1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 PMCID: PMC11893264 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Dong Y, Hu Y, Hu X, Wang L, Shen X, Tian H, Li M, Luo Z, Cai C. Synthetic nanointerfacial bioengineering of Ti implants: on-demand regulation of implant-bone interactions for enhancing osseointegration. MATERIALS HORIZONS 2025; 12:694-718. [PMID: 39480512 DOI: 10.1039/d4mh01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium and its alloys are the most commonly used biometals for developing orthopedic implants to treat various forms of bone fractures and defects, but their clinical performance is still challenged by the unfavorable mechanical and biological interactions at the implant-tissue interface, which substantially impede bone healing at the defects and reduce the quality of regenerated bones. Moreover, the impaired osteogenesis capacity of patients under certain pathological conditions such as diabetes and osteoporosis may further impair the osseointegration of Ti-based implants and increase the risk of treatment failure. To address these issues, various modification strategies have been developed to regulate the implant-bone interactions for improving bone growth and remodeling in situ. In this review, we provide a comprehensive analysis on the state-of-the-art synthetic nanointerfacial bioengineering strategies for designing Ti-based biofunctional orthopedic implants, with special emphasis on the contributions to (1) promotion of new bone formation and binding at the implant-bone interface, (2) bacterial elimination for preventing peri-implant infection and (3) overcoming osseointegration resistance induced by degenerative bone diseases. Furthermore, a perspective is included to discuss the challenges and potential opportunities for the interfacial engineering of Ti implants in a translational perspective. Overall, it is envisioned that the insights in this review may guide future research in the area of biometallic orthopedic implants for improving bone repair with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lingshuang Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Hao Tian
- Kairui Stomatological Hospital, Chengdu 610211, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Chunyuan Cai
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| |
Collapse
|
3
|
Akizuki M, Murakami K, Sekine K, Murakami A, Kobayashi K, Matsuda M, Matsumoto H, Harata E, Hamada K, Enggardipta RA, Fujii H, Yumoto H. Hydrophobic 2-methacryloyloxyethyl phosphorylcholine polymer inhibits peri-implantitis-causing bacterial adhesion on titanium materials. J Appl Microbiol 2025; 136:lxaf033. [PMID: 39963719 DOI: 10.1093/jambio/lxaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
AIMS To prevent peri-implantitis, we investigated the adhesion of periodontopathogenic bacteria to titanium surfaces using a hydrophobic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer to inhibit adhesion. METHOD AND RESULTS We immersed titanium plates (TiPs) coated with a hydrophobic MPC polymer in a bacterial suspension for 30 min or 24 h and measured the number of adherent bacteria. Bacteria adhering to the TiPs were observed using scanning electron microscopy (SEM). Furthermore, mimicking an oral cavity, TiPs coated with MPC polymer and saliva, were immersed in bacterial suspensions of Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mutans for 24 h, and adenosine triphosphate in the adherent bacteria was measured.Bacterial adhesion was significantly inhibited on MPC polymer-coated TiPs after 30 min and 24 h. SEM results showed a similar trend. Bacterial adhesion was significantly inhibited on MPC polymer-treated TiPs in the presence of saliva, both before and after MPC treatment. Furthermore, their effectiveness was maintained when the MPC polymer-treated TiPs were stored in saline for 1 week. CONCLUSIONS Hydrophobic MPC polymer coating on TiP surface inhibited bacterial adhesion, indicating that it may be effective in preventing peri-implantitis.
