1
|
Felici E, González-Martínez C, Griñán TV, Gato-Zambrano S, Pereira SV, Fernández-Baldo MA, Ortega-Sanchez FG. Electrochemical immunoplatform for the quantification of epithelial extracellular vesicles applied to prostate cancer diagnosis. Talanta 2025; 293:128130. [PMID: 40222093 DOI: 10.1016/j.talanta.2025.128130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide, and its early detection is critical for improving patient outcomes through timely and effective treatment. In this work, we present the first electrochemical immunoplatform based on magnetic microbeads (MBs) for the determination of epithelial extracellular vesicles (EpEVs), which are emerging as promising biomarkers for PCa diagnosis and prognosis. The immunoplatform employs MBs functionalized with anti-EpCAM antibodies to selectively capture EpEVs, forming sandwich-type immune complexes that are detected via amperometry at disposable screen-printed carbon electrodes. The method demonstrated a detection limit of 0.4 ng μL-1 of EpEVs obtained from PC-3 cell line's culture, excellent reproducibility (coefficient of variation <5 %), and high selectivity against potential interferences. Comparative analysis with colorimetric immune-magnet ELISA test showed a strong correlation between the two methods, confirming the reliability of the proposed approach. Furthermore, the electrochemical platform provided better precision and a lower limit of detection than the immune magnet ELISA method, indicating its superior analytical performance. Clinical validation using patient samples revealed that the combination of EpEV detection with PSA levels significantly improves the sensitivity and specificity of PCa diagnosis. This novel immunoplatform represents a promising analytical tool for early detection and monitoring of PCa, with potential applications in personalized cancer management.
Collapse
Affiliation(s)
- Emiliano Felici
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Instituto de Química de San Luis, INQUISAL (UNSL - CONICET), Av. Ejército de los Andes 950, San Luis, D5700BWS, Argentina
| | - Coral González-Martínez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, Granada, 18016, Spain; Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Granada, 18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid, 15, Granada, 18012, Spain
| | - Teresa Valero Griñán
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, Granada, 18016, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid, 15, Granada, 18012, Spain; Department of Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain.
| | - Sheila Gato-Zambrano
- Seliver Group, Institute of Biomedicine of Seville/Hospital, Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Sirley V Pereira
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Instituto de Química de San Luis, INQUISAL (UNSL - CONICET), Av. Ejército de los Andes 950, San Luis, D5700BWS, Argentina
| | - Martín A Fernández-Baldo
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Instituto de Química de San Luis, INQUISAL (UNSL - CONICET), Av. Ejército de los Andes 950, San Luis, D5700BWS, Argentina.
| | - Francisco G Ortega-Sanchez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, Granada, 18016, Spain; Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Granada, 18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid, 15, Granada, 18012, Spain.
| |
Collapse
|
2
|
Wei X, Luo QY, Li Y, Yuan J, Deng M, Liu X, Zhong P, Ouyang H, Li Y, Huang J, Quan H, Chu J, Yu X, Zhou W, Jin Z. Flexible Site-Specific Labeling-Mediated Self-Assembly Sensor Based on Quantum Dots and LUMinescent AntiBody Sensor for Duplexed Detection of Antibodies. ACS Sens 2025; 10:301-309. [PMID: 39791864 DOI: 10.1021/acssensors.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra. This issue complicates the implementation of multiplexed detection. To address this challenge, we present an innovative enhancement to the LUMABS sensor with quantum dots (QDs) as the acceptor instead of FP. The use of QDs offers several advantages over those of traditional FP-based sensors. The biotin-avidin system facilitates the flexible interchangeability of QDs, allowing for a more convenient multicolor sensor construct. The new QD-LUMABS system overcomes the limitations of spectral cross-talk and provides better spectral separation. This breakthrough enables the successful implementation of multiplexed detection for multiple targets simultaneously. Results demonstrated that the wavelength-tunable QD-LUMABS sensors achieved picomolar-level detection limits for antibodies and that this sensor-construction strategy was generally applicable among various epitopes and their antibodies. Furthermore, this sensor displayed excellent duplexing capabilities. These features underscore its potential for future clinical disease diagnosis applications.
