1
|
Yang Q, Liu J, Shou Y, Wang Y, Chen S, Shu W, Wen S, Luo H. Computing Metasurface Enabled Quantum Phase Distillation. NANO LETTERS 2025; 25:8407-8413. [PMID: 40326540 DOI: 10.1021/acs.nanolett.5c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Quantum image distillation aims to extract the signal image from a mixture of the signal and noise images that are indistinguishable in terms of spectrum and polarization, a process that is unachievable with classical methods. However, in contrast to the amplitude image, phase distillation is challenging via direct spatial or temporal correlation of photon pairs. Incorporating with the polarization entanglement of photon pairs, it is demonstrated here that the phase signal can be quickly distilled by using an integrated computing metasurface to solve the Poisson equation. The proposed technique remains robust even with noise levels two orders higher than the signal, with potential applications in quantum communication and cryptography. Based on the present scheme, it also enables the measurement of photon wave function and the achievement of noninterferometric quantum-enhanced quantitative phase imaging. Our work involving the integrated-metasurface analogue computing paves the way for advancing efficient and rapid quantum information and image processing.
Collapse
Affiliation(s)
- Qiang Yang
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiawei Liu
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yichang Shou
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yan Wang
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shizhen Chen
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Weixing Shu
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shuangchun Wen
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Hailu Luo
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Gao Z, Zhao W, Gao X, Chen A, Ye W, Song Q, Genevet P, Dorfman KE. Broadband Full Polarization Control Using a Staggered Arrangement of Metamolecules. NANO LETTERS 2025; 25:5565-5571. [PMID: 40163016 DOI: 10.1021/acs.nanolett.4c05273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Metasurfaces show an extraordinary ability for polarization control, despite the limitations imposed by their working bandwidth and complex meta-atom designs. Here, we present a strategy for generating arbitrary polarization in the broadband, relying solely on the Pancharatnam-Berry phase. The proposed metasurface design comprises two metamolecules arranged in a staggered configuration. Importantly, the orientation of the two metamolecules provides a new degree of freedom to control both the amplitude and phase of right- and left-circular polarization components. We experimentally demonstrated that the polarization of the scattered light can cover the entire Poincaré sphere by merely tuning the metamolecule orientation. These results provide a unique approach for fabricating ultracompact photonic devices and integrated quantum optical systems.
Collapse
Affiliation(s)
- Zhanjie Gao
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Wannian Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xinyue Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Aixi Chen
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Weixiang Ye
- Center for Theoretical Physics and School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Patrice Genevet
- Physics Department,Colorado School of Mines, 1523 Illinois, St, Golden, Colorado 80401, United States
| | - Konstantin E Dorfman
- Center for Theoretical Physics and School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- Himalayan Institute for Advanced Study,Unit of Gopinath Seva Foundation, MIG 38, Avas Vikas, Rishikesh, Uttarakhand 249201, India
| |
Collapse
|
3
|
Ye S, Han Y, Liu LZ, Wan W, Wang R, Xun M, Li Q, Gong Q, Wang J, Li Y. Entanglement-controlled vectorial meta-holography. LIGHT, SCIENCE & APPLICATIONS 2025; 14:135. [PMID: 40133265 PMCID: PMC11937580 DOI: 10.1038/s41377-025-01818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Metasurfaces can precisely manipulate the amplitude, phase, and polarization of incident light through subwavelength structures, greatly advancing the quantum meta-holographic imaging. However, the current methods of using quantum holography only control either the amplitude or the phase on the imaging plane, so the resulted scalar holography without the polarization distribution has limited imaging channels. Here, the vectorial meta-holography using entangled signal-idler photon pairs is experimentally demonstrated to realize remotely controlled multi-channel quantum imaging. By simultaneous control of the amplitude ratio between two cross-polarization holographic images and their phase difference on the image plane, the polarization distribution accordingly changes with the incident polarization state. The accurate correspondence ensures the correct reconstruction of 32 incident polarization states with an average fidelity up to 94.78%. This enables entangled idler photons to remotely control the holographic images reconstructed by the entangled signal photons, where the signal-to-noise ratio is as high as 10.78 dB, even for maximally mixed quantum states. This vectorial meta-holography using entangled states has a larger polarization state information capacity and will facilitate miniaturized quantum imaging and efficient quantum state tomography.
Collapse
Affiliation(s)
- Sheng Ye
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Yue Han
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Li-Zheng Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Weiping Wan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Ruiqi Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Mingna Xun
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qiang Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, Jiangsu, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Jianwei Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, Jiangsu, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Yan Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China.
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, Jiangsu, China.
- Hefei National Laboratory, Hefei, 230088, China.
| |
Collapse
|
4
|
Barrera A, Fourneau E, Bort-Soldevila N, Cunill-Subiranas J, Del-Valle N, Lejeune N, Staňo M, Smekhova A, Mestres N, Balcells L, Navau C, Uhlíř V, Bending SJ, Valencia S, Silhanek AV, Palau A. On-Chip Planar Metasurfaces for Magnetic Sensors with Greatly Enhanced Sensitivity. ACS NANO 2025; 19:10461-10475. [PMID: 40050222 PMCID: PMC11924339 DOI: 10.1021/acsnano.5c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Metamaterials with engineered structures have been extensively investigated for their capability to manipulate optical, acoustic, or thermal waves. In particular, magnetic metamaterials with precise geometry, shape, size and arrangement of their elemental blocks may be used to concentrate, focus, or guide magnetic fields. In this work, we show the potential of using soft-magnetic permalloy (Py) metasurfaces to tailor the physical properties of other magnetic structures at the local scale. As an illustration, the magnetic response of a Cobalt (Co) sensor bar placed at the core of a Py metasurface is investigated as a function of in-plane magnetic fields through the planar Hall effect. Our findings reveal that by appropriately selecting the metasurface geometrical parameters, we can adjust the Co bar's coercive field and susceptibility, leading to a huge enhancement in sensor sensitivity of over 2 orders of magnitude. Micromagnetic simulations, coupled with magneto-transport equations and X-ray photoemission electron measurements (XPEEM) with contrast from magnetic circular dichroism (XMCD), accurately capture this effect and provide insights into the underlying physical mechanisms. These findings can potentially enhance the performance and versatility of magnetic functional devices by using specifically designed structural magnetic materials.
Collapse
Affiliation(s)
- Aleix Barrera
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
| | - Emile Fourneau
- Experimental Physics of Nanostructured Materials, Q-MAT, Department of Physics, Université de Liège, Sart Tilman B-4000, Belgium
| | | | | | - Nuria Del-Valle
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Nicolas Lejeune
- Experimental Physics of Nanostructured Materials, Q-MAT, Department of Physics, Université de Liège, Sart Tilman B-4000, Belgium
| | - Michal Staňo
- CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Alevtina Smekhova
- Helmholtz-Zentrum Berlin fur Materialien und Energie Albert-Einstein-Strasse 15, Berlin D-12489, Germany
| | - Narcis Mestres
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
| | - Lluis Balcells
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
| | - Carles Navau
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Vojtěch Uhlíř
- CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno 616 69, Czech Republic
| | - Simon J Bending
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, U.K
| | - Sergio Valencia
- Helmholtz-Zentrum Berlin fur Materialien und Energie Albert-Einstein-Strasse 15, Berlin D-12489, Germany
| | - Alejandro V Silhanek
- Experimental Physics of Nanostructured Materials, Q-MAT, Department of Physics, Université de Liège, Sart Tilman B-4000, Belgium
| | - Anna Palau
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
| |
Collapse
|
5
|
Jin Z, Lou J, Shu F, Hong Z, Qiu CW. Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications. RESEARCH (WASHINGTON, D.C.) 2025; 8:0562. [PMID: 39807357 PMCID: PMC11725723 DOI: 10.34133/research.0562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Recent advancements in nanotechnology have revolutionized terahertz (THz) technology. By enabling the creation of compact, efficient devices through nanoscale structures, such as nano-thick heterostructures, metasurfaces, and hybrid systems, these innovations offer unprecedented control over THz wave generation and modulation. This has led to substantial enhancements in THz spectroscopy, imaging, and especially bio-applications, providing higher resolution and sensitivity. This review comprehensively examines the latest advancements in nanoengineered THz technology, beginning with state-of-the-art THz generation methods based on heterostructures, metasurfaces, and hybrid systems, followed by THz modulation techniques, including both homogeneous and individual modulation. Subsequently, it explores bio-applications such as novel biosensing and biofunction techniques. Finally, it summarizes findings and reflects on future trends and challenges in the field. Each section focuses on the physical mechanisms, structural designs, and performances, aiming to provide a thorough understanding of the advancements and potential of this rapidly evolving technology domain. This review aims to provide insights into the creation of next-generation nanoscale THz devices and applications while establishing a comprehensive foundation for addressing key issues that limit the full implementation of these promising technologies in real-world scenarios.
Collapse
Affiliation(s)
- Zhongwei Jin
- College of Optical and Electronic Technology,
China Jiliang University, Hangzhou 310018, China
- Centre for Terahertz Research,
China Jiliang University, Hangzhou 310018, China
| | - Jing Lou
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, 100071 Beijing, China
| | - Fangzhou Shu
- Centre for Terahertz Research,
China Jiliang University, Hangzhou 310018, China
| | - Zhi Hong
- Centre for Terahertz Research,
China Jiliang University, Hangzhou 310018, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
6
|
Wu T, Zhang X, Xu Q, Wang L, Li Y, Jiang X, Wang Q, Zhang W, Han J. Heterogeneous-Gradient Supercell Metasurfaces for Independent Complex Amplitude Control over Multiple Diffraction Channels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407303. [PMID: 39529540 DOI: 10.1002/smll.202407303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The ability to achieve independent complex amplitude control across multiple channels can significantly increase the information capacity of photonic devices. Diffraction inherently holds numerous channels, which are good candidates for dense light manipulation in angular space. However, no convenient method is currently available for attaining this. Here, a flexible interference approach utilizing silicon-based transmission-type heterogeneous-gradient supercell metasurfaces is proposed. By simply designing the phases of the meta-atoms' radiations within a supercell, the complex amplitude of each diffraction channel can be individually and analytically controlled. Crucially, the complex amplitudes of multiple diffraction channels can be simultaneously controlled in a non-interleaved manner, where the number of channels is determined by the number of effective adjusting degrees of freedom (DoF). As a proof-of-concept validation, several meta-devices are experimentally demonstrated in the terahertz regime, which can generate multiple vortex beams, focal points, and splitting beams in different desired diffraction angles. This advancement heralds a new pathway for the development of multifunctional photonic devices with enhanced channel capacity, offering significant potential for both research and practical applications in photonics.