Collapse
Affiliation(s)
- Minato Akizuki
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Keiji Murakami
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Akikazu Murakami
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Koh Kobayashi
- Life Science Division, NOF CORPORATION, 20-3 Ebisu 4-chome, Shibuya-ku, Tokyo 150-6012, Japan
| | - Masaru Matsuda
- Life Science Division, NOF CORPORATION, 20-3 Ebisu 4-chome, Shibuya-ku, Tokyo 150-6012, Japan
| | - Haruka Matsumoto
- Life Science Division, NOF CORPORATION, 20-3 Ebisu 4-chome, Shibuya-ku, Tokyo 150-6012, Japan
| | - Eiji Harata
- Life Science Division, NOF CORPORATION, 20-3 Ebisu 4-chome, Shibuya-ku, Tokyo 150-6012, Japan
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Raras Ajeng Enggardipta
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Hideki Fujii
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
- Department of Biology, Keio University School of Medicine, Yokohama 223-8521, Japan
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| |
Collapse
|
4
|
Zhang G, Li Z, Sun M, Lu Y, Song J, Duan W, Huang X, Hang R, Yao X, Chu PK, Zhang X. Nanostructure-Mediated Photothermal Effect for Reinforcing Physical Killing Activity of Nanorod Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411997. [PMID: 39556665 PMCID: PMC11727397 DOI: 10.1002/advs.202411997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Indexed: 11/20/2024]
Abstract
The physical killing of bacteria based on surface topography has attracted much attention due to the sustainable and safe prevention of biofilm formation. However, the antibacterial efficiency of biomedical implants derived solely from nanostructures or microstructures is insufficient to combat bacteria against common infections, such as methicillin-resistant Staphylococcus aureus with thick cell walls. Herein, photothermal therapy is carried out in the presence of nanorod arrays to mitigate infection of biomedical implants. Different from traditional photothermal therapy relying on a photosensitizer, the photothermal effect is mediated by light traps rendered by the nanorod arrays, and consequently, the photosensitizer is not needed. Finite element simulations and experiments are performed to elucidate the light-to-thermal conversion mechanism. This photothermal platform, in conjunction with thermosensitive nitric oxide therapy, is applied to treat titanium implant infection. The nanostructure-mediated photothermal effect destroys bacterial cell walls by inhibiting peptidoglycan synthesis and increasing the membrane permeability by affecting fatty acid synthesis. Furthermore, the nanorods synergistically puncture the bacterial membrane easily as demonstrated by experiments and transcriptome analysis. The results provide insights into the development of efficient antibacterial treatment of implants by combining nanostructures and photothermal therapy.
Collapse
Affiliation(s)
- Guannan Zhang
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision ProtectionTaiyuan030006China
| | - Zehao Li
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Menlin Sun
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Ying Lu
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision ProtectionTaiyuan030006China
| | - Jianbo Song
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision ProtectionTaiyuan030006China
| | - Wangping Duan
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairDepartment of OrthopedicsSecond Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiaobo Huang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Paul K Chu
- Department of PhysicsDepartment of Materials Science and Engineering, and Department of Biomedical EngineeringCity University of Hong KongTat Chee Avenue, KowloonHong Kong999077China
| | - Xiangyu Zhang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| |
Collapse
|
5
|
Yi Y, Dou H, Zhao J, Liu Z, Wu S, Chen Y, Xu L, Zhang C, Liu C, Niu S, Han Z, Ren L. Low Voltage-Enhanced Mechano-Bactericidal Biopatch. NANO LETTERS 2024; 24:15806-15816. [PMID: 39600064 DOI: 10.1021/acs.nanolett.4c04777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mechano-bactericidal strategies represent a safe and sustainable method for preventing microbial contamination in the postantibiotic era. However, their effectiveness against Gram-positive bacteria (≤55%) is still limited due to the thick peptidoglycan layer in their cell walls. Herein, an intelligent biomimetic nanopillared biopatch is developed. It is assisted by low-voltage (8 V) electrical stimulation from TENG and significantly enhances antibacterial efficacy (>99%) against three types of stubborn Gram-positive bacteria. These collaborative antibacterial behaviors are solely based on purely physical actions, thus avoiding the risk of triggering bacterial resistance. Moreover, the slight mechanical energy generated by human physiological activities is converted into a power source, exhibiting energy-efficient, eco-friendly, and sustainable features. The conductive hydrogel in the biopatch can also act as an intelligent temperature sensor, monitoring, and real-time assessment of wound conditions. This intelligent biopatch holds immense potential for efficient healing and safe management of both acute and chronic wound infections.
