1
|
Yu L, Shevtsov S, Singh HJ, Kazansky PG, Caglayan H. Multifunctional Meta-optic Azimuthal Shear Interferometer. NANO LETTERS 2025; 25:7419-7425. [PMID: 40267356 PMCID: PMC12063176 DOI: 10.1021/acs.nanolett.5c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Azimuthal shear interferometry is a versatile tool for analyzing wavefront asymmetries. However, conventional systems are bulky, alignment-sensitive, and prone to nonuniform shear. We present a broadband, compact, and robust meta-optics-based azimuthal shear interferometer in a common-path configuration, reducing the system size to the millimeter scale. Unlike conventional designs, the meta-optic azimuthal shear interferometer utilizes the localized wavefront modulation capabilities of meta-optics to achieve uniform azimuthal shear displacement independent of the radial position, significantly enhancing accuracy and stability. Our approach eliminates the need for bulky optical components and precise multipath alignment, making it more resilient to environmental disturbances. Its multifunctionality is demonstrated through applications in all-optical edge detection, differential interference contrast microscopy, and aberrated wavefront sensing. These results underscore its potential for real-time analog image processing, advanced optical imaging, and optical testing.
Collapse
Affiliation(s)
- Linzhi Yu
- Department
of Physics, Tampere University, 33720 Tampere, Finland
| | - Sergei Shevtsov
- Optoelectronics
Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| | | | - Peter G. Kazansky
- Optoelectronics
Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Humeyra Caglayan
- Department
of Physics, Tampere University, 33720 Tampere, Finland
- Department
of Electrical Engineering and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
2
|
Chu C, Tsai CM, Yamaguchi T, Wang YX, Tanaka T, Chen HW, Luo Y, Tsai DP. Quantitative Phase Imaging with a Meta-Based Interferometric System. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26023-26031. [PMID: 40233216 PMCID: PMC12051180 DOI: 10.1021/acsami.5c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Optical phase imaging has become a pivotal tool in biomedical research, enabling label-free visualization of transparent specimens. Traditional optical phase imaging techniques, such as Zernike phase contrast and differential interference contrast microscopy, fall short of providing quantitative phase information. Digital holographic microscopy (DHM) addresses this limitation by offering precise phase measurements; however, off-axis configurations, particularly Mach-Zehnder and Michelson-based setups, are often hindered by environmental susceptibility and bulky optical components due to their separate reference and object beam paths. In this work, we have developed a meta-based interferometric quantitative phase imaging system using a common-path off-axis DHM configuration. A meta-biprism, featuring two opposite gradient phases created using GaN nanopillars selected for their low loss and durability, serves as a compact and efficient beam splitter. Our system effectively captures the complex wavefronts of samples, enabling the retrieval of quantitative phase information, which we demonstrate using standard resolution phase targets and human lung cell lines. Additionally, our system exhibits enhanced temporal phase stability compared to conventional off-axis DHM configurations, reducing phase fluctuations over extended measurement periods. These results not only underline the potential of metasurfaces in advancing the capabilities of quantitative phase imaging but also promise significant advancements in biomedical imaging and diagnostics.