Collapse
Affiliation(s)
- Tong Wu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Xueqian Zhang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Quan Xu
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Lehui Wang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Yao Li
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Xiaohan Jiang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Qingwei Wang
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
| | - Weili Zhang
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin, 300072, China
- Guangxi Key Laboratory of Optoelectronic Information Processing School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
7
|
Wang C, Meng C, Mei X, Gui L, Thrane PCV, Chen H, Ding F, Xu K, Bozhevolnyi SI. MEMS-metasurface-enabled mode-switchable vortex lasers. SCIENCE ADVANCES 2024; 10:eadq6299. [PMID: 39565849 PMCID: PMC11578166 DOI: 10.1126/sciadv.adq6299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Compared to conventional lasers limited to generating static modes, mode-switchable lasers equipped with adjustable optics significantly enhance the flexibility and versatility of coherent light sources. However, most current approaches to achieving mode-switchable lasers depend on conventional, i.e., inherently bulky and slow, optical components. Here, we demonstrate fiber lasers empowered by electrically actuated intracavity microelectromechanical system (MEMS)-based optical metasurface (MEMS-OMS) enabling mode switching between fundamental Gaussian and vortex modes at ~1030 nm. By finely adjusting the voltage applied to the MEMS mirror, high-contrast switching between Gaussian (l = 0) and vortex (l = 1, 2, 3, and 5, depending on the OMS arrangement) laser modes is achieved, featuring high mode purities (>95%) and fast responses (~100 microseconds). The proposed intracavity MEMS-OMS-enabled laser configuration provides an at-source solution for generating high-purity fast-switchable laser modes, with potential applications ranging from advanced optical imaging to optical tweezers, optical machining, and intelligent photonics.
Collapse
Affiliation(s)
- Chuanshuo Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Chao Meng
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Xianglong Mei
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Lili Gui
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Paul C. V. Thrane
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
- SINTEF Smart Sensors and Microsystems, Gaustadalleen 23C, 0737 Oslo, Norway
| | - Hao Chen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Fei Ding
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Kun Xu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Sergey I. Bozhevolnyi
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| |
Collapse
|
8
|
Adi W, Rosas S, Beisenova A, Biswas SK, Mei H, Czaplewski DA, Yesilkoy F. Trapping light in air with membrane metasurfaces for vibrational strong coupling. Nat Commun 2024; 15:10049. [PMID: 39567485 PMCID: PMC11579285 DOI: 10.1038/s41467-024-54284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Optical metasurfaces can manipulate electromagnetic waves in unprecedented ways at ultra-thin engineered interfaces. Specifically, in the mid-infrared (mid-IR) region, metasurfaces have enabled numerous biochemical sensing, spectroscopy, and vibrational strong coupling (VSC) applications via enhanced light-matter interactions in resonant cavities. However, mid-IR metasurfaces are usually fabricated on solid supporting substrates, which degrade resonance quality factors (Q) and hinder efficient sample access to the near-field electromagnetic hotspots. Besides, typical IR-transparent substrate materials with low refractive indices, such as CaF2, NaCl, KBr, and ZnSe, are usually either water-soluble, expensive, or not compatible with low-cost mass manufacturing processes. Here, we present novel free-standing Si-membrane mid-IR metasurfaces with strong light-trapping capabilities in accessible air voids. We employ the Brillouin zone folding technique to excite tunable, high-Q quasi-bound states in the continuum (qBIC) resonances with our highest measured Q-factor of 722. Leveraging the strong field localizations in accessible air cavities, we demonstrate VSC with multiple quantities of PMMA molecules and the qBIC modes at various detuning frequencies. Our new approach of fabricating mid-IR metasurfaces into semiconductor membranes enables scalable manufacturing of mid-IR photonic devices and provides exciting opportunities for quantum-coherent light-matter interactions, biochemical sensing, and polaritonic chemistry.
Collapse
Affiliation(s)
- Wihan Adi
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA
| | - Samir Rosas
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA
| | - Aidana Beisenova
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA
| | - Shovasis Kumar Biswas
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA
| | - Hongyan Mei
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA
| | - David A Czaplewski
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Filiz Yesilkoy
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison, Madison, WI, 53706, USA.
| |
Collapse
|
9
|
Li J, Kim JT, Li H, Cho HY, Kim JS, Choi DY, Wang C, Lee SS. LSPR-susceptible metasurface platform for spectrometer-less and AI-empowered diagnostic biomolecule detection. Anal Chim Acta 2024; 1326:343094. [PMID: 39260911 DOI: 10.1016/j.aca.2024.343094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024]
Abstract
In response to the growing demand for biomolecular diagnostics, metasurface (MS) platforms based on high-Q resonators have demonstrated their capability to detect analytes with smart data processing and image analysis technologies. However, high-Q resonator meta-atom arrays are highly sensitive to the fabrication process and chemical surface functionalization. Thus, spectrum scanning systems are required to monitor the resonant wavelength changes at every step, from fabrication to practical sensing. In this study, we propose an innovative dielectric resonator-independent MS platform that enables spectrometer-less biomolecule detection using artificial intelligence (AI) at a visible wavelength. Functionalizing the focused vortex MS to capture gold nanoparticle (AuNP)-based sandwich immunoassays causes the resulting vortex beam profiles to be significantly affected by the localized surface plasmon resonance (LSPR) occurring between AuNPs and meta-atoms. The convolutional neural network algorithm was carefully trained to accurately classify the AuNP concentration-dependent focused vortex beam, facilitating the determination of the concentration of the targeted diagnostic biomolecule. Successful in situ identification of various biomolecule concentrations was achieved with over 99 % accuracy, indicating the potential of combining an LSPR-susceptible MS platform and AI for continuously tracking various chemical and biological compounds.
Collapse
Affiliation(s)
- Jinke Li
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Nano Device Application Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Jin Tae Kim
- Quantum Technology Research Department, Electronics and Telecommunications Research Institute, Daejeon, 34129, Republic of Korea.
| | - Hongliang Li
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Nano Device Application Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Hyo-Young Cho
- Digital Biomedical Research Division, Electronics and Telecommunications Research Institute, Daejeon, 34129, Republic of Korea
| | - Jin-Soo Kim
- Nano Optics Laboratory, Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Duk-Yong Choi
- Department of Quantum Science and Technology, Research School of Physics, Australian National University, Canberra, ACT, 2601, Australia
| | - Chenxi Wang
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Nano Device Application Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sang-Shin Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Nano Device Application Center, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
10
|
Wang R, Song L, Ruan H, Yang Q, Yang X, Zhang X, Jiang R, Shi X, Shkurinov AP. Ultrasensitive Terahertz Label-Free Metasensors Enabled by Quasi-Bound States in the Continuum. RESEARCH (WASHINGTON, D.C.) 2024; 7:0483. [PMID: 39329158 PMCID: PMC11425342 DOI: 10.34133/research.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Advanced sensing devices based on metasurfaces have emerged as a revolutionary platform for innovative label-free biosensors, holding promise for early diagnostics and the detection of low-concentration analytes. Here, we developed a chip-based ultrasensitive terahertz (THz) metasensor, leveraging a quasi-bound state in the continuum (q-BIC) to address the challenges associated with intricate operations in trace biochemical detection. The metasensor design features an open-ring resonator metasurface, which supports magnetic dipole q-BIC combining functionalized gold nanoparticles (AuNPs) bound with a specific antibody. The substantial enhancement in THz-analyte interactions, facilitated by the potent near-field enhancement enabled by the q-BICs, results in a substantial boost in biosensor sensitivity by up to 560 GHz/refractive index units. This methodology allows for the detection of conjugated antibody-AuNPs for cardiac troponin I at concentrations as low as 0.5 pg/ml. These discoveries deliver valuable insight for AuNP-based trace biomolecule sensing and pave the path for the development of chip-scale biosensors with profound light-matter interactions.
Collapse
Affiliation(s)
- Ride Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Lingyu Song
- Navy Clinical College, Anhui Medical University, Beijing 100048, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hao Ruan
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Quanlong Yang
- School of Physics, Central South University, Changsha 410083, China
| | - Xiao Yang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiaobao Zhang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Rundong Jiang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiangmin Shi
- Navy Clinical College, Anhui Medical University, Beijing 100048, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Alexander P Shkurinov
- Department of Physics and International Laser Center, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 19991, Russia
| |
Collapse
|
11
|
Wang Y, Qin C, Hu H, Liu J, Guan C, Kivshar Y, Koshelev K, Shi J. Enhanced intrinsic chiroptical response of resonant metallic metasurfaces. OPTICS LETTERS 2024; 49:5288-5291. [PMID: 39270287 DOI: 10.1364/ol.531719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024]
Abstract
The physics of resonant metasurfaces underpins many electromagnetic functionalities with enhanced performance by virtue of resonant excitations. Resonances originating from bound states in the continuum (BICs) were recently recognized in photonics for their superior optical properties, strong local field enhancement, and suppression of radiative losses. Very recently, a concept of intrinsically chiral dielectric BIC metasurfaces was proposed that combines strong narrowband resonant features with the polarization control of scattered light. Here, we design a resonant chiral metallic metasurface supporting a BIC resonance in the microwave wavelength range. In our structure, the metasurface units (meta-atoms) are characterized with rotational and mirror spatial symmetries. We numerically characterize metasurface mode properties in eigenmode calculations and scattering spectra for linearly polarized excitation under oblique incidence. Then, we investigate intrinsic chiroptical effects for transmission of normally propagating excitation beams by breaking the meta-atom in-plane mirror symmetries. We predict that the intrinsic circular dichroism in such structures may exceed 0.74.