Collapse
Affiliation(s)
- Xiaoyuan Wei
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qing-Ying Luo
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China
| | - Yeqing Li
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Jing Yuan
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen 518132, P. R. China
| | - Mengying Deng
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xinyu Liu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Peiluan Zhong
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | | | - Yanfei Li
- HeavyBio, Inc., Shenzhen 518102, P. R. China
| | | | | | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xuefeng Yu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Wenhua Zhou
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Zongwen Jin
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Vasu S, Johnson V, M A, Reddy KA, Sukumar UK. Circulating Extracellular Vesicles as Promising Biomarkers for Precession Diagnostics: A Perspective on Lung Cancer. ACS Biomater Sci Eng 2025; 11:95-134. [PMID: 39636879 DOI: 10.1021/acsbiomaterials.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers in liquid biopsy, owing to their ubiquitous presence in bodily fluids and their ability to carry disease-related cargo. Recognizing their significance in disease diagnosis and treatment, substantial efforts have been dedicated to developing efficient methods for EV isolation, detection, and analysis. EVs, heterogeneous membrane-encapsulated vesicles secreted by all cells, contain bioactive substances capable of modulating recipient cell biology upon internalization, including proteins, lipids, DNA, and various RNAs. Their prevalence across bodily fluids has positioned them as pivotal mediators in physiological and pathological processes, notably in cancer, where they hold potential as straightforward tumor biomarkers. This review offers a comprehensive examination of advanced nanotechnology-based techniques for detecting lung cancer through EV analysis. It begins by providing a brief overview of exosomes and their role in lung cancer progression. Furthermore, this review explores the evolving landscape of EV isolation and cargo analysis, highlighting the importance of characterizing specific biomolecular signatures within EVs for improved diagnostic accuracy in lung cancer patients. Innovative strategies for enhancing the sensitivity and specificity of EV isolation and detection, including the integration of microfluidic platforms and multiplexed biosensing technologies are summarized. The discussion then extends to key challenges associated with EV-based liquid biopsies, such as the standardization of isolation and detection protocols and the establishment of robust analytical platforms for clinical translation. This review highlights the transformative impact of EV-based liquid biopsy in lung cancer diagnosis, heralding a new era of personalized medicine and improved patient care.
Collapse
Affiliation(s)
- Sunil Vasu
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Vinith Johnson
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Archana M
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| | - Uday Kumar Sukumar
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, India-517 619
| |
Collapse
|
4
|
Li M, Huang Y, Shen C, Wang Y, Lin Y, Wang Z, Chen N, Luo Y. Application of quantum dots in cancer diagnosis and treatment: Advances and perspectives. NANO RESEARCH 2025; 18:94907163. [DOI: 10.26599/nr.2025.94907163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
5
|
Gu X, He L, Zhang J, Xu H, Shen H, Huang R, Li Z. Recent Advances in Wash-Free Detection Methods of Extracellular Vesicles: A Mini Review. ACS Sens 2024; 9:5626-5641. [PMID: 39446112 DOI: 10.1021/acssensors.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are emerging biomarkers in liquid biopsy that have gained increasing attention in disease diagnosis and prognosis monitoring. Most reported detection methods require the isolation of EVs from complex body liquids, often involving multiple washing steps to remove excess reagents and eliminate background interference. Nonetheless, these methods not only cause the loss of EVs but also result in poor repeatability and prolonged detection duration. The focus on wash-free detection methods is increasing due to the specific ability to avoid the removal of surplus reagents and, in some cases, even the isolation and purification of EVs. Viewing from different methodological perspectives, this review summarizes the recent advances in wash-free detection of EVs, containing aggregation induction, proximity sensing, allosteric probes, phase separation, Roman spectroscopy, field-effect transistor and microcantilever. The pros and cons of each detection strategy are impartially evaluated and this review concludes the prospects for future developments in this field.