Collapse
Affiliation(s)
- Cheng
Hung Chu
- YongLin
Institute of Health, National Taiwan University, Taipei 10672, Taiwan
| | - Chen-Ming Tsai
- Institute
of Medical Device and Imaging, National
Taiwan University, Taipei 10051, Taiwan
| | - Takeshi Yamaguchi
- Innovative
Photon Manipulation Research Team, RIKEN
Center for Advanced Photonics, Saitama 351-0198, Japan
| | - Yu-Xiang Wang
- Program
for Precision Health and Intelligent Medicine, National Taiwan University, Taipei 106319, Taiwan
| | - Takuo Tanaka
- Innovative
Photon Manipulation Research Team, RIKEN
Center for Advanced Photonics, Saitama 351-0198, Japan
- Metamaterials
Laboratory, RIKEN Cluster for Pioneering
Research, Saitama 351-0198, Japan
| | - Huei-Wen Chen
- Graduate
Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University and Academia Sinica, Taipei 100, Taiwan
| | - Yuan Luo
- YongLin
Institute of Health, National Taiwan University, Taipei 10672, Taiwan
- Institute
of Medical Device and Imaging, National
Taiwan University, Taipei 10051, Taiwan
- Program
for Precision Health and Intelligent Medicine, National Taiwan University, Taipei 106319, Taiwan
- Institute
of Biomedical Engineering, National Taiwan
University, Taipei 10051, Taiwan
| | - Din Ping Tsai
- Department
of Electrical Engineering, City University
of Hong Kong, Kowloon, Hong Kong 999077, China
- Centre
for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- The
State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
3
|
Zhou C, Wang Y, Huang L. All-optical analog differential operation and information processing empowered by meta-devices. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:1021-1044. [PMID: 40290294 PMCID: PMC12019956 DOI: 10.1515/nanoph-2024-0540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/13/2024] [Indexed: 04/30/2025]
Abstract
The burgeoning demand for high-performance computing, robust data processing, and rapid growth of big data necessitates the emergence of novel optical devices to efficiently execute demanding computational processes. The field of meta-devices, such as metamaterial or metasurface, has experienced unprecedented growth over the past two decades. By manipulating the amplitude, phase, polarization, and dispersion of light wavefronts in spatial, spectral, and temporal domains, viable solutions for the implementation of all-optical analog computation and information processing have been provided. In this review, we summarize the latest developments and emerging trends of computational meta-devices as innovative platforms for spatial optical analog differentiators and information processing. Based on the general concepts of spatial Fourier transform and Green's function, we analyze the physical mechanisms of meta-devices in the application of amplitude differentiation, phase differentiation, and temporal differentiation and summarize their applications in image edge detection, image edge enhancement, and beam shaping. Finally, we explore the current challenges and potential solutions in optical analog differentiators and provide perspectives on future research directions and possible developments.
Collapse
Affiliation(s)
- Chen Zhou
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, MIIT Key Laboratory of Photonics Information Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- National Key Laboratory on Near-surface Detection, Beijing, 100072, China
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, MIIT Key Laboratory of Photonics Information Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- National Key Laboratory on Near-surface Detection, Beijing, 100072, China
| | - Lingling Huang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, MIIT Key Laboratory of Photonics Information Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- National Key Laboratory on Near-surface Detection, Beijing, 100072, China
| |
Collapse
|
4
|
Cheng J, Geng Z, Zhou Y, Luo Z, Liu X, Xiang Y, Zhou J, Chen MK. Tunable meta-device for large depth of field quantitative phase imaging. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:1249-1256. [PMID: 40290285 PMCID: PMC12019949 DOI: 10.1515/nanoph-2024-0661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/31/2025] [Indexed: 04/30/2025]
Abstract
In traditional optical imaging, image sensors only record intensity information, and phase information of transparent samples such as cells and semiconductor materials is hard to obtain. Quantitative phase imaging techniques are crucial for obtaining detailed phase information, but current methods often require complex interferometric setups or mechanical adjustments, limiting their practical applicability. Here, we proposed a novel meta-device integrating a PB phase-based meta-lens, a refractive lens, and an electronically tunable lens with a polarization camera to capture multiple defocused images simultaneously for the transport of intensity equation-based phase retrieval algorithm. By leveraging the distinct focus lengths for left-circularly polarized and right-circularly polarized light, the meta-device eliminates the need for multiple shots and mechanical movements. Our approach enables rapid, precise, quantitative phase imaging at different depths. The experiment shows the accuracy of our methods is 98.47 % and with a 2.52 mm depth range of the objects that can be retrieved, making it highly suitable for dynamic and depth-varying samples, such as cells in solution.
Collapse
Affiliation(s)
- Jialuo Cheng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
| | - Zihan Geng
- Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518071, China
| | - Yin Zhou
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
| | - Zhendong Luo
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
| | - Xiaoyuan Liu
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
| | - Yinuo Xiang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
| | - Junxiao Zhou
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
| | - Mu Ku Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
| |
Collapse
|
5
|
Liu Z, Li Y, Zhang X, Li S, Wang G, Zhang W. Polarization-multiplexing metafiber for dual-mode bright-field and dark-field microscopy. OPTICS LETTERS 2025; 50:2163-2166. [PMID: 40167671 DOI: 10.1364/ol.551939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Bright-field and dark-field microscopy are typically used together as complementary techniques to provide comprehensive information about biological specimens with different optical absorption properties. However, switching between these two modes usually involves replacing several bulk optical components, which inevitably increases system complexity, introduces alignment challenges, and results in longer switching times. Herein, we propose a new, to the best of our knowledge, polarization-multiplexing metafiber device for dual-mode bright-field and dark-field microscopy. Utilizing a polarization-multiplexing metalens, two tailored beams (i.e., Gaussian and OAM beam) can be generated, simply by changing the handedness of the incident circularly polarized light. By integrating such metalens onto the tip of a large-mode-area photonic crystal fiber, we experimentally demonstrated that this compact and flexible metafiber can realize the dual-mode bright-field and dark-field microscopy using raspberry trichomes and pine stem, without the need to replace any optical components. The ultra-compact and flexibility features of the proposed metafiber-based dual-mode microscopy pave the way for promising applications in portable and in vivo biological imaging.
