1
|
Shreteh K, Volokh M, Mokari T. Catalyst-assisted growth of CsPbBr 3 perovskite nanowires. NANOSCALE 2025; 17:2004-2010. [PMID: 39655531 DOI: 10.1039/d4nr03158j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Halide perovskites (HPs), particularly at the nanoscale, attract attention due to their unique optical properties compared to other semiconductors. They exhibit bright emission, defect tolerance, and a broad tunable band gap. The ability to directly transport charge carriers along the HPs nanowires (NWs) has led to the development of methods for their synthesis. Most of these methods involve some version of an oriented attachment step with various modifications. In this study, we introduce CsPbBr3 nanowires produced via the solution-solid-solid (SSS) catalyst-assisted growth mechanism for the first time. We explored the kinetics of this process and examined the connection between the catalyst phase and its reactivity. We show how HP NWs grow with different SSS catalysts (i.e., Ag2S, Ag2Se, CuS) and discuss the required conditions for successful synthesis utilizing this mechanism. This method opens up a new avenue for producing HP NWs, which can be used to design and form new types of hybrid nanostructures.
Collapse
Affiliation(s)
- Karam Shreteh
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| | - Michael Volokh
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| | - Taleb Mokari
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
2
|
Zhang X, Zhang F, Yi R, Wang N, Su Z, Zhang M, Zhao B, Li Z, Qu J, M Cairney J, Lu Y, Zhao J, Gan X, Tan HH, Jagadish C, Fu L. Telecom-band multiwavelength vertical emitting quantum well nanowire laser arrays. LIGHT, SCIENCE & APPLICATIONS 2024; 13:230. [PMID: 39227364 PMCID: PMC11372134 DOI: 10.1038/s41377-024-01570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Highly integrated optoelectronic and photonic systems underpin the development of next-generation advanced optical and quantum communication technologies, which require compact, multiwavelength laser sources at the telecom band. Here, we report on-substrate vertical emitting lasing from ordered InGaAs/InP multi-quantum well core-shell nanowire array epitaxially grown on InP substrate by selective area epitaxy. To reduce optical loss and tailor the cavity mode, a new nanowire facet engineering approach has been developed to achieve controlled quantum well nanowire dimensions with uniform morphology and high crystal quality. Owing to the strong quantum confinement effect of InGaAs quantum wells and the successful formation of a vertical Fabry-Pérot cavity between the top nanowire facet and bottom nanowire/SiO2 mask interface, stimulated emissions of the EH11a/b mode from single vertical nanowires from an on-substrate nanowire array have been demonstrated with a lasing threshold of ~28.2 μJ cm-2 per pulse and a high characteristic temperature of ~128 K. By fine-tuning the In composition of the quantum wells, room temperature, single-mode lasing is achieved in the vertical direction across a broad near-infrared spectral range, spanning from 940 nm to the telecommunication O and C bands. Our research indicates that through a carefully designed facet engineering strategy, highly ordered, uniform nanowire arrays with precise dimension control can be achieved to simultaneously deliver thousands of nanolasers with multiple wavelengths on the same substrate, paving a promising and scalable pathway towards future advanced optoelectronic and photonic systems.
Collapse
Affiliation(s)
- Xutao Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, 710072, Xi'an, China
| | - Fanlu Zhang
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Ruixuan Yi
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Naiyin Wang
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Zhicheng Su
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Mingwen Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Bijun Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Ziyuan Li
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Jiangtao Qu
- Australian Centre for Microscopy and Microanalysis, the University of Sydney, Sydney, NSW 2006, Australia
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, the University of Sydney, Sydney, NSW 2006, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | - Jianlin Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, 710129, Xi'an, China.
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Chennupati Jagadish
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia
| | - Lan Fu
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
3
|
Xiang Y, Shi K, Li Y, Xue J, Tong Z, Li H, Li Z, Teng C, Fang J, Hu N. Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording. NANO-MICRO LETTERS 2024; 16:132. [PMID: 38411852 PMCID: PMC10899154 DOI: 10.1007/s40820-024-01336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 02/28/2024]
Abstract
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience. In recent years, active micro/nano-bioelectronic devices have undergone significant advancements, thereby facilitating the study of electrophysiology. The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale. In this paper, we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electro-excitable cells, focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals. Looking forward to the possibilities, challenges, and wide prospects of active micro-nano-devices, we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People's Republic of China
| | - Keda Shi
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Ying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, People's Republic of China
| | - Zhicheng Tong
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China
| | - Huiming Li
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, People's Republic of China.
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People's Republic of China.
| | - Chong Teng
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China.