Collapse
Affiliation(s)
- Xinrui Gu
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Lei He
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Jinsong Zhang
- Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Hongpan Xu
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Han Shen
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Rongrong Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, South Puzhu Road 30, Nanjing, Jiangsu Province 211816, China
| | - Zhiyang Li
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| |
Collapse
|
6
|
Fan C, Chen G, Reiter RJ, Bai Y, Zheng T, Fan L. Glutathione inhibits lung cancer development by reducing interleukin-6 expression and reversing the Warburg effect. Mitochondrion 2024; 79:101953. [PMID: 39214486 DOI: 10.1016/j.mito.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Reduced glutathione (GSH) is widely used as an antioxidant in clinical practice, but whether GSH affects the development of early lung cancer remains unclear. Herein, we investigated the mechanism underlying the anticancer effect of GSH in patients with pulmonary nodules. Thirty patients with pulmonary nodules were treated with GSH intravenously for 10 days at a dose of 1.8 g/d, followed by oral administration of the drug at a dose of 0.4 g three times daily for 6 months. The results showed that GSH treatment promoted nodule absorption and reduced the IL-6 level in the peripheral blood of the patients. GSH reduced IL-6 expression in inflammatory BEAS-2B and lung cancer cells and inhibited the proliferation of lung cancer cell lines in vitro. In addition, GSH reduced IL-6 expression by decreasing ROS via down-regulating PI3K/AKT/FoxO pathways. Finally, GSH reversed the Warburg effect, restored mitochondrial function, and reduced the IL-6 expression via PI3K/AKT/FoxO pathways. The in vivo experiment confirmed that GSH inhibited lung cancer growth, improved mitochondrial function, and reduced the IL-6 expression by regulating key enzymes via the PI3K/AKT/FoxO pathway. In conclusion, we uncovered that GSH exerts an unprecedentedly potent anti-cancer effect to prevent the transformation of lung nodules to lung cancer by improving the mitochondrial function and suppressing inflammation via PI3K/AKT/FoxO pathway. This investigation innovatively positions GSH as a potentially safe and efficacious old drug with new uses, inhibiting inflammation and early lung cancer. The use of the drug offers a promising preventive strategy when administered during the early stages of lung cancer.
Collapse
Affiliation(s)
- Chenchen Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guojie Chen
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Tiansheng Zheng
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
7
|
Liu Y, Cai C, Xu W, Li B, Wang L, Peng Y, Yu Y, Liu B, Zhang K. Interpretable Machine Learning-Aided Optical Deciphering of Serum Exosomes for Early Detection, Staging, and Subtyping of Lung Cancer. Anal Chem 2024; 96:16227-16235. [PMID: 39361049 DOI: 10.1021/acs.analchem.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Lung cancer (LC) is the leading cause of cancer-related mortality worldwide, underscoring an urgent need for strategies that enable early detection and phenotypic classification. Here, we conducted a label-free surface-enhanced Raman spectroscopic (SERS) analysis of serum exosomes from 643 participants to elucidate the biochemical deregulation associated with LC progression and the unique phenotypes of different LC subtypes. Iodide-modified silver nanofilms were prepared to rapidly acquire SERS spectra with a high signal-to-noise ratio using 0.5 μL of patient exosomes. We performed interpretable and automated machine learning (ML) analysis of differential SERS features of serum exosomes to build LC diagnostic models, which achieved accuracies of 100% and 81% for stage I lung adenocarcinoma and its preneoplasia, respectively. In addition, the ML-derived exosomal SERS models effectively recognized different LC subtypes and disease stages to guide precision treatment. Our findings demonstrate that spectral fingerprinting of circulating exosomes holds promise for decoding the clinical status of LC, thus aiding in improving the clinical management of patients.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chenlei Cai
- Department of Medical Oncology, Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Weijie Xu
- Department of Medical Oncology, Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Lei Wang