Collapse
|
6
|
Zhou J, Li A, Lei M, Hu J, Chen G, Burns Z, Tian F, Chen X, Lo YH, Tsai DP, Liu Z. Advanced Quantitative Phase Microscopy Achieved with Spatial Multiplexing and a Metasurface. NANO LETTERS 2025; 25:2034-2040. [PMID: 39838821 DOI: 10.1021/acs.nanolett.4c06039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Quantitative optical phase information provides an alternative method to observe biomedical properties, where conventional phase imaging fails. Phase retrieval typically requires multiple intensity measurements and iterative computations to ensure uniqueness and robustness against detection noise. To increase the measurement speed, we propose a single-shot quantitative phase imaging method with metasurface optics that can be conveniently integrated into conventional imaging systems with minimal modification. The improvement of the measurement speed is simultaneously made possible by combining deep learning with the transport-of-intensity equation. As a proof-of-concept, we demonstrate phase retrieval on both calibrated phase objects and biological specimens by using an imaging system integrated with our metasurface. When combined with the matched neural network, the system yields result with errors as low as 5% and increased space-bandwidth-product. A multitude of commercial applications can benefit from the compactness and rapid implementation of our proposed method.
Collapse
Affiliation(s)
- Junxiao Zhou
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ang Li
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ming Lei
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jie Hu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Guanghao Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zachary Burns
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Fanglin Tian
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xinyu Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yu-Hwa Lo
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Kim H, Yun H, Jeong S, Lee S, Cho E, Rho J. Optical Metasurfaces for Biomedical Imaging and Sensing. ACS NANO 2025; 19:3085-3114. [PMID: 39805079 DOI: 10.1021/acsnano.4c14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields. In particular, metasurfaces have led to breakthroughs in biomedical imaging technologies, such as achromatic imaging, phase imaging, and extended depth-of-focus imaging. They have also advanced cutting-edge biosensing technologies, featuring high-quality factor resonators and near-field enhancements. As the demand for device miniaturization and system integration increases, metasurfaces are expected to play a pivotal role in the development of next-generation biomedical devices. In this review, we explore the latest advancements in the use of metasurfaces for biomedical applications, with a particular focus on imaging and sensing. Additionally, we discuss future directions aimed at transforming the biomedical field by leveraging the full potential of metasurfaces to provide compact, high-performance solutions for a wide range of applications.
Collapse
Affiliation(s)
- Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Heechang Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sebin Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seokho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunseo Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSCTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Shanker A, Fröch JE, Mukherjee S, Zhelyeznyakov M, Brunton SL, Seibel EJ, Majumdar A. Quantitative phase imaging endoscopy with a metalens. LIGHT, SCIENCE & APPLICATIONS 2024; 13:305. [PMID: 39511136 PMCID: PMC11543855 DOI: 10.1038/s41377-024-01587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 11/15/2024]
Abstract
Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a28 ∘ field of view and 0. 2 π phase resolution ( ~ 0. 1 λ in air) for experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI.
Collapse
Affiliation(s)
- Aamod Shanker
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.
- Center for Vision Science, University of Rochester, New York, NY, 14623, USA.
| | - Johannes E Fröch
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Saswata Mukherjee
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Maksym Zhelyeznyakov
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Steven L Brunton
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Eric J Seibel
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Arka Majumdar
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Physics, University of Washington, Seattle, 98195, USA.