Collapse
Affiliation(s)
- Yaozhen Yi
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Haixu Dou
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jie Zhao
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Ziting Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuxiang Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, China
| | - Changchao Zhang
- Institute of Orthopaedic and Musculoskeletal Science Royal National Orthopaedic Hospital, University College London, Stanmore, HA74LP London, U.K
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science Royal National Orthopaedic Hospital, University College London, Stanmore, HA74LP London, U.K
| | - Shichao Niu
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Zhiwu Han
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Luquan Ren
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
6
|
Burzava AL, Zuber A, Hayles A, Morel J, Bright R, Wood J, Palms D, Barker D, Brown T, Vasilev K. Platelet interaction and performance of antibacterial bioinspired nanostructures passivated with human plasma. Mater Today Bio 2024; 29:101236. [PMID: 39399241 PMCID: PMC11467677 DOI: 10.1016/j.mtbio.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024] Open
Abstract
The ever-increasing ageing of the world population is demanding superior orthopedic devices. Issues such as implant infection, poor osseointegration, or chronic inflammation remain problematic to the lifespan and long-term efficacy of implants. Fabrication of materials with bioinspired nanostructures is one emerging antibacterial strategy to prevent implant infection, however their interactions with blood components, and whether they retain their bactericidal properties in an environment displaying a complex protein corona, remains largely unexplored. In the present study, titanium alloy, commercially pure and plasma-sprayed titania were hydrothermally etched, passivated with human native plasma to develop a protein corona, and then incubated with either Staphylococcus aureus, Pseudomonas aeruginosa or human platelets. Surface analysis was first used to characterize the topography, chemical composition or crystallinity of each material. Fluorescence staining and SEM were performed to evaluate the nanostructure bactericidal properties, as well as to study platelet attachment and morphology. Composition of platelet supernatant was studied using ELISA and flow cytometry. Overall, our study showed that the bioinspired nanostructured surfaces displayed both impressive antibacterial properties in a complex environment, and a superior blood biocompatibility profile in terms of platelet activation (particularly for titanium alloy). Additionally, the amount of pro-inflammatory cytokines released by platelets was found to be no different to that found in native plasma (background levels) and, in some cases, presented a more pro-healing profile with an increased secretion of factors such as TGF-β, PDGF-BB or BMP-2. The nanostructured surfaces performed equally, or better, than hydroxyapatite-coated titanium which is one of the current gold standards in orthopedics. Although further in vivo studies are required to validate these results, such bioinspired nanostructured surfaces certainly show promise to be safely applied to medical device surfaces used in orthopedics and other areas.
Collapse
Affiliation(s)
- Anouck L.S. Burzava
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- Laboratoire Softmat, Université de Toulouse, CNRS, UMR 5623, Université Toulouse III – Paul Sabatier, 31062, Toulouse, France
| | - Agnieszka Zuber
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Andrew Hayles
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - James Morel
- School of Chemical Engineering, UNSW Sydney, New South Wales, 2052, Australia
| | - Richard Bright
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Jonathan Wood
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Dennis Palms
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Dan Barker
- Corin Australia, Pymble, New South Wales, 2073, Australia
| | - Toby Brown
- Corin Australia, Pymble, New South Wales, 2073, Australia
| | - Krasimir Vasilev
- STEM, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, South Australia, Australia
| |
Collapse
|
7
|
Ravaioli S, De Donno A, Bottau G, Campoccia D, Maso A, Dolzani P, Balaji P, Pegreffi F, Daglia M, Arciola CR. The Opportunistic Pathogen Staphylococcus warneri: Virulence and Antibiotic Resistance, Clinical Features, Association with Orthopedic Implants and Other Medical Devices, and a Glance at Industrial Applications. Antibiotics (Basel) 2024; 13:972. [PMID: 39452238 PMCID: PMC11505160 DOI: 10.3390/antibiotics13100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
In recent decades, the risk of developing opportunistic infections has increased in parallel with the ever-increasing number of people suffering from chronic immunosuppressive diseases or undergoing prosthetic surgery. Staphylococcus warneri is a Gram-positive and coagulase-negative bacterium. Usually found as a component of the healthy human and animal microbiota of the skin and mucosae, it can take on the role of an opportunistic pathogen capable of causing a variety of infections, ranging from mild to life-threatening, not only in immunocompromised patients but even, although rarely, in healthy people. Here, in addition to a concise discussion of the identification and distinguishing features of S. warneri compared to other staphylococcal species, a systematic overview of the findings from case reports and clinical studies is provided. The paper highlights the virulence and antibiotic resistance profiles of S. warneri, the different clinical contexts in which it has proven to be a serious pathogen, emphasizing its ability to colonize artificial prosthetic materials and its tropism for musculoskeletal and cardiovascular tissues. Some original data on orthopedic implant infections by S. warneri complement the discussion. Finally, from a different perspective, the paper addresses the possibilities of industrial exploitation of this bacterium.