- Department of Medical Oncology, Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yijia Peng
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ying Yu
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
8
|
Guan X, Zhao J, Sha Z, Liang Y, Huang J, Zhang J, Sun S. CRISPR/Cas12a and aptamer-chemiluminescence based analysis for the relative abundance determination of tumor-related protein positive exosomes for breast cancer diagnosis. Biosens Bioelectron 2024; 259:116380. [PMID: 38754193 DOI: 10.1016/j.bios.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Exosomes, as novel biomarker for liquid biopsy, exhibit huge important potential value for cancer diagnosis. However, various proteins show different expression levels on exosomal membrane, and the absolute concentration of exosomes in clinical samples is easily influenced by a number of factors. Here, we developed a CRISPR/Cas12a and aptamer-chemiluminescence based analysis (CACBA) for the relative abundance determination of tumor-related protein positive exosomes in plasma for breast cancer diagnosis. The total concentration of exosomes was determined through captured CD63 using a CRISPR/Cas12a-based method with the LoD of 8.97 × 103 particles/μl. Meanwhile, EpCAM and MUC1 positive exosomes were quantitatively detected by aptamer-chemiluminescence (ACL) based method with the LoD of 1.45 × 102 and 3.73 × 102 particles/μl, respectively. It showed that the percentages of EpCAM and MUC1 positive exosomes offered an excellent capability to differentiate breast cancer patients and healthy donors. The high sensitivity, strong specificity, outstanding anti-interference capability, and steady recovery rate of this approach offered higher accuracy and robustness than the commercialized method in clinical trial. In addition with good stability, easy preparation and low cost, this method not only provides a new approach to rapid analysis of exosome proteins, it may be quickly extended to the diagnoses of various cancers.
Collapse
Affiliation(s)
- Xiaotian Guan
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jingru Zhao
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhou Sha
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yujie Liang
- Department of Spine Surgery, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Jianghong Huang
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Department of Spine Surgery, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Jun Zhang
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuqing Sun
- Institute of Biopharmaceutical and Healthcare Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Ya N, Zhang D, Wang Y, Zheng Y, Yang M, Wu H, Oudeng G. Recent advances of biocompatible optical nanobiosensors in liquid biopsy: towards early non-invasive diagnosis. NANOSCALE 2024; 16:13784-13801. [PMID: 38979555 DOI: 10.1039/d4nr01719f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Liquid biopsy is a non-invasive diagnostic method that can reduce the risk of complications and offers exceptional benefits in the dynamic monitoring and acquisition of heterogeneous cell population information. Optical nanomaterials with excellent light absorption, luminescence, and photoelectrochemical properties have accelerated the development of liquid biopsy technologies. Owing to the unique size effect of optical nanomaterials, their improved optical properties enable them to exhibit good sensitivity and specificity for mitigating signal interference from various molecules in body fluids. Nanomaterials with biocompatible and optical sensing properties play a crucial role in advancing the maturity and diversification of liquid biopsy technologies. This article offers a comprehensive review of recent advanced liquid biopsy technologies that utilize novel biocompatible optical nanomaterials, including fluorescence, colorimetric, photoelectrochemical, and Raman broad-spectrum-based biosensors. We focused on liquid biopsy for the most significant early biomarkers in clinical medicine, and specifically reviewed reports on the effectiveness of optical nanosensing technology in the detection of real patient samples, which may provide basic evidence for the transition of optical nanosensing technology from engineering design to clinical practice. Furthermore, we introduced the integration of optical nanosensing-based liquid biopsy with modern devices, such as smartphones, to demonstrate the potential of the technology in portable clinical diagnosis.