| |
Collapse
|
9
|
Zhou J, Tian F, Hu J, Shi ZL, Godinez VG, Tsai DP, Liu Z. Eagle-Eye Inspired Meta-Device for Phase Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402751. [PMID: 38816897 DOI: 10.1002/adma.202402751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The dual-focus vision observed in eagles' eyes is an intriguing phenomenon captivates scientists since a long time. Inspired by this natural occurrence, the authors' research introduces a novel bifocal meta-device incorporating a polarized camera capable of simultaneously capturing images for two different polarizations with slightly different focal distances. This innovative approach facilitates the concurrent acquisition of underfocused and overfocused images in a single snapshot, enabling the effective extraction of quantitative phase information from the object using the transport of intensity equation. Experimental demonstrations showcase the application of quantitative phase imaging to artificial objects and human embryonic kidney cells, particularly emphasizing the meta-device's relevance in dynamic scenarios such as laser-induced ablation in human embryonic kidney cells. Moreover, it provides a solution for the quantification during the dynamic process at the cellular level. Notably, the proposed eagle-eye inspired meta-device for phase imaging (EIMPI), due to its simplicity and compact nature, holds promise for significant applications in fields such as endoscopy and headsets, where a lightweight and compact setup is essential.
Collapse
Affiliation(s)
- Junxiao Zhou
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Fanglin Tian
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jie Hu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhixia Linda Shi
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Veronica Gomez Godinez
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
10
|
Li J, Li Y, Gan T, Shen CY, Jarrahi M, Ozcan A. All-optical complex field imaging using diffractive processors. LIGHT, SCIENCE & APPLICATIONS 2024; 13:120. [PMID: 38802376 PMCID: PMC11130282 DOI: 10.1038/s41377-024-01482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Complex field imaging, which captures both the amplitude and phase information of input optical fields or objects, can offer rich structural insights into samples, such as their absorption and refractive index distributions. However, conventional image sensors are intensity-based and inherently lack the capability to directly measure the phase distribution of a field. This limitation can be overcome using interferometric or holographic methods, often supplemented by iterative phase retrieval algorithms, leading to a considerable increase in hardware complexity and computational demand. Here, we present a complex field imager design that enables snapshot imaging of both the amplitude and quantitative phase information of input fields using an intensity-based sensor array without any digital processing. Our design utilizes successive deep learning-optimized diffractive surfaces that are structured to collectively modulate the input complex field, forming two independent imaging channels that perform amplitude-to-amplitude and phase-to-intensity transformations between the input and output planes within a compact optical design, axially spanning ~100 wavelengths. The intensity distributions of the output fields at these two channels on the sensor plane directly correspond to the amplitude and quantitative phase profiles of the input complex field, eliminating the need for any digital image reconstruction algorithms. We experimentally validated the efficacy of our complex field diffractive imager designs through 3D-printed prototypes operating at the terahertz spectrum, with the output amplitude and phase channel images closely aligning with our numerical simulations. We envision that this complex field imager will have various applications in security, biomedical imaging, sensing and material science, among others.
Collapse
Affiliation(s)
- Jingxi Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Yuhang Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Tianyi Gan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Che-Yung Shen
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Mona Jarrahi
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Ahmed H, Ansari MA, Paterson L, Li J, Chen X. Metasurface for Engineering Superimposed Ince-Gaussian Beams. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312853. [PMID: 38353164 DOI: 10.1002/adma.202312853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Ince-Gaussian beams (IGBs) are the third complete family of exact and orthogonal solutions of the paraxial wave equation and have been applied in many fields ranging from particle trapping to quantum optics. IGBs play a very important role in optics as they represent the exact and continuous transition modes connecting Laguerre-Gaussian and Hermite-Gaussian beams. The method currently in use suffers from the high cost, complexity, and large volume of the optical system. The superposition of IGBs can generate complicated structured beams with multiple phase and polarization singularities. A metasurface approach is proposed to realizing various superpositions of IGBs without relying on a complicated optical setup. By superimposing IGBs with even and odd modes, multiple phase, and polarization singularities are observed in the resultant beams. The phase and polarization singularities are modulated by setting the initial phase in the design and controlling the incident linear polarization. The compactness of the developed metasurface devices and the unique properties of the generated beams have the potential to impact many practical applications such as particle manipulation, orbital angular momentum spectrum manipulation, and optical communications.