Collapse
Affiliation(s)
- Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.D.D.); (G.B.); (D.C.)
| | - Andrea De Donno
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.D.D.); (G.B.); (D.C.)
| | - Giulia Bottau
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.D.D.); (G.B.); (D.C.)
| | - Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.D.D.); (G.B.); (D.C.)
| | - Alessandra Maso
- Quality Control in GMP, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Paolo Dolzani
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Paulraj Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur 635130, TN, India;
| | - Francesco Pegreffi
- Department of Medicine and Surgery, School of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
- Unit of Recovery and Functional Rehabilitation, P. Osp. Umberto I, 94100 Enna, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory on Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| |
Collapse
|
8
|
Ishak MI, Delint RC, Liu X, Xu W, Tsimbouri PM, Nobbs AH, Dalby MJ, Su B. Nanotextured titanium inhibits bacterial activity and supports cell growth on 2D and 3D substrate: A co-culture study. BIOMATERIALS ADVANCES 2024; 158:213766. [PMID: 38232578 PMCID: PMC7617543 DOI: 10.1016/j.bioadv.2024.213766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Medical implant-associated infections pose a significant challenge to modern medicine, with aseptic loosening and bacterial infiltration being the primary causes of implant failure. While nanostructured surfaces have demonstrated promising antibacterial properties, the translation of their efficacy from 2D to 3D substrates remains a challenge. Here, we used scalable alkaline etching to fabricate nanospike and nanonetwork topologies on 2D and laser powder-bed fusion printed 3D titanium. The fabricated surfaces were compared with regard to their antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and mesenchymal stromal cell responses with and without the presence of bacteria. Finite elemental analysis assessed the mechanical properties and permeability of the 3D substrate. Our findings suggest that 3D nanostructured surfaces have potential to both prevent implant infections and allow host cell integration. This work represents a significant step towards developing effective and scalable fabrication methods on 3D substrates with consistent and reproducible antibacterial activity, with important implications for the future of medical implant technology.
Collapse
Affiliation(s)
- Mohd I Ishak
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Rosalia Cuahtecontzi Delint
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Xiayi Liu
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Wei Xu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| |
Collapse
|
9
|
Chen S, Xie Z, Yang Y, Sun N, Guo Z, Li M, Wang C. A self-activating electron transfer antibacterial strategy: Co 3O 4/TiO 2 P-N heterojunctions combined with photothermal therapy. Biomater Sci 2024; 12:1573-1589. [PMID: 38319143 DOI: 10.1039/d3bm01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Implant-associated infections are significant impediments to successful surgical outcomes, often resulting from persistent bacterial contamination. It has been hypothesized that bacteria can transfer electrons to semiconductors with comparable potential to the biological redox potential (BRP). Building on this concept, we developed an antibiotic-free bactericidal system, Co3O4/TiO2-Ti, capable of achieving real-time and sustainable bactericidal effects. Our study demonstrated that Co3O4/TiO2-Ti, possessing an appropriately set valence band, initiated charge transfer, reactive oxygen species (ROS) production, and membrane damage in adherent Staphylococcus aureus (S. aureus). Notably, in vivo experiments illustrated the remarkable antibacterial activity of Co3O4/TiO2-Ti, while promoting soft-tissue reconstruction and demonstrating excellent cytocompatibility. Transcriptomic analysis further revealed a down-regulation of aerobic respiration-associated genes and an up-regulation of ROS-associated genes in S. aureus in the presence of Co3O4/TiO2-Ti compared to Ti. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) identified alterations in respiratory metabolism, oxidative phosphorylation, and the synthesis of amino acid in S. aureus cultured on Co3O4/TiO2-Ti. Furthermore, when combined with near-infrared (NIR) irradiation and photothermal therapy (PTT), Co3O4/TiO2-Ti eliminated 95.71% of floating and adherent S. aureus in vitro. The findings suggest that this antibiotic-free strategy holds substantial promise in enhancing implant sterilization capabilities, thereby contributing to the prevention and treatment of bacterial infections through bandgap engineering of implants and NIR irradiation.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Zhe Xie
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Yuchen Yang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Nuo Sun