Collapse
|
12
|
Gölz T, Baù E, Aigner A, Mancini A, Barkey M, Keilmann F, Maier SA, Tittl A. Revealing Mode Formation in Quasi-Bound States in the Continuum Metasurfaces via Near-Field Optical Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405978. [PMID: 39092689 DOI: 10.1002/adma.202405978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/14/2024] [Indexed: 08/04/2024]
Abstract
Photonic metasurfaces offer exceptional control over light at the nanoscale, facilitating applications spanning from biosensing, and nonlinear optics to photocatalysis. Many metasurfaces, especially resonant ones, rely on periodicity for the collective mode to form, which makes them subject to the influences of finite size effects, defects, and edge effects, which have considerable negative impact at the application level. These aspects are especially important for quasi-bound state in the continuum (BIC) metasurfaces, for which the collective mode is highly sensitive to perturbations due to high-quality factors and strong near-field enhancement. Here, the mode formation in quasi-BIC metasurfaces on the individual resonator level using scattering scanning near-field optical microscopy (s-SNOM) in combination with a new image processing technique, is quantitatively investigated. It is found that the quasi-BIC mode is formed at a minimum size of 10 × 10-unit cells much smaller than expected from far-field measurements. Furthermore, it is shown that the coupling direction of the resonators, defects and edge states have pronounced influence on the quasi-BIC mode. This study serves as a link between the far-field and near-field responses of metasurfaces, offering crucial insights for optimizing spatial footprint and active area, holding promise for augmenting applications such as catalysis and biospectroscopy.
Collapse
Affiliation(s)
- Thorsten Gölz
- Chair in Hybrid Nanosystems, Nanoinstitute Munich and Center for Nanoscience (CeNS), Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | - Enrico Baù
- Chair in Hybrid Nanosystems, Nanoinstitute Munich and Center for Nanoscience (CeNS), Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | - Andreas Aigner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich and Center for Nanoscience (CeNS), Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | - Andrea Mancini
- Chair in Hybrid Nanosystems, Nanoinstitute Munich and Center for Nanoscience (CeNS), Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
- Centre for Nano Science and Technology, Italian Institute of Technology Foundation, Via Rubattino 81, Milan, 20134, Italy
| | - Martin Barkey
- Chair in Hybrid Nanosystems, Nanoinstitute Munich and Center for Nanoscience (CeNS), Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | - Fritz Keilmann
- Chair in Hybrid Nanosystems, Nanoinstitute Munich and Center for Nanoscience (CeNS), Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich and Center for Nanoscience (CeNS), Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| |
Collapse
|
13
|
Jung C, Lee E, Rho J. The rise of electrically tunable metasurfaces. SCIENCE ADVANCES 2024; 10:eado8964. [PMID: 39178252 PMCID: PMC11343036 DOI: 10.1126/sciadv.ado8964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Metasurfaces, which offer a diverse range of functionalities in a remarkably compact size, have captured the interest of both scientific and industrial sectors. However, their inherent static nature limits their adaptability for their further applications. Reconfigurable metasurfaces have emerged as a solution to this challenge, expanding the potential for diverse applications. Among the series of tunable devices, electrically controllable devices have garnered particular attention owing to their seamless integration with existing electronic equipment. This review presents recent progress reported with respect to electrically tunable devices, providing an overview of their technological development trajectory and current state of the art. In particular, we analyze the major tuning strategies and discuss the applications in spatial light modulators, tunable optical waveguides, and adaptable emissivity regulators. Furthermore, the challenges and opportunities associated with their implementation are explored, thereby highlighting their potential to bridge the gap between electronics and photonics to enable the development of groundbreaking optical systems.
Collapse
Affiliation(s)
- Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
14
|
Muhammad N, Su Z, Jiang Q, Wang Y, Huang L. Radiationless optical modes in metasurfaces: recent progress and applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:192. [PMID: 39152114 PMCID: PMC11329644 DOI: 10.1038/s41377-024-01548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Non-radiative optical modes attracted enormous attention in optics due to strong light confinement and giant Q-factor at its spectral position. The destructive interference of multipoles leads to zero net-radiation and strong field trapping. Such radiationless states disappear in the far-field, localize enhanced near-field and can be excited in nano-structures. On the other hand, the optical modes turn out to be completely confined due to no losses at discrete point in the radiation continuum, such states result in infinite Q-factor and lifetime. The radiationless states provide a suitable platform for enhanced light matter interaction, lasing, and boost nonlinear processes at the state regime. These modes are widely investigated in different material configurations for various applications in both linear and nonlinear metasurfaces which are briefly discussed in this review.
Collapse
Affiliation(s)
- Naseer Muhammad
- School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing, 100081, China
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaoxian Su
- School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing, 100081, China
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Jiang
- School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing, 100081, China
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongtian Wang
- School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing, 100081, China
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China
| | - Lingling Huang
- School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing, 100081, China.
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
15
|
Terekhov P, Chang S, Rahman MT, Shafi S, Ahn HJ, Zhao L, Ni X. Enhancing metasurface fabricability through minimum feature size enforcement. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3147-3154. [PMID: 39055568 PMCID: PMC11267437 DOI: 10.1515/nanoph-2024-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 07/27/2024]
Abstract
The metasurfaces have shown great potential for miniaturizing conventional optics while offering extended flexibility. Recently, there has been considerable interest in using algorithms to generate meta-atom shapes for these metasurfaces, as they offer vast design freedom and not biased by the human intuition. However, these complex designs significantly increase the difficulty of fabrication. To address this, we introduce a design process that rigorously enforces the fabricability of both the material-filled (fill) and empty (void) regions in a metasurface design. This process takes into account specific constraints regarding the minimum feature size for each region. Additionally, it corrects any violations of these constraints across the entire device, ensuring only minimal impact on performance. Our method provides a practical way to create metasurface designs that are easy to fabricate, even with complex shapes, hence improving the overall production yield of these advanced meta-optical components.
Collapse
Affiliation(s)
- Pavel Terekhov
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Shengyuan Chang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Md Tarek Rahman
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Sadman Shafi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Hyun-Ju Ahn
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Linghan Zhao
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| | - Xingjie Ni
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA
| |
Collapse
|
16
|
Liu M, Zhao W, Wang Y, Huo P, Zhang H, Lu YQ, Xu T. Achromatic and Coma-Corrected Hybrid Meta-Optics for High-Performance Thermal Imaging. NANO LETTERS 2024; 24:7609-7615. [PMID: 38861682 DOI: 10.1021/acs.nanolett.4c01218] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Long-wave infrared (LWIR) imaging, or thermal imaging, is widely applied in night vision and security monitoring. However, the widespread use of LWIR imagers is impeded by their bulky size, considerable weight, and high cost. While flat meta-optics present a potential solution to these limitations, existing pure LWIR meta-optics face constraints such as severe chromatic or coma aberrations. Here, we introduce an approach utilizing large-scale hybrid meta-optics to address these challenges and demonstrate the achromatic, coma-corrected, and polarization-insensitive thermal imaging. The hybrid metalens doublet is composed of a metasurface corrector and a refractive lens, featuring a full field-of-view angle surpassing 20° within the 8-12 μm wavelength range. Employing this hybrid metalens doublet, we showcase high-performance thermal imaging capabilities both indoors and outdoors, effectively capturing ambient thermal radiation. The proposed hybrid metalens doublet holds considerable promise for advancing miniaturized, lightweight, and cost-effective LWIR optical imaging systems.
Collapse
Affiliation(s)
- Mingze Liu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Weixing Zhao
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Yilin Wang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Pengcheng Huo
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Hui Zhang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Yan-Qing Lu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Ting Xu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Li H, Yang R, Zhang Y, Dou L, Luo Y, Liang H, Fan Y, Wei Z. Electrically tunable on-chip quantum Deutsch-Jozsa algorithm with lithium niobate metasurfaces. RSC Adv 2024; 14:18311-18316. [PMID: 38854828 PMCID: PMC11160385 DOI: 10.1039/d4ra02001d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
Owing to the inherent advantages of parallelism, rapid processing speed, and minimal energy consumption, optical analog computing has witnessed a progressive development. Quantum optical computing exceeds the capabilities of classical computing in terms of computational speed in numerous tasks. However, existing metamaterial-based quantum Deutsch-Jozsa (DJ) algorithm devices have large structural dimensions and are not suitable for miniaturized optical computing systems. Furthermore, most reported on-chip metasurface devices, rendered monofunctional after fabrication, do not possess sophisticated optical systems. In this work, we develop an electrically tunable on-chip DJ algorithm device on a lithium-niobate-on-insulator (LNOI) platform. The on-chip device consists of various etched slots, each with carefully designed size. By applying different external voltages to each individual unit, precise phase redistribution across the device is attainable, enabling the realization of tunable DJ algorithm. Notably, we can determine whether the oracle metasurface yields a constant or balance function by measuring the output electric field. The on-chip device is miniaturized and easy to integrate while enabling functional reconfiguration, which paves the way for numerous applications in optical computing.
