B.); (D.J.); (K.S.N.)
- Correspondence: (A.J.-H.); (J.E.P.)
| | - Judit E. Puskas
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, 222 FABE, 1680 Madison Avenue, Wooster, OH 44691, USA; (K.M.); (E.K.); (C.A.H.)
- Correspondence: (A.J.-H.); (J.E.P.)
| |
Collapse
|
35
|
The 3M Concept: Biomedical Translational Imaging from Molecules to Mouse to Man. THE EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Imaging keeps pervading biomedical sciences from the nanoscale to the bedside. Connecting the hierarchical levels of biomedicine with relevant imaging approaches, however, remains a challenge.
Here we present a concept, called “3M”, which can deliver a question, formulated at the bedside, across the wide-ranging hierarchical organization of the living organism, from the molecular level, through the small-animal scale, to whole-body human functional imaging. We present an example of nanoparticle development pipeline extending from atomic force microscopy to pre-clinical whole body imaging methods to highlight the essential features of the 3M concept, which integrates multi-scale resolution and quantification into a single logical process.
Using the nanoscale to human clinical whole body approach, we present the successful development, characterisation and application of Prussian Blue nanoparticles for a variety of imaging modalities, extending it to isotope payload quantification and shape-biodistribution relationships.
The translation of an idea from the bedside to the molecular level and back requires a set of novel combinatorial imaging methodologies interconnected into a logical pipeline. The proposed integrative molecules-to-mouse-to-man (3M) approach offers a promising, clinically oriented toolkit that lends the prospect of obtaining an ever-increasing amount of correlated information from as small a voxel of the human body as possible.
Collapse
|
36
|
Lyonnais S, Hénaut M, Neyret A, Merida P, Cazevieille C, Gros N, Chable-Bessia C, Muriaux D. Atomic force microscopy analysis of native infectious and inactivated SARS-CoV-2 virions. Sci Rep 2021; 11:11885. [PMID: 34088957 PMCID: PMC8178396 DOI: 10.1038/s41598-021-91371-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 is an enveloped virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. Here, single viruses were analyzed by atomic force microscopy (AFM) operating directly in a level 3 biosafety (BSL3) facility, which appeared as a fast and powerful method to assess at the nanoscale level and in 3D infectious virus morphology in its native conformation, or upon inactivation treatments. AFM imaging reveals structurally intact infectious and inactivated SARS-CoV-2 upon low concentration of formaldehyde treatment. This protocol combining AFM and plaque assays allows the preparation of intact inactivated SARS-CoV-2 particles for safe use of samples out of level 3 laboratory to accelerate researches against the COVID-19 pandemic. Overall, we illustrate how adapted BSL3-AFM is a remarkable toolbox for rapid and direct virus analysis based on nanoscale morphology.
Collapse
Affiliation(s)
| | - Mathilde Hénaut
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | - Aymeric Neyret
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | - Peggy Merida
- Institute of Research in Infectiology of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS, Montpellier, France
| | - Chantal Cazevieille
- Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France
| | - Nathalie Gros
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Delphine Muriaux
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France.
- Institute of Research in Infectiology of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS, Montpellier, France.
| |
Collapse
|
37
|
Wierzbicki T, Li W, Liu Y, Zhu J. Effect of receptors on the resonant and transient harmonic vibrations of Coronavirus. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2021; 150:104369. [PMID: 33623172 PMCID: PMC7890278 DOI: 10.1016/j.jmps.2021.104369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 05/06/2023]
Abstract
The paper is concerned with the vibration characteristics of the Coronavirus family. There are some 25-100 receptors, commonly called spikes protruding from the envelope shell of the virus. Spikes, resembling the shape of a hot air balloon, may have a total mass similar to the mass of the lipid bi-layer shell. The lipid proteins of the virus are treated as homogeneous elastic material and the problem is formulated as the interaction of thin elastic shell with discrete masses, modeled as short conical cross-sectional beams. The system is subjected to ultrasonic excitation. Using the methods of structural acoustics, it is shown that the scattered pressure is very small and the pressure on the viral shell is simply the incident pressure. The modal analysis is performed for a bare shell, a single spike, and the spike-decorated shell. The predicted vibration frequencies and modes are shown to compare well with the newly derived closed-form solutions for a single spike and existing analytical solutions for thin shells. The fully nonlinear dynamic simulation of the transient response revealed the true character of the complex interaction between local vibration of spikes and global vibration of the multi-degree-of-freedom system. It was shown that harmonic vibration at or below the lowest resonant modes can excite large amplitude vibration of spikes. The associated maximum principal strain in a spike can reach large values in a fraction of a millisecond. Implications for possible tearing off spikes from the shell are discussed. Another important result is that after a finite number of cycles, the shell buckles and collapses, developing internal contacts and folds with large curvatures and strains exceeding 10%. For the geometry and elastic properties of the SARS-CoV-2 virus, these effects are present in the range of frequencies close to the ones used for medical ultrasound diagnostics.
Collapse
Affiliation(s)
| | - Wei Li
- Department of Mechanical Engineering, MIT, United States
| | - Yuming Liu
- Department of Mechanical Engineering, MIT, United States
| | - Juner Zhu
- Department of Mechanical Engineering, MIT, United States
| |
Collapse
|