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Zhengnong Guo
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Miaomiao Li
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Chen Wang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| |
Collapse
|
10
|
Hayles A, Bright R, Nguyen NH, Truong VK, Vongsvivut J, Wood J, Kidd SP, Vasilev K. Staphylococcus aureus surface attachment selectively influences tolerance against charged antibiotics. Acta Biomater 2024; 175:369-381. [PMID: 38141932 DOI: 10.1016/j.actbio.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
The threat of infection during implant placement surgery remains a considerable burden for millions of patients worldwide. To combat this threat, clinicians employ a range of anti-infective strategies and practices. One of the most common interventions is the use of prophylactic antibiotic treatment during implant placement surgery. However, these practices can be detrimental by promoting the resilience of biofilm-forming bacteria and enabling them to persist throughout treatment and re-emerge later, causing a life-threatening infection. Thus, it is of the utmost importance to elucidate the events occurring during the initial stages of bacterial surface attachment and determine whether any biological processes may be targeted to improve surgical outcomes. Using gene expression analysis, we identified a cellular mechanism of S. aureus which modifies its cell surface charge following attachment to a medical grade titanium surface. We determined the upregulation of two systems involved in the d-alanylation of teichoic acids and the lysylation of phosphatidylglycerol. We supported these molecular findings by utilizing synchrotron-sourced attenuated total reflection Fourier-transform infrared microspectroscopy to analyze the biomolecular properties of the S. aureus cell surface following attachment. As a direct consequence, S. aureus quickly becomes substantially more tolerant to the positively charged vancomycin, but not the negatively charged cefazolin. The present study can assist clinicians in rationally selecting the most potent antibiotic in prophylaxis treatments. Furthermore, it highlights a cellular process that could potentially be targeted by novel technologies and strategies to improve the outcome of antibiotic prophylaxis during implant placement surgery. STATEMENT OF SIGNIFICANCE: The antibiotic tolerance of bacteria in biofilm is a well-established phenomenon. However, the physiological adaptations employed by Staphylococcus aureus to increase its antibiotic tolerance during the early stages of surface attachment are poorly understood. Using multiple techniques, including gene expression analysis and synchrotron-sourced Fourier-transform infrared microspectroscopy, we generated insights into the physiological response of S. aureus following attachment to a medical grade titanium surface. We showed that this phenotypic transition enables S. aureus to better tolerate the positively charged vancomycin, but not the negatively charged cefazolin. These findings shed light on the antibiotic tolerance mechanisms employed by S. aureus to survive prophylactically administered antibiotics and can help clinicians to protect patients from infections.
Collapse
Affiliation(s)
- Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia.
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia
| | - Ngoc Huu Nguyen
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO ‒ Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Adelaide 5095, South Australia, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia.
| |
Collapse
|
11
|
Wood J, Bright R, Palms D, Barker D, Vasilev K. Damage Behavior with Atomic Force Microscopy on Anti-Bacterial Nanostructure Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:253. [PMID: 38334525 PMCID: PMC10857006 DOI: 10.3390/nano14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
The atomic force microscope is a versatile tool for assessing the topography, friction, and roughness of a broad spectrum of surfaces, encompassing anti-bacterial nanostructure arrays. Measuring and comparing all these values with one instrument allows clear comparisons of many nanomechanical reactions and anomalies. Increasing nano-Newton-level forces through the cantilever tip allows for the testing and measuring of failure points, damage behavior, and functionality under unfavorable conditions. Subjecting a grade 5 titanium alloy to hydrothermally etched nanostructures while applying elevated cantilever tip forces resulted in the observation of irreversible damage through atomic force microscopy. Despite the damage, a rough and non-uniform morphology remained that may still allow it to perform in its intended application as an anti-bacterial implant surface. Utilizing an atomic force microscope enables the evaluation of these surfaces before their biomedical application.