Collapse
Affiliation(s)
- Haoyu Li
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University Shanghai 200092 China
- MOE Key Laboratory of Advanced Micro-Structured Materials Shanghai 200092 China
| | - Ruisheng Yang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University Shanghai 200092 China
- MOE Key Laboratory of Advanced Micro-Structured Materials Shanghai 200092 China
- Shanghai Frontiers Science Research Base of Digital Optics, Tongji University Shanghai 200092 China
| | - Yinan Zhang
- Institute of Photonic Chips, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Linyuan Dou
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University Shanghai 200092 China
- MOE Key Laboratory of Advanced Micro-Structured Materials Shanghai 200092 China
| | - Yijie Luo
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University Shanghai 200092 China
- MOE Key Laboratory of Advanced Micro-Structured Materials Shanghai 200092 China
| | - Haigang Liang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University Shanghai 200092 China
- MOE Key Laboratory of Advanced Micro-Structured Materials Shanghai 200092 China
| | - Yuancheng Fan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology and School of Physical Science and Technology, Northwestern Polytechnical University Xi'an 710129 China
| | - Zeyong Wei
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University Shanghai 200092 China
- MOE Key Laboratory of Advanced Micro-Structured Materials Shanghai 200092 China
- Shanghai Frontiers Science Research Base of Digital Optics, Tongji University Shanghai 200092 China
| |
Collapse
|
18
|
Zhou HT, Li CY, Zhu JH, Hu C, Wang YF, Wang YS, Qiu CW. Dynamic Acoustic Beamshaping with Coupling-Immune Moiré Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313004. [PMID: 38382460 DOI: 10.1002/adma.202313004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/28/2024] [Indexed: 02/23/2024]
Abstract
Moiré effects arising from mutually twisted metasurfaces have showcased remarkable wave manipulation capabilities, unveiling tantalizing emerging phenomena such as acoustic moiré flat bands and topological phase transitions. However, the pursuit of strong near-field coupling in layers has necessitated acoustic moiré metasurfaces to be tightly stacked at narrow distances in the subwavelength range. Here, moiré effects beyond near-field interlayer coupling in acoustics are reported and the concept of coupling-immune moiré metasurfaces is proposed. Remote acoustic moiré effects decoupled from the interlayer distance are theoretically, numerically, and experimentally demonstrated. Tunable out-of-plane acoustic beam scanning is successfully achieved by dynamically controlling twist angles. The engineered coupling-immune properties are further extended to multilayered acoustic moiré metasurfaces and manipulation of acoustic vortices. Good robustness against external disturbances is also observed for the fabricated coupling-immune acoustic moiré metasurfaces. The presented work unlocks the potential of twisted moiré devices for out-of-plane acoustic beam shaping, enabling practical applications in remote dynamic detection, and multiplexed underwater acoustic communication.
Collapse
Affiliation(s)
- Hong-Tao Zhou
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583
| | - Chen-Yang Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Jia-Hui Zhu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Chuanjie Hu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
| | - Yan-Feng Wang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Yue-Sheng Wang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing, 100044, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583
| |
Collapse
|
19
|
Yang Z, Liu M, Smirnova D, Komar A, Shcherbakov M, Pertsch T, Neshev D. Ultrafast Q-boosting in semiconductor metasurfaces. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2173-2182. [PMID: 39634492 PMCID: PMC11501241 DOI: 10.1515/nanoph-2023-0718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 12/07/2024]
Abstract
All-optical tunability of semiconductor metasurfaces offers unique opportunities for novel time-varying effects, including frequency conversion and light trapping. However, the all-optical processes often induce optical absorption that fundamentally limits the possible dynamic increase of their quality factor (Q-boosting). Here, we propose and numerically demonstrate the concept of large Q-boosting in a single-material metasurface by dynamically reducing its structural anisotropy on a femtosecond timescale. This balance is achieved by excitation with a structured pump and takes advantage of the band-filling effect in a GaAs direct-bandgap semiconductor to eliminate the free-carrier-induced loss. We show that this approach allows a dynamic boosting of the resonance quality factor over orders of magnitude, only limited by the free-carrier relaxation processes. The proposed approach offers complete dynamic control over the resonance bandwidth and opens applications in frequency conversion and light trapping.
Collapse
Affiliation(s)
- Ziwei Yang
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronics Materials Engineering, Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 15, 07745Jena, Germany
| | - Mingkai Liu
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronics Materials Engineering, Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| | - Daria Smirnova
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronics Materials Engineering, Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| | - Andrei Komar
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronics Materials Engineering, Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| | - Maxim Shcherbakov
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA92697, USA
| | - Thomas Pertsch
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 15, 07745Jena, Germany
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronics Materials Engineering, Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| |
Collapse
|
20
|
Martinez-Calderon M, Groussin B, Bjelland V, Chevallay E, Fedosseev VN, Himmerlich M, Lorenz P, Manjavacas A, Marsh BA, Neupert H, Rossel RE, Wuensch W, Granados E. Hot electron enhanced photoemission from laser fabricated plasmonic photocathodes. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1975-1983. [PMID: 39635084 PMCID: PMC11501739 DOI: 10.1515/nanoph-2023-0552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2024]
Abstract
Photocathodes are key elements in high-brightness electron sources and ubiquitous in the operation of large-scale accelerators, although their operation is often limited by their quantum efficiency and lifetime. Here, we propose to overcome these limitations by utilizing direct-laser nanostructuring techniques on copper substrates, improving their efficiency and robustness for next-generation electron photoinjectors. When the surface of a metal is nanoengineered with patterns and particles much smaller than the optical wavelength, it can lead to the excitation of localized surface plasmons that produce hot electrons, ultimately contributing to the overall charge produced. In order to quantify the performance of laser-produced plasmonic photocathodes, we measured their quantum efficiency in a typical electron gun setup. Our experimental results suggest that plasmon-induced hot electrons lead to a significant increase in quantum efficiency, showing an overall charge enhancement factor of at least 4.5 and up to 25. A further increase in their efficiency was observed when combined with semiconductor thin-films deposited over the laser processed surfaces, pointing at potential pathways for further optimization. We demonstrate that simple laser-produced plasmonic photocathodes outperform standard metallic photocathodes, and can be directly produced in-situ at the electron gun level in vacuum environments and without any disruptive intervention. This approach could lead to unprecedented efficient and continuous operation of electron sources, and is useful in many applications across scientific disciplines requiring high average and peak current electron beams.
Collapse
Affiliation(s)
| | - Baptiste Groussin
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Victoria Bjelland
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
- Department of Physics, NTNU–Norwegian University of Science and Technology, NO-7491Trondheim, Norway
| | - Eric Chevallay
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | | | - Marcel Himmerlich
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Pierre Lorenz
- Department of Ultra-Precision Surfaces, Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318Leipzig, Germany
| | - Alejandro Manjavacas
- Instituto de Óptica (IO-CSIC), Consejo Superior de Investigaciones Científicas, 28006Madrid, Spain
| | - Bruce A. Marsh
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Holger Neupert
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Ralf E. Rossel
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Walter Wuensch
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| | - Eduardo Granados
- CERN, European Organization for Nuclear Research, 1211Geneva, Switzerland
| |
Collapse
|
21
|
Kan Y, Liu X, Kumar S, Bozhevolnyi SI. Tempering Multichannel Photon Emission from Emitter-Coupled Holographic Metasurfaces. ACS PHOTONICS 2024; 11:1584-1591. [PMID: 38645997 PMCID: PMC11027142 DOI: 10.1021/acsphotonics.3c01745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 04/23/2024]
Abstract
On-chip manipulation of photon emission from quantum emitters (QEs) is crucial for quantum nanophotonics and advanced optical applications. At the same time, the general design strategy is still elusive, especially for fully exploring the degrees of freedom of multiple channels. Here, the vectorial scattering holography (VSH) approach developed recently for flexibly designing QE-coupled metasurfaces is extended to tempering the strength of QE emission into a particular channel. The VSH power is demonstrated by designing, fabricating, and optically characterizing on-chip QE sources emitted into six differently oriented propagation channels, each representing the entangled state of orthogonal circular polarizations with different topological charges and characterized with a specific relative strength. We postulate that the demonstration of tempered multichannel photon emission from QE-coupled metasurfaces significantly broadens the possibilities provided by the holographic metasurface platform, especially those relevant for high-dimensional quantum information processing.
Collapse
Affiliation(s)
- Yinhui Kan
- Center for Nano Optics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Xujing Liu
- Center for Nano Optics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Shailesh Kumar
- Center for Nano Optics, University of Southern Denmark, Odense M DK-5230, Denmark
| | | |
Collapse
|
22
|
Nandipati M, Fatoki O, Desai S. Bridging Nanomanufacturing and Artificial Intelligence-A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1621. [PMID: 38612135 PMCID: PMC11012965 DOI: 10.3390/ma17071621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Nanomanufacturing and digital manufacturing (DM) are defining the forefront of the fourth industrial revolution-Industry 4.0-as enabling technologies for the processing of materials spanning several length scales. This review delineates the evolution of nanomaterials and nanomanufacturing in the digital age for applications in medicine, robotics, sensory technology, semiconductors, and consumer electronics. The incorporation of artificial intelligence (AI) tools to explore nanomaterial synthesis, optimize nanomanufacturing processes, and aid high-fidelity nanoscale characterization is discussed. This paper elaborates on different machine-learning and deep-learning algorithms for analyzing nanoscale images, designing nanomaterials, and nano quality assurance. The challenges associated with the application of machine- and deep-learning models to achieve robust and accurate predictions are outlined. The prospects of incorporating sophisticated AI algorithms such as reinforced learning, explainable artificial intelligence (XAI), big data analytics for material synthesis, manufacturing process innovation, and nanosystem integration are discussed.
Collapse
Affiliation(s)
- Mutha Nandipati
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.N.); (O.F.)
| | - Olukayode Fatoki
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.N.); (O.F.)
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.N.); (O.F.)
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
23
|
Liu X, Zhao Z, Xu S, Zhang J, Zhou Y, He Y, Yamaguchi T, Ouyang H, Tanaka T, Chen MK, Shi S, Qi F, Tsai DP. Meta-Lens Particle Image Velocimetry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310134. [PMID: 38042993 DOI: 10.1002/adma.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Indexed: 12/04/2023]
Abstract
Fluid flow behavior is visualized through particle image velocimetry (PIV) for understanding and studying experimental fluid dynamics. However, traditional PIV methods require multiple cameras and conventional lens systems for image acquisition to resolve multi-dimensional velocity fields. In turn, it introduces complexity to the entire system. Meta-lenses are advanced flat optical devices composed of artificial nanoantenna arrays. It can manipulate the wavefront of light with the advantages of ultrathin, compact, and no spherical aberration. Meta-lenses offer novel functionalities and promise to replace traditional optical imaging systems. Here, a binocular meta-lens PIV technique is proposed, where a pair of GaN meta-lenses are fabricated on one substrate and integrated with a imaging sensor to form a compact binocular PIV system. The meta-lens weigh only 116 mg, much lighter than commercial lenses. The 3D velocity field can be obtained by the binocular disparity and particle image displacement information of fluid flow. The measurement error of vortex-ring diameter is ≈1.25% experimentally validates via a Reynolds-number (Re) 2000 vortex-ring. This work demonstrates a new development trend for the PIV technique for rejuvenating traditional flow diagnostic tools toward a more compact, easy-to-deploy technique. It enables further miniaturization and low-power systems for portable, field-use, and space-constrained PIV applications.