Collapse
Affiliation(s)
- Hammad Ahmed
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Muhammad Afnan Ansari
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Lynn Paterson
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Jia Li
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xianzhong Chen
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
12
|
Cueff S, Berguiga L, Nguyen HS. Fourier imaging for nanophotonics. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:841-858. [PMID: 39634374 PMCID: PMC11501959 DOI: 10.1515/nanoph-2023-0887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 12/07/2024]
Abstract
Standard optical characterization and spectroscopy techniques rely on the measurement of specular reflection, transmission, or emission at normal incidence. Although the usefulness of these methods is without question, they do not provide information on the angular dependence of the scattered light and, therefore, miss crucial insights on the physical processes governing light emission and scattering. In this Review, we explain the basics of Fourier imaging and show how it can be used to measure the angular distribution of scattered light in single-shot measurements. We then give a comprehensive panorama on recent research exploiting this technique to analyze nanostructures and detail how it unlocks fundamental understandings on the underlying physics of nanophotonic structures. We finally describe how simple additions to a Fourier imaging setup enable measuring not only the radiation pattern of an object but also the energy, polarization, and phase toward resolving all aspects of light in real time.
Collapse
Affiliation(s)
- Sébastien Cueff
- Univ Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE, INL UMR5270, 69134Ecully, France
- CNRS, Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69134Ecully, France
| | - Lotfi Berguiga
- CNRS, Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69134Ecully, France
| | - Hai Son Nguyen
- CNRS, Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69134Ecully, France
| |
Collapse
|
13
|
Li L, Wang S, Zhao F, Zhang Y, Wen S, Chai H, Gao Y, Wang W, Cao L, Yang Y. Single-shot deterministic complex amplitude imaging with a single-layer metalens. SCIENCE ADVANCES 2024; 10:eadl0501. [PMID: 38181086 PMCID: PMC10776002 DOI: 10.1126/sciadv.adl0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Conventional imaging systems can only capture light intensity. Meanwhile, the lost phase information may be critical for a variety of applications such as label-free microscopy and optical metrology. Existing phase retrieval techniques typically require a bulky setup, multiframe measurements, or prior information of the target scene. Here, we proposed an extremely compact system for complex amplitude imaging, leveraging the extreme versatility of a single-layer metalens to generate spatially multiplexed and polarization phase-shifted point spread functions. Combining the metalens with a polarization camera, the system can simultaneously record four polarization shearing interference patterns along both in-plane directions, thus allowing the deterministic reconstruction of the complex amplitude light field in a single shot. Using an incoherent light-emitting diode as the illumination, we experimentally demonstrated speckle-noise-free complex amplitude imaging for both static and moving objects with tailored magnification ratio and field of view. The miniaturized and robust system may open the door for complex amplitude imaging in portable devices for point-of-care applications.
Collapse
Affiliation(s)
| | | | - Feng Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yixin Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Shun Wen
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yunhui Gao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
14
|
Sardana J, Devinder S, Zhu W, Agrawal A, Joseph J. Dielectric Metasurface Enabled Compact, Single-Shot Digital Holography for Quantitative Phase Imaging. NANO LETTERS 2023. [PMID: 38037916 DOI: 10.1021/acs.nanolett.3c03515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Quantitative phase imaging (QPI) enables nondestructive, real-time, label-free imaging of transparent specimens and can reveal information about their fundamental properties such as cell size and morphology, mass density, particle dynamics, and cellular fluctuations. Development of high-performance and low-cost quantitative phase imaging systems is thus required in many fields, including on-site biomedical imaging and industrial inspection. Here, we propose an ultracompact, highly stable interferometer based on a single-layer dielectric metasurface for common path off-axis digital holography and experimentally demonstrate quantitative phase imaging. The interferometric imaging system leveraging an ultrathin multifunctional metasurface captures image plane holograms in a single shot and provides quantitative phase information on the test samples for extraction of its physical properties. With the benefits of planar engineering and high integrability, the proposed metasurface-based method establishes a stable miniaturized QPI system for reliable and cost-effective point-of-care devices, live cell imaging, 3D topography, and edge detection for optical computing.
Collapse
Affiliation(s)
- Jyoti Sardana
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shital Devinder
- Centre for Sensors, Instrumentation and Cyber Physical System Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Wenqi Zhu
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Amit Agrawal
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Joby Joseph
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
- Centre for Sensors, Instrumentation and Cyber Physical System Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Optics and Photonics Center, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
15
|
Fan C, Li J, Du Y, Hu Z, Chen H, Yang Z, Zhang G, Zhang L, Zhao Z, Zhao H. Flexible dynamic quantitative phase imaging based on division of focal plane polarization imaging technique. OPTICS EXPRESS 2023; 31:33830-33841. [PMID: 37859154 DOI: 10.1364/oe.498239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
This paper proposes a flexible and accurate dynamic quantitative phase imaging (QPI) method using single-shot transport of intensity equation (TIE) phase retrieval achieved by division of focal plane (DoFP) polarization imaging technique. By exploiting the polarization property of the liquid crystal spatial light modulator (LC-SLM), two intensity images of different defocus distances contained in orthogonal polarization directions can be generated simultaneously. Then, with the help of the DoFP polarization imaging, these images can be captured with single exposure, enabling accurate dynamic QPI by solving the TIE. In addition, our approach gains great flexibility in defocus distance adjustment by adjusting the pattern loaded on the LC-SLM. Experiments on microlens array, phase plate, and living human gastric cancer cells demonstrate the accuracy, flexibility, and dynamic measurement performance for various objects. The proposed method provides a simple, flexible, and accurate approach for real-time QPI without sacrificing the field of view.