Collapse
Affiliation(s)
- Jonathan Wood
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Dennis Palms
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Dan Barker
- Corin Australia, Sydney, NSW 2153, Australia;
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
12
|
Hayles A, Bright R, Nguyen NH, Truong VK, Wood J, Palms D, Vongsvivut J, Barker D, Vasilev K. Vancomycin tolerance of adherent Staphylococcus aureus is impeded by nanospike-induced physiological changes. NPJ Biofilms Microbiomes 2023; 9:90. [PMID: 38030708 PMCID: PMC10687013 DOI: 10.1038/s41522-023-00458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Bacterial colonization of implantable biomaterials is an ever-pervasive threat that causes devastating infections, yet continues to elude resolution. In the present study, we report how a rationally designed antibacterial surface containing sharp nanospikes can enhance the susceptibility of pathogenic bacteria to antibiotics used in prophylactic procedures. We show that Staphylococcus aureus, once adhered to a titanium surface, changes its cell-surface charge to increase its tolerance to vancomycin. However, if the Ti surface is modified to bear sharp nanospikes, the activity of vancomycin is rejuvenated, leading to increased bacterial cell death through synergistic activity. Analysis of differential gene expression provided evidence of a set of genes involved with the modification of cell surface charge. Synchrotron-sourced attenuated Fourier-transform infrared microspectroscopy (ATR-FTIR), together with multivariate analysis, was utilized to further elucidate the biochemical changes of S. aureus adhered to nanospikes. By inhibiting the ability of the pathogen to reduce its net negative charge, the nanoengineered surface renders S. aureus more susceptible to positively charged antimicrobials such as vancomycin. This finding highlights the opportunity to enhance the potency of prophylactic antibiotic treatments during implant placement surgery by employing devices having surfaces modified with spike-like nanostructures.
Collapse
Affiliation(s)
- Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Ngoc Huu Nguyen
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, SA, Australia
| | - Dennis Palms
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO ‒ Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Dan Barker
- Corin Australia, Baulkham Hills, NSW, 2153, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
13
|
Haidari H, Vasilev K. Novel Antibacterial Materials and Coatings-A Perspective by the Editors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6302. [PMID: 37763578 PMCID: PMC10533052 DOI: 10.3390/ma16186302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The fight between humans and bacteria has escalated to a new level.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
14
|
Bright R, Hayles A, Wood J, Palms D, Barker D, Vasilev K. Interplay between Immune and Bacterial Cells on a Biomimetic Nanostructured Surface: A "Race for the Surface" Study. ACS APPLIED BIO MATERIALS 2023; 6:3472-3483. [PMID: 37384836 DOI: 10.1021/acsabm.3c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Biomaterial-associated infection is an ever-increasing risk with devasting consequences for patients. Considerable research has been undertaken to address this issue by imparting antibacterial properties to the surface of biomedical implants. One approach that generated much interest over recent years was the generation of bioinspired bactericidal nanostructures. In the present report, we have investigated the interplay between macrophages and bacteria on antibacterial nanostructured surfaces to determine the outcome of the so-called "race for the surface". Our results showed that macrophages can indeed outcompete Staphylococcus aureus via multiple mechanisms. The early generation of reactive oxygen species by macrophages, downregulation of bacterial virulence gene expression, and the bactericidal nature of the nanostructured surface itself collectively acted to help the macrophage to win the race. This study highlights the potential of nanostructured surfaces to reduce infection rates and improve the long-term success of biomedical implants. This work can also serve as guidance to others to investigate in vitro host-bacteria interactions on other candidate antibacterial surfaces.
Collapse
Affiliation(s)
- Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| | - Dennis Palms
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Dan Barker
- Corin Australia, Sydney, NSW 2153, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| |
Collapse
|
15
|
Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Smart dental materials for antimicrobial applications. Bioact Mater 2023; 24:1-19. [PMID: 36582351 PMCID: PMC9763696 DOI: 10.1016/j.bioactmat.2022.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Smart biomaterials can sense and react to physiological or external environmental stimuli (e.g., mechanical, chemical, electrical, or magnetic signals). The last decades have seen exponential growth in the use and development of smart dental biomaterials for antimicrobial applications in dentistry. These biomaterial systems offer improved efficacy and controllable bio-functionalities to prevent infections and extend the longevity of dental devices. This review article presents the current state-of-the-art of design, evaluation, advantages, and limitations of bioactive and stimuli-responsive and autonomous dental materials for antimicrobial applications. First, the importance and classification of smart biomaterials are discussed. Second, the categories of bioresponsive antibacterial dental materials are systematically itemized based on different stimuli, including pH, enzymes, light, magnetic field, and vibrations. For each category, their antimicrobial mechanism, applications, and examples are discussed. Finally, we examined the limitations and obstacles required to develop clinically relevant applications of these appealing technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín, Colombia
| | - Michelle Yu
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Sara Valliani
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Christina Ta
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Vasilev K. Antibacterial Applications of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091530. [PMID: 37177075 PMCID: PMC10180340 DOI: 10.3390/nano13091530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
In the 21st century, infections remain a major problem for society and are one of the leading causes of mortality [...].