Collapse
Affiliation(s)
- Xiaoyuan Liu
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhou Zhao
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shengming Xu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jingcheng Zhang
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yin Zhou
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yulun He
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Takeshi Yamaguchi
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan
| | - Hua Ouyang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Takuo Tanaka
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan
- Metamaterial Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima, 770-8506, Japan
| | - Mu Ku Chen
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Shengxian Shi
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
24
|
Zhang JC, Fan Y, Yao J, Chen MK, Lin S, Liang Y, Leng B, Tsai DP. Programmable optical meta-holograms. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1201-1217. [PMID: 39679222 PMCID: PMC11636456 DOI: 10.1515/nanoph-2023-0544] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/22/2023] [Indexed: 12/17/2024]
Abstract
The metaverse has captured significant attention as it provides a virtual realm that cannot be experienced in the physical world. Programmable optical holograms, integral components of the metaverse, allow users to access diverse information without needing external equipment. Meta-devices composed of artificially customized nano-antennas are excellent candidates for programmable optical holograms due to their compact footprint and flexible electromagnetic manipulation. Programmable optical meta-holograms can dynamically alter reconstructed images in real-time by directly modulating the optical properties of the metasurface or by modifying the incident light. Information can be encoded across multiple channels and freely selected through switchable functionality. These advantages will broaden the range of virtual scenarios in the metaverse, facilitating further development and practical applications. This review concentrates on recent advancements in the fundamentals and applications of programmable optical meta-holograms. We aim to provide readers with general knowledge and potential inspiration for applying programmable optical meta-holograms, both intrinsic and external ways, into the metaverse for better performance. An outlook and perspective on the challenges and prospects in these rapidly growing research areas are provided.
Collapse
Affiliation(s)
- Jing Cheng Zhang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yubin Fan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jin Yao
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mu Ku Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Shirong Lin
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yao Liang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Borui Leng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
25
|
Huang C, Liang L, Chang P, Yao H, Yan X, Zhang Y, Xie Y. Terahertz Liquid Biosensor Based on A Graphene Metasurface for Ultrasensitive Detection with A Quasi-Bound State in the Continuum. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310493. [PMID: 38033193 DOI: 10.1002/adma.202310493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Indexed: 12/02/2023]
Abstract
The concept of a quasi-bound state in a continuum (QBIC) has garnered significant attention in various fields such as sensing, communication, and optical switching. Within metasurfaces, QBICs offer a reliable platform that enables sensing capabilities through potent interactions between local electric fields and matter. Herein, a novel terahertz (THz) biosensor based on the integration of QBIC with graphene is reported, which enables multidimensional detection. The proposed biosensor is distinctive because of its ability to discern concentrations of ethanol and N-methylpyrrolidone in a wide range from 100% to 0%, by monitoring the changes in the resonance intensity and maximum wavelet coefficient. This approach demonstrates an excellent linear fit, which ensures robust quantitative analysis. The remarkable sensitivity of our biosensor enables it to detect minute changes in low-concentration solutions, with the lowest detection concentration value (LDCV) of 0.21 pg mL-1 . 2D wavelet coefficient intensity cards are effectively constructed through continuous wavelet transforms, which presents a more accurate approach for determining the concentration of the solution. Ultimately, the novel sensing platform offers a host of advantages, including heightened sensitivity and reusability. This pioneering approach establishes a new avenue for liquid-based terahertz biosensing.
Collapse
Affiliation(s)
- Chengcheng Huang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
| | - Lanju Liang
- School of Opto-electronic Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Pengying Chang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
| | - Haiyun Yao
- School of Opto-electronic Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Xin Yan
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Yonggang Zhang
- school of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Yiyang Xie
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
26
|
Zhou Y, Wang S, Yin J, Wang J, Manshaii F, Xiao X, Zhang T, Bao H, Jiang S, Chen J. Flexible Metasurfaces for Multifunctional Interfaces. ACS NANO 2024; 18:2685-2707. [PMID: 38241491 DOI: 10.1021/acsnano.3c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.
Collapse
Affiliation(s)
- Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jianjun Wang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Hong Bao
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Mascaretti L, Chen Y, Henrotte O, Yesilyurt O, Shalaev VM, Naldoni A, Boltasseva A. Designing Metasurfaces for Efficient Solar Energy Conversion. ACS PHOTONICS 2023; 10:4079-4103. [PMID: 38145171 PMCID: PMC10740004 DOI: 10.1021/acsphotonics.3c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Metasurfaces have recently emerged as a promising technological platform, offering unprecedented control over light by structuring materials at the nanoscale using two-dimensional arrays of subwavelength nanoresonators. These metasurfaces possess exceptional optical properties, enabling a wide variety of applications in imaging, sensing, telecommunication, and energy-related fields. One significant advantage of metasurfaces lies in their ability to manipulate the optical spectrum by precisely engineering the geometry and material composition of the nanoresonators' array. Consequently, they hold tremendous potential for efficient solar light harvesting and conversion. In this Review, we delve into the current state-of-the-art in solar energy conversion devices based on metasurfaces. First, we provide an overview of the fundamental processes involved in solar energy conversion, alongside an introduction to the primary classes of metasurfaces, namely, plasmonic and dielectric metasurfaces. Subsequently, we explore the numerical tools used that guide the design of metasurfaces, focusing particularly on inverse design methods that facilitate an optimized optical response. To showcase the practical applications of metasurfaces, we present selected examples across various domains such as photovoltaics, photoelectrochemistry, photocatalysis, solar-thermal and photothermal routes, and radiative cooling. These examples highlight the ways in which metasurfaces can be leveraged to harness solar energy effectively. By tailoring the optical properties of metasurfaces, significant advancements can be expected in solar energy harvesting technologies, offering new practical solutions to support an emerging sustainable society.
Collapse
Affiliation(s)
- Luca Mascaretti
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
- Department
of Physical Electronics, Faculty of Nuclear Sciences and Physical
Engineering, Czech Technical University
in Prague, Břehová
7, 11519 Prague, Czech Republic
| | - Yuheng Chen
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Olivier Henrotte
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Omer Yesilyurt
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Vladimir M. Shalaev
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Alberto Naldoni
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| | - Alexandra Boltasseva
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| |
Collapse
|
28
|
Li Y, Zhou Y, Liu Q, Lu Z, Luo XQ, Liu WM, Wang XL. Multi-Wavelength Selective and Broadband Near-Infrared Plasmonic Switches in Anisotropic Plasmonic Metasurfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3141. [PMID: 38133038 PMCID: PMC10745881 DOI: 10.3390/nano13243141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Anisotropic plasmonic metasurfaces have attracted broad research interest since they possess novel optical properties superior to natural materials and their tremendous design flexibility. However, the realization of multi-wavelength selective plasmonic metasurfaces that have emerged as promising candidates to uncover multichannel optical devices remains a challenge associated with weak modulation depths and narrow operation bandwidth. Herein, we propose and numerically demonstrate near-infrared multi-wavelength selective passive plasmonic switching (PPS) that encompasses high ON/OFF ratios and strong modulation depths via multiple Fano resonances (FRs) in anisotropic plasmonic metasurfaces. Specifically, the double FRs can be fulfilled and dedicated to establishing tailorable near-infrared dual-wavelength PPS. The multiple FRs mediated by in-plane mirror asymmetries cause the emergence of triple-wavelength PPS, whereas the multiple FRs governed by in-plane rotational asymmetries avail the implementation of the quasi-bound states in the continuum-endowed multi-wavelength PPS with the ability to unfold a tunable broad bandwidth. In addition, the strong polarization effects with in-plane anisotropic properties further validate the existence of the polarization-resolved multi-wavelength PPS. Our results provide an alternative approach to foster the achievement of multifunctional meta-devices in optical communication and information processing.
Collapse
Affiliation(s)
- Yan Li
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Yaojie Zhou
- School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Qinke Liu
- School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Zhendong Lu
- School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Qing Luo
- School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Wu-Ming Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin-Lin Wang
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Mechanical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
29
|
Yang H, Chen Y, Wu Y, Hu Y, Yang J, Wu J. Analog signal metasurface processor supporting mathematical operator reconfiguration. OPTICS LETTERS 2023; 48:5451-5454. [PMID: 37910675 DOI: 10.1364/ol.498519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
Electromagnetic wave analog computing is an effective method to overcome the bottleneck of electronic computing, which has attracted the attention of scientists. However, many spatial analog signal processing systems based on electromagnetic waves can only execute one unique mathematical operator and cannot provide multiple operators for users to choose arbitrarily. In order to enhance the function of the current spatial analog computing system, we design a coding structure with amplitude-phase decoupling modulation to realize the analog signal processor that supports the switching of mathematical operators and demonstrate the precise switching from the first-order spatial differential operator to the first-order spatial integral operator. Our design idea can be used as a paradigm for designing small reconfigurable analog computing systems, paving the way for the construction of high-speed, multifunctional, and universal signal processing systems. This idea can be extended to any other range of waves.