Collapse
|
16
|
Wang X, Wang H, Wang J, Liu X, Hao H, Tan YS, Zhang Y, Zhang H, Ding X, Zhao W, Wang Y, Lu Z, Liu J, Yang JKW, Tan J, Li H, Qiu CW, Hu G, Ding X. Single-shot isotropic differential interference contrast microscopy. Nat Commun 2023; 14:2063. [PMID: 37045869 PMCID: PMC10097662 DOI: 10.1038/s41467-023-37606-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Differential interference contrast (DIC) microscopy allows high-contrast, low-phototoxicity, and label-free imaging of transparent biological objects, and has been applied in the field of cellular morphology, cell segmentation, particle tracking, optical measurement and others. Commercial DIC microscopy based on Nomarski or Wollaston prism resorts to the interference of two polarized waves with a lateral differential offset (shear) and axial phase shift (bias). However, the shear generated by these prisms is limited to the rectilinear direction, unfortunately resulting in anisotropic contrast imaging. Here we propose an ultracompact metasurface-assisted isotropic DIC (i-DIC) microscopy based on a grand original pattern of radial shear interferometry, that converts the rectilinear shear into rotationally symmetric along radial direction, enabling single-shot isotropic imaging capabilities. The i-DIC presents a complementary fusion of typical meta-optics, traditional microscopes and integrated optical system, and showcases the promising and synergetic advancements in edge detection, particle motion tracking, and label-free cellular imaging.
Collapse
Affiliation(s)
- Xinwei Wang
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Jinlu Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xingsi Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Huijie Hao
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - You Sin Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Yilei Zhang
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - He Zhang
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiangyan Ding
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Weisong Zhao
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Yuhang Wang
- College of Mechanical and Electrical engineering, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Zhengang Lu
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - Jian Liu
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jiubin Tan
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - Haoyu Li
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China.
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Xumin Ding
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China.
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China.
| |
Collapse
|
17
|
Sulejman SB, Priscilla N, Wesemann L, Lee WSL, Lou J, Hinde E, Davis TJ, Roberts A. Thin film notch filters as platforms for biological image processing. Sci Rep 2023; 13:4494. [PMID: 36934126 PMCID: PMC10024701 DOI: 10.1038/s41598-023-31528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
Many image processing operations involve the modification of the spatial frequency content of images. Here we demonstrate object-plane spatial frequency filtering utilizing the angular sensitivity of a commercial spectral bandstop filter. This approach to all-optical image processing is shown to generate real-time pseudo-3D images of transparent biological and other samples, such as human cervical cancer cells. This work demonstrates the potential of non-local, non-interferometric approaches to image processing for uses in label-free biological cell imaging and dynamical monitoring.
Collapse
Affiliation(s)
- Shaban B Sulejman
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Niken Priscilla
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lukas Wesemann
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wendy S L Lee
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jieqiong Lou
- School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Elizabeth Hinde
- School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Timothy J Davis
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ann Roberts
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
18
|
Yung TK, Liang H, Xi J, Tam WY, Li J. Jones-matrix imaging based on two-photon interference. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:579-588. [PMID: 39635410 PMCID: PMC11501585 DOI: 10.1515/nanoph-2022-0499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/07/2024]
Abstract
Two-photon interference is an important effect that is tightly related to the quantum nature of light. Recently, it has been shown that the photon bunching from the Hong-Ou-Mandel (HOM) effect can be used for quantum imaging in which sample properties (reflection/transmission amplitude, phase delay, or polarization) can be characterized at the pixel-by-pixel level. In this work, we perform Jones matrix imaging for an unknown object based on two-photon interference. By using a reference metasurface with panels of known polarization responses in pairwise coincidence measurements, the object's polarization responses at each pixel can be retrieved from the dependence of the coincidence visibility as a function of the reference polarization. The post-selection of coincidence images with specific reference polarization in our approach eliminates the need in switching the incident polarization and thus parallelized optical measurements for Jones matrix characterization. The parallelization in preparing input states, prevalent in any quantum algorithms, is an advantage of adopting two-photon interference in Jones matrix imaging. We believe our work points to the usage of metasurfaces in biological and medical imaging in the quantum optical regime.