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
4
|
Sasaki M, Akamatsu T, Tomioka K, Motohisa J. Size control of InP nanowires by in situannealing and its application to the formation of InAsP quantum dots. NANOTECHNOLOGY 2024; 35:195604. [PMID: 38306695 DOI: 10.1088/1361-6528/ad2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
We carried outin situannealing of InP nanowires (NWs) in a metal-organic vapor phase epitaxial (MOVPE) growth reactor to control and reduce the tip size of InP NWs. InP NWs were grown by selective-area (SA) MOVPE on partially masked (111)A InP substrates, and annealing was successively applied in tertiarybutylphosphine (TBP) ambient. Initially, the InP NWs had a hexagonal cross-section with{112¯}facets vertical to the substrates; they became tapered, and the edges were rounded by annealing. By appropriately selecting the annealing temperature and initial NW diameter, the tip size of the NW was reduced and NWs with a tip size of 20 nm were successfully formed. Subsequently, a thin InAsP layer was grown on the annealed NWs and their photoluminescence was investigated at low temperatures. The characterization results indicated the formation of InAsP quantum dots (QDs) emitting in the telecom band. Our approach is useful for reducing the size of the NWs and for the controlled formation of InAsP QDs embedded in InP NWs in photonic devices compatible with telecom bands.
Collapse
Affiliation(s)
- Masahiro Sasaki
- Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics, Hokkaido University, North 14, West 9, Sapporo 060-0814, Japan
| | - Tomoya Akamatsu
- Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics, Hokkaido University, North 14, West 9, Sapporo 060-0814, Japan
| | - Katsuhiro Tomioka
- Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics, Hokkaido University, North 14, West 9, Sapporo 060-0814, Japan
| | - Junichi Motohisa
- Graduate School of Information Science and Technology and Research Center for Integrated Quantum Electronics, Hokkaido University, North 14, West 9, Sapporo 060-0814, Japan
| |
Collapse
|
5
|
Dubrovskii VG. Modeling Catalyst-Free Growth of III-V Nanowires: Empirical and Rigorous Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1253. [PMID: 37049346 PMCID: PMC10096518 DOI: 10.3390/nano13071253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Catalyst-free growth of III-V and III-nitride nanowires (NWs) by the self-induced nucleation mechanism or selective area growth (SAG) on different substrates, including Si, show great promise for monolithic integration of III-V optoelectronics with Si electronic platform. The morphological design of NW ensembles requires advanced growth modeling, which is much less developed for catalyst-free NWs compared to vapor-liquid-solid (VLS) NWs of the same materials. Herein, we present an empirical approach for modeling simultaneous axial and radial growths of untapered catalyst-free III-V NWs and compare it to the rigorous approach based on the stationary diffusion equations for different populations of group III adatoms. We study in detail the step flow occurring simultaneously on the NW sidewalls and top and derive the general laws governing the evolution of NW length and radius versus the growth parameters. The rigorous approach is reduced to the empirical equations in particular cases. A good correlation of the model with the data on the growth kinetics of SAG GaAs NWs and self-induced GaN NWs obtained by different epitaxy techniques is demonstrated. Overall, the developed theory provides a basis for the growth modeling of catalyst-free NWs and can be further extended to more complex NW morphologies.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
6
|
Suwito GR, Dubrovskii VG, Zhang Z, Wang W, Haffouz S, Dalacu D, Poole PJ, Grutter P, Quitoriano NJ. Tuning the Liquid-Vapour Interface of VLS Epitaxy for Creating Novel Semiconductor Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:894. [PMID: 36903772 PMCID: PMC10005286 DOI: 10.3390/nano13050894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Controlling the morphology and composition of semiconductor nano- and micro-structures is crucial for fundamental studies and applications. Here, Si-Ge semiconductor nanostructures were fabricated using photolithographically defined micro-crucibles on Si substrates. Interestingly, the nanostructure morphology and composition of these structures are strongly dependent on the size of the liquid-vapour interface (i.e., the opening of the micro-crucible) in the CVD deposition step of Ge. In particular, Ge crystallites nucleate in micro-crucibles with larger opening sizes (3.74-4.73 μm2), while no such crystallites are found in micro-crucibles with smaller openings of 1.15 μm2. This interface area tuning also results in the formation of unique semiconductor nanostructures: lateral nano-trees (for smaller openings) and nano-rods (for larger openings). Further TEM imaging reveals that these nanostructures have an epitaxial relationship with the underlying Si substrate. This geometrical dependence on the micro-scale vapour-liquid-solid (VLS) nucleation and growth is explained within a dedicated model, where the incubation time for the VLS Ge nucleation is inversely proportional to the opening size. The geometric effect on the VLS nucleation can be used for the fine tuning of the morphology and composition of different lateral nano- and micro-structures by simply changing the area of the liquid-vapour interface.