Collapse
|
30
|
Kan Y, Liu X, Kumar S, Bozhevolnyi SI. Multichannel Quantum Emission with On-Chip Emitter-Coupled Holographic Metasurfaces. ACS NANO 2023; 17:20308-20314. [PMID: 37791727 DOI: 10.1021/acsnano.3c06309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Multichannel quantum emission is in high demand for advanced quantum photonic applications such as quantum communications, quantum computing, and quantum cryptography. However, to date, the most common way for shaping photon emission from quantum emitters (QEs) is to utilize free-standing (external) bulky optical components. Here, we develop the multichannel holography approach for flexibly designing on-chip QE-coupled metasurfaces that make use of nonradiatively QE-excited surface plasmon polaritons for generating far-field quantum emission, which propagates in designed directions carrying specific spin and orbital angular momenta (SAM and OAM, respectively). We further design, fabricate, and characterize on-chip quantum light sources of multichannel quantum emission encoded with different SAMs and OAMs. The holography-based inverse design approach developed and demonstrated on-chip quantum light sources with multiple degrees of freedoms, thereby enabling a powerful platform for quantum nanophotonics, especially relevant for advanced quantum photonic applications, e.g., high-dimensional quantum information processing.
Collapse
Affiliation(s)
- Yinhui Kan
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Xujing Liu
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
- Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shailesh Kumar
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sergey I Bozhevolnyi
- Center for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
31
|
Tripathi D, Vyas HS, Kumar S, Panda SS, Hegde R. Recent developments in Chalcogenide phase change material-based nanophotonics. NANOTECHNOLOGY 2023; 34:502001. [PMID: 37595569 DOI: 10.1088/1361-6528/acf1a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
There is now a deep interest in actively reconfigurable nanophotonics as they will enable the next generation of optical devices. Of the various alternatives being explored for reconfigurable nanophotonics, Chalcogenide phase change materials (PCMs) are considered highly promising owing to the nonvolatile nature of their phase change. Chalcogenide PCM nanophotonics can be broadly classified into integrated photonics (with guided wave light propagation) and Meta-optics (with free space light propagation). Despite some early comprehensive reviews, the pace of development in the last few years has shown the need for a topical review. Our comprehensive review covers recent progress on nanophotonic architectures, tuning mechanisms, and functionalities in tunable PCM Chalcogenides. In terms of integrated photonics, we identify novel PCM nanoantenna geometries, novel material utilization, the use of nanostructured waveguides, and sophisticated excitation pulsing schemes. On the meta-optics front, the breadth of functionalities has expanded, enabled by exploring design aspects for better performance. The review identifies immediate, and intermediate-term challenges and opportunities in (1) the development of novel chalcogenide PCM, (2) advance in tuning mechanism, and (3) formal inverse design methods, including machine learning augmented inverse design, and provides perspectives on these aspects. The topical review will interest researchers in further advancing this rapidly growing subfield of nanophotonics.
Collapse
Affiliation(s)
- Devdutt Tripathi
- Department of Electrical Engineering, IIT Gandhinagar, 382355, India
| | | | - Sushil Kumar
- Department of Electrical Engineering, IIT Gandhinagar, 382355, India
| | | | - Ravi Hegde
- Department of Electrical Engineering, IIT Gandhinagar, 382355, India
| |
Collapse
|
32
|
Kivshar Y. Spin-controlled active geometric metasurfaces. Sci Bull (Beijing) 2023; 68:1843-1844. [PMID: 37537097 DOI: 10.1016/j.scib.2023.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Affiliation(s)
- Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| |
Collapse
|
33
|
Gladyshev S, Karamanos TD, Kuhn L, Beutel D, Weiss T, Rockstuhl C, Bogdanov A. Inverse design of all-dielectric metasurfaces with accidental bound states in the continuum. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3767-3779. [PMID: 39678464 PMCID: PMC11635925 DOI: 10.1515/nanoph-2023-0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/05/2023] [Indexed: 12/17/2024]
Abstract
Metasurfaces with bound states in the continuum (BICs) have proven to be a powerful platform for drastically enhancing light-matter interactions, improving biosensing, and precisely manipulating near- and far-fields. However, engineering metasurfaces to provide an on-demand spectral and angular position for a BIC remains a prime challenge. A conventional solution involves a fine adjustment of geometrical parameters, requiring multiple time-consuming calculations. In this work, to circumvent such tedious processes, we develop a physics-inspired, inverse design method on all-dielectric metasurfaces for an on-demand spectral and angular position of a BIC. Our suggested method predicts the core-shell particles that constitute the unit cell of the metasurface, while considering practical limitations on geometry and available materials. Our method is based on a smart combination of a semi-analytical solution, for predicting the required dipolar Mie coefficients of the meta-atom, and a machine learning algorithm, for finding a practical design of the meta-atom that provides these Mie coefficients. Although our approach is exemplified in designing a metasurface sustaining a BIC, it can, also, be applied to many more objective functions. With that, we pave the way toward a general framework for the inverse design of metasurfaces in specific and nanophotonic structures in general.
Collapse
Affiliation(s)
- Sergei Gladyshev
- Institute of Physics, University of Graz, Universitätsplatz 5, 8010Graz, Austria
| | | | - Lina Kuhn
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany
- Steinbuch Centre for Computing – Scientific Computing & Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dominik Beutel
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany
| | - Thomas Weiss
- Institute of Physics, University of Graz, Universitätsplatz 5, 8010Graz, Austria
- 4th Physics Institute and SCoPE, University of Stuttgart, Pfaffenwaldring 57, D-70569Stuttgart, Germany
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Andrey Bogdanov
- Qingdao Innovation and Development Center of Harbin Engineering University, Qingdao266000, Shandong, China
- Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
34
|
Li Y, Jiang P, Lyu X, Li X, Qi H, Tang J, Xue Z, Yang H, Lu G, Sun Q, Hu X, Gao Y, Gong Q. Revealing low-loss dielectric near-field modes of hexagonal boron nitride by photoemission electron microscopy. Nat Commun 2023; 14:4837. [PMID: 37563183 PMCID: PMC10415285 DOI: 10.1038/s41467-023-40603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Low-loss dielectric modes are important features and functional bases of fundamental optical components in on-chip optical devices. However, dielectric near-field modes are challenging to reveal with high spatiotemporal resolution and fast direct imaging. Herein, we present a method to address this issue by applying time-resolved photoemission electron microscopy to a low-dimensional wide-bandgap semiconductor, hexagonal boron nitride (hBN). Taking a low-loss dielectric planar waveguide as a fundamental structure, static vector near-field vortices with different topological charges and the spatiotemporal evolution of waveguide modes are directly revealed. With the lowest-order vortex structure, strong nanofocusing in real space is realized, while near-vertical photoemission in momentum space and narrow spread in energy space are simultaneously observed due to the atomically flat surface of hBN and the small photoemission horizon set by the limited photon energies. Our approach provides a strategy for the realization of flat photoemission emitters.
Collapse
Affiliation(s)
- Yaolong Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China
| | - Pengzuo Jiang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China
| | - Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China
| | - Xiaofang Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China
| | - Huixin Qi
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China
| | - Jinglin Tang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China
| | - Zhaohang Xue
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, Jiangsu, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, Jiangsu, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China
| | - Quan Sun
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, Jiangsu, China.
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, Jiangsu, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China.
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, Jiangsu, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China.
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, 100871, Beijing, China
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, Jiangsu, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China
| |
Collapse
|
35
|
Liu X, Kan Y, Kumar S, Komisar D, Zhao C, Bozhevolnyi SI. On-chip generation of single-photon circularly polarized single-mode vortex beams. SCIENCE ADVANCES 2023; 9:eadh0725. [PMID: 37556533 PMCID: PMC10411890 DOI: 10.1126/sciadv.adh0725] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Generation of single photons carrying spin and orbital angular momenta (SAM and OAM) opens enticing perspectives for exploiting multiple degrees of freedom for high-dimensional quantum systems. However, on-chip generation of single photons encoded with single-mode SAM-OAM states has been a major challenge. Here, by using carefully designed anisotropic nanodimers fabricated atop a substrate, supporting surface plasmon polariton (SPP) propagation, and accurately positioned around a quantum emitter (QE), we enable nonradiative QE-SPP coupling and the SPP outcoupling into free-space propagating radiation featuring the designed SAM and OAM. We demonstrate on-chip room-temperature generation of well-collimated (divergence < 7.5°) circularly polarized (chirality > 0.97) single-mode vortex beams with different topological charges (𝓁 = 0, 1, and 2) and high single-photon purity, g(2)(0) < 0.15. The developed approach can straightforwardly be extended to produce multiple, differently polarized, single-mode single-photon radiation channels and enable thereby realization of high-dimensional quantum sources for advanced quantum photonic technologies.
Collapse
Affiliation(s)
- Xujing Liu
- Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, China
- Centre for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Yinhui Kan
- Centre for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Shailesh Kumar
- Centre for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Danylo Komisar
- Centre for Nano Optics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Changying Zhao
- Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, China
| | | |
Collapse
|
36
|
Liu SJ, Zhu L, Zhang YH, Chen W, Zhu D, Chen P, Lu YQ. Bi-Chiral Nanostructures Featuring Dynamic Optical Rotatory Dispersion for Polychromatic Light Multiplexing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301714. [PMID: 37158735 DOI: 10.1002/adma.202301714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Indexed: 05/10/2023]
Abstract
Chiral nanostructures featuring the unique optical activity have attracted broad interests from scientists. The typical polarization rotation of transmitted light is usually wavelength dependent, namely the optical rotatory dispersion. However, its dynamic tunability and intriguing collaboration with other optical degrees of freedom, especially the highly desired spatial phase, remain elusive. Herein, a bi-chiral liquid crystalline nanostructure is proposed to induce an effect called reflective optical rotatory dispersion. Thanks to the independent manipulation of opposite-handed self-assembled helices, spin-decoupled geometric phases are induced simultaneously. These naturally unite multi-dimensions of light and versatile stimuli-responsiveness of soft matter. Dynamic holography driven by heat and electric field is demonstrated with a fast response. For polychromatic light, the hybrid multiplexed holographic painting is exhibited with fruitful tunable colors. This study extends the ingenious construction of soft chiral superstructures, presents an open-ended strategy for on-demand light control, and enlightens advanced applications of display, optical computing, and communication.