Collapse
Affiliation(s)
- Tsz Kit Yung
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hong Liang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jiawei Xi
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wing Yim Tam
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jensen Li
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
19
|
Ji A, Song JH, Li Q, Xu F, Tsai CT, Tiberio RC, Cui B, Lalanne P, Kik PG, Miller DAB, Brongersma ML. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat Commun 2022; 13:7848. [PMID: 36543788 PMCID: PMC9772391 DOI: 10.1038/s41467-022-34197-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
Phase contrast microscopy has played a central role in the development of modern biology, geology, and nanotechnology. It can visualize the structure of translucent objects that remains hidden in regular optical microscopes. The optical layout of a phase contrast microscope is based on a 4 f image processing setup and has essentially remained unchanged since its invention by Zernike in the early 1930s. Here, we propose a conceptually new approach to phase contrast imaging that harnesses the non-local optical response of a guided-mode-resonator metasurface. We highlight its benefits and demonstrate the imaging of various phase objects, including biological cells, polymeric nanostructures, and transparent metasurfaces. Our results showcase that the addition of this non-local metasurface to a conventional microscope enables quantitative phase contrast imaging with a 0.02π phase accuracy. At a high level, this work adds to the growing body of research aimed at the use of metasurfaces for analog optical computing.
Collapse
Affiliation(s)
- Anqi Ji
- grid.168010.e0000000419368956Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 USA
| | - Jung-Hwan Song
- grid.168010.e0000000419368956Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 USA
| | - Qitong Li
- grid.168010.e0000000419368956Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 USA
| | - Fenghao Xu
- grid.168010.e0000000419368956Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 USA
| | - Ching-Ting Tsai
- grid.168010.e0000000419368956Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| | - Richard C. Tiberio
- grid.168010.e0000000419368956Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305 USA
| | - Bianxiao Cui
- grid.168010.e0000000419368956Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| | - Philippe Lalanne
- grid.412041.20000 0001 2106 639XLP2N, CNRS, University of Bordeaux, 33400 Talence, France
| | - Pieter G. Kik
- grid.170430.10000 0001 2159 2859CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816 USA
| | - David A. B. Miller
- grid.168010.e0000000419368956Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Mark L. Brongersma
- grid.168010.e0000000419368956Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
20
|
Fan C, Zhao H, Zhao Z, Li J, Du Y, Yang X, Zhang L. Single-shot quantitative phase imaging with phase modulation of a liquid crystal spatial light modulator (LC-SLM) under white light illumination. OPTICS LETTERS 2022; 47:5264-5267. [PMID: 36240338 DOI: 10.1364/ol.468807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
We propose a novel, to the best of our knowledge, single-shot quantitative phase imaging (QPI) technique with the phase modulation of a liquid crystal spatial light modulator (LC-SLM) under white light illumination. By studying the phase modulation characteristics of an LC-SLM under white light illumination, images captured at different wavelengths are equivalent to those captured at different defocus distances when loading a Fresnel lens pattern on the LC-SLM. Consequently, a color camera is able to simultaneously acquire multi-intensity images at different defocus distances. Finally, the phase is retrieved from a single-shot color image using the transport of intensity equation. To demonstrate the flexibility and accuracy of our method, a photoetched phase object and human red blood cells are quantitatively measured. An investigation of living yeast cells is conducted to verify the dynamic measurement capability. The proposed method provides a simple, efficient, and flexible means to accomplish real-time high-resolution quantitative phase imaging without sacrificing the field of view (FOV), which can be further integrated into a conventional microscope to achieve real-time microscopic QPI.