Collapse
Affiliation(s)
- Na Ya
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Dangui Zhang
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Yan Wang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Yi Zheng
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Mo Yang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Hao Wu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Gerile Oudeng
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
10
|
Gu M, Zhang H, Liu Y, Li X, Lv M, Zhao J, Zhang J. Accurate and highly sensitive detection of Alzheimer's disease-related extracellular vesicles via förster resonance energy transfer. Anal Chim Acta 2024; 1314:342779. [PMID: 38876518 DOI: 10.1016/j.aca.2024.342779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the world and poses a huge challenge to global healthcare. Early and accurate detection of amyloid-β (1-42) (Aβ42), a key biomarker of AD, is crucial for effective diagnosis and intervention of AD. Specific or overexpressed proteins on extracellular vesicles (EVs) describe a close correlation with the occurrence and development of diseases. EVs are a very promising non-invasive biomarker for the diagnosis of AD and other diseases. As a sensitive, simple and rapid analytical method, fluorescence resonance energy transfer (FRET) has been widely applied in the detection of EVs. Herein, we developed a dual labelling strategy for simultaneously detecting EV membrane proteins of Aβ42 and CD63 based on FRET pair consisting of Au nanoclusters (AuNCs) and polydopamine nanospheres (PDANSs). The constructed nanoprobe, termed EVMPFAP assay, could specifically measure the Aβ42 and CD63 on EVs with excellent sensitivity, high specificity and satisfactory accuracy. The limit of detection of EVMPFAP assay was 1.4 × 103 particles mL-1 and the linear range was from 104 to 108 particles mL-1. EVMPFAP assay was successfully used to analyze plasma EVs to distinguish AD and healthy mice. We expect that EVMPFAP assay can be routinely applied for early diagnosis and development-monitoring of AD, thus facilitating the fight against AD.
Collapse
Affiliation(s)
- Mengchao Gu
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Yingying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Xinru Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Min Lv
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China
| | - Jinan Zhao
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Department of Pharmaceutical and Chemical Engineering Technology, Zhengzhou University of Industrial Technology, Zhengzhou, 451100, China.
| | - Junli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Seo D, Sun H, Choi Y. Simultaneous Protein Colorful Imaging via Raman Signal Classification. NANO LETTERS 2024; 24:8595-8601. [PMID: 38869082 DOI: 10.1021/acs.nanolett.4c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Protein imaging aids diagnosis and drug development by revealing protein-drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL-1 μg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments.
Collapse
Affiliation(s)
- Dongkwon Seo
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Hayeon Sun
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Yang G, Li Z, Usman R, Liu Y, Li S, Chen Z, Chen H, Deng Y, Fang Y, He N. From biogenesis to aptasensors: advancements in analysis for tumor-derived extracellular vesicles research. Theranostics 2024; 14:4161-4183. [PMID: 38994022 PMCID: PMC11234286 DOI: 10.7150/thno.95885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular vesicles (EVs) are enclosed by a nanoscale phospholipid bilayer membrane and typically range in size from 30 to 200 nm. They contain a high concentration of specific proteins, nucleic acids, and lipids, reflecting but not identical to the composition of the parent cell. The inherent characteristics and variety of EVs give them extensive and unique advantages in the field of cancer identification and treatment. Recently, EVs have been recognized as potential tumor markers for the detection of cancer. Aptamers, which are molecules of single-stranded DNA or RNA, demonstrate remarkable specificity and affinity for their targets by adopting distinct tertiary structures. Aptamers offer various advantages over their protein counterparts, such as reduced immunogenicity, the ability for convenient large-scale synthesis, and straightforward chemical modification. In this review, we summarized EVs biogenesis, sample collection, isolation, storage and characterization, and finally provided a comprehensive survey of analysis techniques for EVs detection that are based on aptamers.
Collapse
Affiliation(s)
- Gaojian Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiyang Li
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Rabia Usman
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuan Liu
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Institute for Future Sciences, University of South China, Changsha Hunan 410000, China
| | - Song Li
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Institute for Future Sciences, University of South China, Changsha Hunan 410000, China
| | - Zhu Chen
- China Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Institute for Future Sciences, University of South China, Changsha Hunan 410000, China
| | - Hui Chen
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Institute for Future Sciences, University of South China, Changsha Hunan 410000, China
| | - Yan Deng
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Institute for Future Sciences, University of South China, Changsha Hunan 410000, China
| | - Yile Fang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Nongyue He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- China Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
13
|
Zhang Q, Liu H, Xu Q, Liu H, Han Y, Li DL, Ma F, Zhang CY. Construction of a 3D Quantum Dot Nanoassembly with Two-Step FRET for One-Step Sensing of Human Telomerase RNA in Breast Cancer Cells and Tissues. Anal Chem 2024; 96:7738-7746. [PMID: 38690966 DOI: 10.1021/acs.analchem.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Huan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Hao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Ren F, Fei Q, Qiu K, Zhang Y, Zhang H, Sun L. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation. J Exp Clin Cancer Res 2024; 43:96. [PMID: 38561776 PMCID: PMC10985944 DOI: 10.1186/s13046-024-03026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.