Collapse
Affiliation(s)
- Si-Jia Liu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lin Zhu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yi-Heng Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Wen Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Dong Zhu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Peng Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
37
|
Song H, Hong B, Wang N, Ping Wang G. Kerker-type positional disorder immune metasurfaces. OPTICS EXPRESS 2023; 31:24243-24259. [PMID: 37475256 DOI: 10.1364/oe.492419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/24/2023] [Indexed: 07/22/2023]
Abstract
Metasurfaces that can operate without a strictly periodic arrangement of meta-atoms are highly desirable for practical optical micro-nano devices. In this paper, we propose two kinds of Kerker-type metasurfaces that exhibit immunity to positional disorder. These metasurfaces consist of two distinct core-shell cylinders that satisfy the first and second Kerker conditions, respectively. Despite significant positional disorder perturbations of the meta-atoms, the metasurfaces can maintain excellent performance comparable to periodic ones, including total transmission and magnetic mirror responses. This positional disorder immunity arises from the unidirectional forward or backward scattering of a single core-shell cylinder, which results in minimal lateral scattering coupling between neighboring cylinders, thereby having little impact on multiple scattering in either the forward or backward direction. In contrast, the response of positional disorder non-Kerker-type metasurfaces decreases significantly. Our findings present a new approach for designing robust metasurfaces and expanding the applications of metasurfaces in sensing and communications within complex practical scenarios.
Collapse
|
38
|
Barati Sedeh H, Litchinitser NM. Singular optics empowered by engineered optical materials. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2687-2716. [PMID: 39635480 PMCID: PMC11501551 DOI: 10.1515/nanoph-2023-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/26/2023] [Indexed: 12/07/2024]
Abstract
The rapid development of optical technologies, such as optical manipulation, data processing, sensing, microscopy, and communications, necessitates new degrees of freedom to sculpt optical beams in space and time beyond conventionally used spatially homogenous amplitude, phase, and polarization. Structuring light in space and time has been indeed shown to open new opportunities for both applied and fundamental science of light. Rapid progress in nanophotonics has opened up new ways of "engineering" ultra-compact, versatile optical nanostructures, such as optical two-dimensional metasurfaces or three-dimensional metamaterials that facilitate new ways of optical beam shaping and manipulation. Here, we review recent progress in the field of structured light-matter interactions with a focus on all-dielectric nanostructures. First, we introduce the concept of singular optics and then discuss several other families of spatially and temporally structured light beams. Next, we summarize recent progress in the design and optimization of photonic platforms, and then we outline some new phenomena enabled by the synergy of structured light and structured materials. Finally, we outline promising directions for applications of structured light beams and their interactions with engineered nanostructures.
Collapse
Affiliation(s)
- Hooman Barati Sedeh
- Department of Electrical and Computer Engineering, Duke University, 27708Durham, NC, USA
| | | |
Collapse
|
39
|
Dixon J, Pan F, Moradifar P, Bordoloi P, Dagli S, Dionne J. Through thick and thin: how optical cavities control spin. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2779-2788. [PMID: 39635484 PMCID: PMC11501721 DOI: 10.1515/nanoph-2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/19/2023] [Indexed: 12/07/2024]
Abstract
When light interacts with matter by means of scattering and absorption, we observe the resulting color. Light also probes the symmetry of matter and the result is encoded in its polarization. In the special case of circularly-polarized light, which is especially relevant in nonlinear optics, quantum photonics, and physical chemistry, a critical dimension of symmetry is along the longitudinal direction. We examine recent advances in controlling circularly-polarized light and reveal that the commonality in these advances is in judicious control of longitudinal symmetry. In particular, in the use of high quality-factor modes in dielectric metasurfaces, the finite thickness can be used to tune the modal profile. These symmetry considerations can be applied in multiplexed optical communication schemes, deterministic control of quantum emitters, and sensitive detection of the asymmetry of small molecules.
Collapse
Affiliation(s)
- Jefferson Dixon
- Mechanical Engineering, Stanford University, 440 Escondido Mall, 94305, Stanford, CA, USA
| | - Feng Pan
- Materials Science and Engineering, Stanford University, 496 Lomita Mall, 94305, Stanford, CA, USA
| | - Parivash Moradifar
- Materials Science and Engineering, Stanford University, 496 Lomita Mall, 94305, Stanford, CA, USA
| | - Priyanuj Bordoloi
- Materials Science and Engineering, Stanford University, 496 Lomita Mall, 94305, Stanford, CA, USA
| | - Sahil Dagli
- Materials Science and Engineering, Stanford University, 496 Lomita Mall, 94305, Stanford, CA, USA
| | - Jennifer Dionne
- Materials Science and Engineering, Stanford University, 496 Lomita Mall, 94305, Stanford, CA, USA
| |
Collapse
|
40
|
Zhou H, Zhang S, Zhu T, Tian Y, Wang Y, Wang Y. Hybrid Metasurfaces for Perfect Transmission and Customized Manipulation of Sound Across Water-Air Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207181. [PMID: 37078801 PMCID: PMC10323646 DOI: 10.1002/advs.202207181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Extreme impedance mismatch causes sound insulation at water-air interfaces, limiting numerous cross-media applications such as ocean-air wireless acoustic communication. Although quarter-wave impedance transformers can improve transmission, they are not readily available for acoustics and are restricted by the fixed phase shift at full transmission. Here, this limitation is broken through impedance-matched hybrid metasurfaces assisted by topology optimization. Sound transmission enhancement and phase modulation across the water-air interface are achieved independently. Compared to the bare water-air interface, it is experimentally observed that the average transmitted amplitude through an impedance-matched metasurface at the peak frequency is enhanced by ≈25.9 dB, close to the limit of the perfect transmission 30 dB. And nearly 42 dB amplitude enhancement is measured by the hybrid metasurfaces with axial focusing function. Various customized vortex beams are experimentally realized to promote applications in ocean-air communication. The physical mechanisms of sound transmission enhancement for broadband and wide-angle incidences are revealed. The proposed concept has potential applications in efficient transmission and free communication across dissimilar media.
Collapse
Affiliation(s)
- Hong‐Tao Zhou
- Department of MechanicsSchool of Mechanical EngineeringTianjin UniversityTianjin300350China
| | - Shao‐Cong Zhang
- Department of MechanicsSchool of Mechanical EngineeringTianjin UniversityTianjin300350China
| | - Tong Zhu
- Department of MechanicsSchool of Mechanical EngineeringTianjin UniversityTianjin300350China
| | - Yu‐Ze Tian
- Department of MechanicsSchool of Mechanical EngineeringTianjin UniversityTianjin300350China
| | - Yan‐Feng Wang
- Department of MechanicsSchool of Mechanical EngineeringTianjin UniversityTianjin300350China
| | - Yue‐Sheng Wang
- Department of MechanicsSchool of Mechanical EngineeringTianjin UniversityTianjin300350China
- Institute of Engineering MechanicsBeijing Jiaotong UniversityBeijing100044China
| |
Collapse
|
41
|
Jakšić Z, Devi S, Jakšić O, Guha K. A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics. Biomimetics (Basel) 2023; 8:278. [PMID: 37504166 PMCID: PMC10807478 DOI: 10.3390/biomimetics8030278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area.
Collapse
Affiliation(s)
- Zoran Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia University of Belgrade, 11000 Belgrade, Serbia;
| | - Swagata Devi
- Department of Electronics and Communication Engineering, B V Raju Institute of Technology Narasapur, Narasapur 502313, India;
| | - Olga Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia University of Belgrade, 11000 Belgrade, Serbia;
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar 788010, India;
| |
Collapse
|
42
|
Yang Y, Seong J, Choi M, Park J, Kim G, Kim H, Jeong J, Jung C, Kim J, Jeon G, Lee KI, Yoon DH, Rho J. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. LIGHT, SCIENCE & APPLICATIONS 2023; 12:152. [PMID: 37339970 DOI: 10.1038/s41377-023-01169-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 06/22/2023]
Abstract
Metasurfaces have been continuously garnering attention in both scientific and industrial fields, owing to their unprecedented wavefront manipulation capabilities using arranged subwavelength artificial structures. To date, research has mainly focused on the full control of electromagnetic characteristics, including polarization, phase, amplitude, and even frequencies. Consequently, versatile possibilities of electromagnetic wave control have been achieved, yielding practical optical components such as metalenses, beam-steerers, metaholograms, and sensors. Current research is now focused on integrating the aforementioned metasurfaces with other standard optical components (e.g., light-emitting diodes, charged-coupled devices, micro-electro-mechanical systems, liquid crystals, heaters, refractive optical elements, planar waveguides, optical fibers, etc.) for commercialization with miniaturization trends of optical devices. Herein, this review describes and classifies metasurface-integrated optical components, and subsequently discusses their promising applications with metasurface-integrated optical platforms including those of augmented/virtual reality, light detection and ranging, and sensors. In conclusion, this review presents several challenges and prospects that are prevalent in the field in order to accelerate the commercialization of metasurfaces-integrated optical platforms.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Minseok Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junkyeong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junhyeon Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gyoseon Jeon
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Kyung-Il Lee
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Dong Hyun Yoon
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
| |
Collapse
|
43
|
Nguyen DD, Lee S, Kim I. Recent Advances in Metaphotonic Biosensors. BIOSENSORS 2023; 13:631. [PMID: 37366996 PMCID: PMC10296124 DOI: 10.3390/bios13060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Metaphotonic devices, which enable light manipulation at a subwavelength scale and enhance light-matter interactions, have been emerging as a critical pillar in biosensing. Researchers have been attracted to metaphotonic biosensors, as they solve the limitations of the existing bioanalytical techniques, including the sensitivity, selectivity, and detection limit. Here, we briefly introduce types of metasurfaces utilized in various metaphotonic biomolecular sensing domains such as refractometry, surface-enhanced fluorescence, vibrational spectroscopy, and chiral sensing. Further, we list the prevalent working mechanisms of those metaphotonic bio-detection schemes. Furthermore, we summarize the recent progress in chip integration for metaphotonic biosensing to enable innovative point-of-care devices in healthcare. Finally, we discuss the impediments in metaphotonic biosensing, such as its cost effectiveness and treatment for intricate biospecimens, and present a prospect for potential directions for materializing these device strategies, significantly influencing clinical diagnostics in health and safety.