Collapse
|
21
|
Zhou J, Wu Q, Zhao J, Posner C, Lei M, Chen G, Zhang J, Liu Z. Fourier Optical Spin Splitting Microscopy. PHYSICAL REVIEW LETTERS 2022; 129:020801. [PMID: 35867452 PMCID: PMC10035159 DOI: 10.1103/physrevlett.129.020801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
In this Letter, we propose a new quantitative phase imaging methodology named Fourier optical spin splitting microscopy (FOSSM). FOSSM relies on a metasurface located at the Fourier plane of a polarized microscope to separate the object image into two replicas of opposite circularly polarized states. The bias retardation between the two replicas is tuned by translating the metasurface or rotating the analyzer. Combined with a polarized camera, FOSSM can easily achieve single-shot quantitative phase gradient imaging, which greatly reduces the complexity of current phase microscope setups, paving the way for the next generation high-speed real-time multifunctional microscopy.
Collapse
Affiliation(s)
- Junxiao Zhou
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Qianyi Wu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Junxiang Zhao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Clara Posner
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Ming Lei
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Guanghao Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Real-Time Phase Retrieval Based on Cube-Corner Prisms Single Exposure. PHOTONICS 2022. [DOI: 10.3390/photonics9040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The phase retrieval method based on the Transport of Intensity Equation needs to record the light intensity information on two or more planes perpendicular to the optical axis propagating along the optical axis. Usually, a single CCD camera is moved back and forth for recording, which not only brings the corresponding mechanical errors, but also has a certain time difference between the collected intensity images, which cannot meet the real-time requirements. In this paper, a single phase retrieval technique based on cube-corner prisms is proposed. This method can simultaneously collect the required initial intensity image in a single exposure, and then calculate the phase after registration and repair, so as to obtain high-precision results. According to the parallel reflection characteristics of the cube-corner prisms, the experimental system designed correspondingly can not only stagger the two beams separated by the beam splitter, but also ensure that the upper and lower propagation distances of a single beam are equal. Finally, the accuracy and effectiveness of the proposed method are fully verified by simulation experiments and experimental measurements.
Collapse
|
23
|
Zhou S, Bian J, Chen P, Xie M, Chao J, Hu W, Lu Y, Zhang W. Polarization-dispersive imaging spectrometer for scattering circular dichroism spectroscopy of single chiral nanostructures. LIGHT, SCIENCE & APPLICATIONS 2022; 11:64. [PMID: 35304873 PMCID: PMC8933428 DOI: 10.1038/s41377-022-00755-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 05/29/2023]
Abstract
Circular dichroism spectroscopy is one of the most important tools in nanoscopic chiroptics. However, there is lack of simple, fast and reliable method for measuring the circular dichroism responses of single nanostructures. To tackle this issue, we report a polarization-dispersive imaging spectrometer which is capable of measuring the scattering circular dichroism response of a single chiral nanostructure with a single shot. Using this technique, we studied the scattering circular dichroism spectra of a model system, the vertically coupled plasmonic nanorod pair. Both experimental and theoretical results indicate that the polarization-dispersive spectrometer measures the imaginary part of nonlocal susceptibility of the structure. We further applied the technique to 3-dimensional Au nanorod structures assembled on DNA origami templates together with correlated scanning electron microscopic measurements. Rich chiroptical phenomena were unveiled at the single nanostructure level.
Collapse
Affiliation(s)
- Shuang Zhou
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Jie Bian
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China.
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| | - Peng Chen
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Mo Xie
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Hu
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China.
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
24
|
Picazo-Bueno JA, Micó V. Optical module for single-shot quantitative phase imaging based on the transport of intensity equation with field of view multiplexing. OPTICS EXPRESS 2021; 29:39904-39919. [PMID: 34809345 DOI: 10.1364/oe.439047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
We present a cost-effective, simple, and robust method that enables single-shot quantitative phase imaging (QPI) based on the transport of intensity equation (TIE) using an add-on optical module that can be assembled into the exit port of any regular microscope. The module integrates a beamsplitter (BS) cube (placed in a non-conventional way) for duplicating the output image onto the digital sensor (field of view - FOV - multiplexing), a Stokes lens (SL) for astigmatism compensation (introduced by the BS cube), and an optical quality glass plate over one of the FOV halves for defocusing generation (needed for single-shot TIE algorithm). Altogether, the system provides two laterally separated intensity images that are simultaneously recorded and slightly defocused one to each other, thus enabling accurate QPI by conventional TIE-based algorithms in a single snapshot. The proposed optical module is first calibrated for defining the configuration providing best QPI performance and, second, experimentally validated by using different phase samples (static and dynamic ones). The proposed configuration might be integrated in a compact three-dimensional (3D) printed module and coupled to any conventional microscope for QPI of dynamic transparent samples.
Collapse
|