Collapse
Affiliation(s)
- Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
17
|
Suchi SA, Nam KB, Kim YK, Tarek H, Yoo JC. A novel antimicrobial peptide YS12 isolated from Bacillus velezensis CBSYS12 exerts anti-biofilm properties against drug-resistant bacteria. Bioprocess Biosyst Eng 2023; 46:813-828. [PMID: 36997801 DOI: 10.1007/s00449-023-02864-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
Nowadays, the abuse of antibiotics has led to the rise of multi-drug-resistant bacteria. Antimicrobial peptides (AMPs), with broad-spectrum antimicrobial activity have attracted considerable attention as possible alternatives to traditional antibiotics. In this work, we aimed to evaluate the antimicrobial and anti-biofilm activity of an antimicrobial peptide designed as YS12 derived from Bacillus velezensis CBSYS12. The strain CBSYS12 was isolated from Korean food kimchi and purified followed by ultrafiltration and sequential chromatographic methodology. Hereafter, Tricine SDS-PAGE revealed a single protein band of around 3.3 kDa that was further confirmed in situ inhibitory activity of the gel. A similar molecular weight (~ 3348.4 Da) protein also appeared in MALDI-TOF confirming the purity and homogeneity of peptide YS12. Intriguingly, YS12 revealed a strong antimicrobial activity with a minimum inhibitory concentration (MIC) value ranging from 6 to 12 μg/ml for both Gram-positive and Gram-negative bacteria, such as E. coli, P. aeruginosa, MRSA 4-5, VRE 82, and M. smegmatis. We also determined the mode of action of the peptide against pathogenic microorganisms using different fluorescent dyes. In addition, the anti-biofilm assay demonstrated that peptide YS12 was able to inhibit biofilm formation around 80% for both bacterial strains E. coli and P. aeruginosa at 80 µg/ml. Notably, YS12 exhibited a greater biofilm eradication activity than commercial antibiotics. In summary, our study proposed that peptide YS12 may be used as a promising therapeutic agent to overcome drug and biofilm-related infections.
Collapse
Affiliation(s)
- Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kyung Bin Nam
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Young Kyun Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hasan Tarek
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jin Cheol Yoo
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
18
|
Ishak MI, Eales M, Damiati L, Liu X, Jenkins J, Dalby MJ, Nobbs AH, Ryadnov MG, Su B. Enhanced and Stem-Cell-Compatible Effects of Nature-Inspired Antimicrobial Nanotopography and Antimicrobial Peptides to Combat Implant-Associated Infection. ACS APPLIED NANO MATERIALS 2023; 6:2549-2559. [PMID: 36875180 PMCID: PMC9972347 DOI: 10.1021/acsanm.2c04913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Nature-inspired antimicrobial surfaces and antimicrobial peptides (AMPs) have emerged as promising strategies to combat implant-associated infections. In this study, a bioinspired antimicrobial peptide was functionalized onto a nanospike (NS) surface by physical adsorption with the aim that its gradual release into the local environment would enhance inhibition of bacterial growth. Peptide adsorbed on a control flat surface exhibited different release kinetics compared to the nanotopography, but both surfaces showed excellent antibacterial properties. Functionalization with peptide at micromolar concentrations inhibited Escherichia coli growth on the flat surface, Staphylococcus aureus growth on the NS surface, and Staphylococcus epidermidis growth on both the flat and NS surfaces. Based on these data, we propose an enhanced antibacterial mechanism whereby AMPs can render bacterial cell membranes more susceptible to nanospikes, and the membrane deformation induced by nanospikes can increase the surface area for AMPs membrane insertion. Combined, these effects enhance bactericidal activity. Since functionalized nanostructures are highly biocompatible with stem cells, they make promising candidates for next generation antibacterial implant surfaces.
Collapse
Affiliation(s)
- Mohd Irill Ishak
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
| | - Marcus Eales
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
- National
Physical Laboratory, Teddington TW11 0LW, U.K.
| | - Laila Damiati
- Department
of Biology, College of Science, University
of Jeddah, Jeddah 23218, Saudi Arabia
| | - Xiayi Liu
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
| | - Joshua Jenkins
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
| | - Matthew J. Dalby
- Centre
for the Cellular Microenvironment, University
of Glasgow, Glasgow G11 6EW, Scotland
| | - Angela H. Nobbs
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
| | | | - Bo Su
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
| |
Collapse
|