Collapse
Affiliation(s)
- Fei Ren
- Department of Geriatrics, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Qian Fei
- Department of Oncology, Shengjing Hospital of China Medical University, Shen Yang, 110000, China
| | - Kun Qiu
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Yuanjie Zhang
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shen Yang, 110000, China.
| | - Lei Sun
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China.
| |
Collapse
|
15
|
Zhang Q, Gao X, Ho YP, Liu M, Han Y, Li DL, Yuan HM, Zhang CY. Controllable Assembly of a Quantum Dot-Based Aptasensor Guided by CRISPR/Cas12a for Direct Measurement of Circulating Tumor Cells in Human Blood. NANO LETTERS 2024; 24:2360-2368. [PMID: 38347661 DOI: 10.1021/acs.nanolett.3c04828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Accurate and sensitive analysis of circulating tumor cells (CTCs) in human blood provides a non-invasive approach for the evaluation of cancer metastasis and early cancer diagnosis. Herein, we demonstrate the controllable assembly of a quantum dot (QD)-based aptasensor guided by CRISPR/Cas12a for direct measurement of CTCs in human blood. We introduce a magnetic bead@activator/recognizer duplex core-shell structure to construct a multifunctional platform for the capture and direct detection of CTCs in human blood, without the need for additional CTC release and re-identification steps. Notably, the introduction of magnetic separation ensures that only a target-induced free activator can initiate the downstream catalysis, efficiently avoiding the undesired catalysis triggered by inappropriate recognition of the activator/recognizer duplex structure by crRNAs. This aptasensor achieves high CTC-capture efficiency (82.72%) and sensitive detection of CTCs with a limit of detection of 2 cells mL-1 in human blood, holding great promise for the liquid biopsy of cancers.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hui-Min Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
16
|
Mo X, Li H, Tang P, Hao Y, Dong B, Marazuela MD, Gomez-Gomez MM, Zhu X, Li Q, Maroto BL, Jiang S, Fan C, Lan X. DNA-Modulated and Mechanoresponsive Excitonic Couplings Reveal Chiroptical Correlation of Conformation, Tension, and Dynamics of DNA Self-Assembly. NANO LETTERS 2023; 23:11734-11741. [PMID: 38079633 DOI: 10.1021/acs.nanolett.3c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Study of the conformational and mechanical behaviors of biomolecular assemblies is vital to the rational design and realization of artificial molecular architectures with biologically relevant functionality. Here, we revealed DNA-modulated and mechanoresponsive excitonic couplings between organic chromophores and verified strong correlations between the excitonic chiroptical responses and the conformational and mechanical states of DNA self-assemblies irrespective of fluorescence background interference. Besides, the excitonic chiroptical effect allowed sensitive monitoring of DNA self-assembled nanostructures due to small molecule bindings or DNA strand displacement reactions. Moreover, we developed a new chiroptical reporter, a DNA-templated dimer of an achiral cyanine5 and an intrinsically chiral BODIPY, that exhibited unique multiple-split spectral line shape of exciton-coupled circular dichroism, largely separated response wavelengths, and enhanced anisotropy dissymmetry factor (g-factor). These results shed light on a promising chiroptical spectroscopic tool for studying biomolecular recognition and binding, conformation dynamics, and soft mechanics in general.
Collapse
Affiliation(s)
- Xiaomei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huacheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pan Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yaya Hao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingqian Dong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - M Dolores Marazuela
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Uni-versitaria s/n, Madrid 28040, Spain
| | - M Milagros Gomez-Gomez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Uni-versitaria s/n, Madrid 28040, Spain
| | - Xianfeng Zhu
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz L Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Uni-versitaria s/n, Madrid 28040, Spain
| | - Shuoxing Jiang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|