Collapse
Affiliation(s)
- Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seho Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
44
|
Chen S, Huang J, Yin S, Milosevic MM, Pi H, Yan J, Chong HMH, Fang X. Metasurfaces integrated with a single-mode waveguide array for off-chip wavefront shaping. OPTICS EXPRESS 2023; 31:15876-15887. [PMID: 37157678 DOI: 10.1364/oe.488959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Integration of metasurfaces and SOI (silicon-on-insulator) chips can leverage the advantages of both metamaterials and silicon photonics, enabling novel light shaping functionalities in planar, compact devices that are compatible with CMOS (complementary metal-oxide-semiconductor) production. To facilitate light extraction from a two-dimensional metasurface vertically into free space, the established approach is to use a wide waveguide. However, the multi-modal feature of such wide waveguides can render the device vulnerable to mode distortion. Here, we propose a different approach, where an array of narrow, single-mode waveguides is used instead of a wide, multi-mode waveguide. This approach tolerates nano-scatterers with a relatively high scattering efficiency, for example Si nanopillars that are in direct contact with the waveguides. Two example devices are designed and numerically studied as demonstrations: the first being a beam deflector that deflects light into the same direction regardless of the direction of input light, and the second being a light-focusing metalens. This work shows a straightforward approach of metasurface-SOI chip integration, which could be useful for emerging applications such as metalens arrays and neural probes that require off-chip light shaping from relatively small metasurfaces.
Collapse
|
45
|
Wang Z, Fu X, Liang JG, Wang J, Han Y, Ding C, Qu S. Broadband 2D phase-gradient metasurface for linearly-polarized waves by suppressing Lorentz resonance of meta-atoms. OPTICS EXPRESS 2023; 31:13923-13932. [PMID: 37157267 DOI: 10.1364/oe.484475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metasurfaces have exhibited versatile capacities of controlling electromagnetic (EM) waves due to the high degree of freedom of designing artificially engineered meta-atoms. For circular polarization (CP), broadband phase gradient metasurfaces (PGMs) can be realized based on P-B geometric phase by rotating meta-atoms; while for linear polarization (LP), realization of broadband phase gradients has to resort to P-B geometric phase during polarization conversion and polarization purity has to be sacrificed for broadband properties. It is still challenging to obtain broadband PGMs for LP waves without polarization conversion. In this paper, we propose the design of 2D PGMs by combining the inherently wideband geometric phases and non-resonant phases of meta-atom, under the philosophy of suppressing Lorentz resonances that usually bring about abrupt phase changes. To this end, an anisotropic meta-atom is devised which can suppress abrupt Lorentz resonances in 2D for both x- and y-polarized waves. For y-polarized waves, the central straight wire is in perpendicular to electric vector Ein of incident waves, Lorentz resonance cannot be excited although the electrical length approaches or even exceeds half a wavelength. For x-polarized waves, the central straight wire is in parallel with Ein, a split gap is opened on the center of the straight wire so as to avoid Lorentz resonance. In this way, the abrupt Lorentz resonances are suppressed in 2D and the wideband geometric phase and the gradual non-resonant phase are left for broadband PGM design. As a proof of concept, a 2D PGM prototype for LP waves was designed, fabricated and measured in microwave regime. Both simulated and measured results show that the PGM can achieve broadband beam deflection for reflected waves for both x- and y-polarized waves in broadband, without changing the LP state. This work provides a broadband route to 2D PGMs for LP waves and can be readily extended to higher frequencies such as terahertz and infrared regimes.
Collapse
|
46
|
Wang X, Wang H, Wang J, Liu X, Hao H, Tan YS, Zhang Y, Zhang H, Ding X, Zhao W, Wang Y, Lu Z, Liu J, Yang JKW, Tan J, Li H, Qiu CW, Hu G, Ding X. Single-shot isotropic differential interference contrast microscopy. Nat Commun 2023; 14:2063. [PMID: 37045869 PMCID: PMC10097662 DOI: 10.1038/s41467-023-37606-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Differential interference contrast (DIC) microscopy allows high-contrast, low-phototoxicity, and label-free imaging of transparent biological objects, and has been applied in the field of cellular morphology, cell segmentation, particle tracking, optical measurement and others. Commercial DIC microscopy based on Nomarski or Wollaston prism resorts to the interference of two polarized waves with a lateral differential offset (shear) and axial phase shift (bias). However, the shear generated by these prisms is limited to the rectilinear direction, unfortunately resulting in anisotropic contrast imaging. Here we propose an ultracompact metasurface-assisted isotropic DIC (i-DIC) microscopy based on a grand original pattern of radial shear interferometry, that converts the rectilinear shear into rotationally symmetric along radial direction, enabling single-shot isotropic imaging capabilities. The i-DIC presents a complementary fusion of typical meta-optics, traditional microscopes and integrated optical system, and showcases the promising and synergetic advancements in edge detection, particle motion tracking, and label-free cellular imaging.
Collapse
Affiliation(s)
- Xinwei Wang
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Jinlu Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xingsi Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Huijie Hao
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - You Sin Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Yilei Zhang
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - He Zhang
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiangyan Ding
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Weisong Zhao
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Yuhang Wang
- College of Mechanical and Electrical engineering, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Zhengang Lu
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - Jian Liu
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jiubin Tan
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - Haoyu Li
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China.
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Xumin Ding
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China.
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China.
| |
Collapse
|
47
|
Agreda A, Wu T, Hereu A, Treguer-Delapierre M, Drisko GL, Vynck K, Lalanne P. Tailoring Iridescent Visual Appearance with Disordered Resonant Metasurfaces. ACS NANO 2023; 17:6362-6372. [PMID: 36976862 DOI: 10.1021/acsnano.2c10962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The nanostructures of natural species offer beautiful visual appearances with saturated and iridescent colors, and the question arises whether we can reproduce or even create unique appearances with man-made metasurfaces. However, harnessing the specular and diffuse light scattered by disordered metasurfaces to create attractive and prescribed visual effects is currently inaccessible. Here, we present an interpretive, intuitive, and accurate modal-based tool that unveils the main physical mechanisms and features defining the appearance of colloidal disordered monolayers of resonant meta-atoms deposited on a reflective substrate. The model shows that the combination of plasmonic and Fabry-Perot resonances offers uncommon iridescent visual appearances, differing from those classically observed with natural nanostructures or thin-film interferences. We highlight an unusual visual effect exhibiting only two distinct colors and theoretically investigate its origin. The approach can be useful in the design of visual appearance with easy-to-make and universal building blocks having a large resilience to fabrication imperfections and potential for innovative coatings and fine-art applications.
Collapse
Affiliation(s)
- Adrian Agreda
- LP2N, CNRS, Institut d'Optique Graduate School, Univ. Bordeaux, F-33400 Talence, France
| | - Tong Wu
- LP2N, CNRS, Institut d'Optique Graduate School, Univ. Bordeaux, F-33400 Talence, France
| | - Adrian Hereu
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | | | - Glenna L Drisko
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Kevin Vynck
- Institut Lumière Matière, CNRS, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Philippe Lalanne
- LP2N, CNRS, Institut d'Optique Graduate School, Univ. Bordeaux, F-33400 Talence, France
| |
Collapse
|
48
|
Wen D, Crozier KB. Semiconductor lasers with integrated metasurfaces for direct output beam modulation, enabled by innovative fabrication methods. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1443-1457. [PMID: 39634592 PMCID: PMC11501924 DOI: 10.1515/nanoph-2022-0585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/07/2024]
Abstract
Semiconductor lasers play critical roles in many different systems, ranging from optical communications to absorption spectroscopy for environmental monitoring. Despite numerous applications, many semiconductor lasers have problems such as significant beam divergence and polarization instability. External optical elements like objective lenses and polarizers are usually needed to address these issues. This Review will discuss how these issues have recently been dealt with by instead integrating metasurfaces into semiconductor lasers. This necessitates the development of innovative fabrication methods; these will also be the topic of this Review. Metasurfaces can be integrated on the emitting facet of a laser. This can help select the lasing mode or can be used just to modify the output beam properties without affecting the modes. They can also be integrated monolithically with lasers through waveguides, or work in an external cavity configuration. These integrated devices provide novel optical functions, such as direct orbital angular momentum (OAM) mode generation, wavelength tuning and holographic pattern generation. We hope this Review will help extend the use of metasurface-integrated semiconductor lasers to scientific and industrial systems that employ lasers.
Collapse
Affiliation(s)
- Dandan Wen
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an710129, China
| | - Kenneth B. Crozier
- Department of Electrical and Electronic Engineering, School of Physics, and Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, University of Melbourne, Melbourne, VIC3010, Australia
| |
Collapse
|
49
|
Fagiani L, Gandolfi M, Carletti L, de Angelis C, Osmond J, Bollani M. Modelling and nanofabrication of chiral dielectric metasurfaces. MICRO AND NANO ENGINEERING 2023. [DOI: 10.1016/j.mne.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
50
|
Wang S, Wen S, Deng ZL, Li X, Yang Y. Metasurface-Based Solid Poincaré Sphere Polarizer. PHYSICAL REVIEW LETTERS 2023; 130:123801. [PMID: 37027878 DOI: 10.1103/physrevlett.130.123801] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The combination of conventional polarization optical elements, such as linear polarizers and waveplates, is widely adopted to tailor light's state of polarization (SOP). Meanwhile, less attention has been given to the manipulation of light's degree of polarization (DOP). Here, we propose metasurface-based polarizers that can filter unpolarized incident light to light with any prescribed SOP and DOP, corresponding to arbitrary points located both at the surface and within the solid Poincaré sphere. The Jones matrix elements of the metasurface are inverse-designed via the adjoint method. As prototypes, we experimentally demonstrated metasurface-based polarizers in near-infrared frequencies that can convert unpolarized light into linear, elliptical, or circular polarizations with varying DOPs of 1, 0.7, and 0.4, respectively. Our Letter unlocks a new degree of freedom for metasurface polarization optics and may break new ground for a variety of DOP-related applications, such as polarization calibration and quantum state tomography.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Shun Wen
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zi-Lan Deng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Yuanmu Yang
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|