Collapse
Affiliation(s)
- Galih R. Suwito
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | | | - Zixiao Zhang
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Weizhen Wang
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | | | - Dan Dalacu
- National Research Council Canada, Ottawa, ON K1A0R6, Canada
| | | | - Peter Grutter
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Nathaniel J. Quitoriano
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
7
|
Yan X, Liu Y, Zha C, Zhang X, Zhang Y, Ren X. Non-〈111〉-oriented semiconductor nanowires: growth, properties, and applications. NANOSCALE 2023; 15:3032-3050. [PMID: 36722935 DOI: 10.1039/d2nr06421a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, non-〈111〉-oriented semiconductor nanowires have attracted increasing interest in terms of fundamental research and promising applications due to their outstanding crystal quality and distinctive physical properties. Here, a comprehensive overview of recent advances in the study of non-〈111〉-oriented semiconductor nanowires is presented. We start by introducing various growth techniques for obtaining nanowires with certain orientations, for which the growth energetics and kinetics are discussed. Attention is then given to the physical properties of non-〈111〉 nanowires, as predicted by theoretical calculations or demonstrated experimentally. After that, we review the advantages and challenges of non-〈111〉 nanowires as building blocks for electronic and optoelectronic devices. Finally, we discuss the possible challenges and opportunities in the research field of non-〈111〉 semiconductor nanowires.
Collapse
Affiliation(s)
- Xin Yan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Yuqing Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Chaofei Zha
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang 311200, China.
| | - Xia Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Yunyan Zhang
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang 311200, China.
| | - Xiaomin Ren
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| |
Collapse
|
8
|
Dubrovskii VG. Criterion for Selective Area Growth of III-V Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3698. [PMID: 36296889 PMCID: PMC9606971 DOI: 10.3390/nano12203698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A model for the nucleation of vertical or planar III-V nanowires (NWs) in selective area growth (SAG) on masked substrates with regular arrays of openings is developed. The optimal SAG zone, with NW nucleation within the openings and the absence of parasitic III-V crystallites or group III droplets on the mask, is established, taking into account the minimum chemical potential of the III-V pairs required for nucleation on different surfaces, and the surface diffusion of the group III adatoms. The SAG maps are plotted in terms of the material fluxes versus the temperature. The non-trivial behavior of the SAG window, with the opening size and pitch, is analyzed, depending on the direction of the diffusion flux of the group III adatoms into or from the openings. A good correlation of the model with the data on the SAG of vertical GaN NWs and planar GaAs and InAs NWs by molecular beam epitaxy (MBE) is demonstrated.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
9
|
Dhungana DS, Mallet N, Fazzini PF, Larrieu G, Cristiano F, Plissard SR. Self-catalyzed InAs nanowires grown on Si: the key role of kinetics on their morphology. NANOTECHNOLOGY 2022; 33:485601. [PMID: 35998566 DOI: 10.1088/1361-6528/ac8bdb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Integrating self-catalyzed InAs nanowires on Si(111) is an important step toward building vertical gate-all-around transistors. The complementary metal oxide semiconductor (CMOS) compatibility and the nanowire aspect ratio are two crucial parameters to consider. In this work, we optimize the InAs nanowire morphology by changing the growth mode from Vapor-Solid to Vapor-Liquid-Solid in a CMOS compatible process. We study the key role of the Hydrogen surface preparation on nanowire growths and bound it to a change of the chemical potential and adatoms diffusion length on the substrate. We transfer the optimized process to patterned wafers and adapt both the surface preparation and the growth conditions. Once group III and V fluxes are balances, aspect ratio can be improved by increasing the system kinetics. Overall, we propose a method for large scale integration of CMOS compatible InAs nanowire on silicon and highlight the major role of kinetics on the growth mechanism.
Collapse
Affiliation(s)
- Daya S Dhungana
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | - Nicolas Mallet
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | | | - Guilhem Larrieu
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | - Fuccio Cristiano
- CNRS, LAAS-CNRS, Université de Toulouse, F-31400, Toulouse, France
| | | |
Collapse
|
10
|
Dubrovskii VG. Theory of MOCVD Growth of III-V Nanowires on Patterned Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2632. [PMID: 35957064 PMCID: PMC9370533 DOI: 10.3390/nano12152632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
An analytic model for III-V nanowire growth by metal organic chemical vapor deposition (MOCVD) in regular arrays on patterned substrates is presented. The model accounts for some new features that, to the author's knowledge, have not yet been considered. It is shown that MOCVD growth is influenced by an additional current into the nanowires originating from group III atoms reflected from an inert substrate and the upper limit for the group III current per nanowire given by the total group III flow and the array pitch. The model fits the data on the growth kinetics of Au-catalyzed and catalyst-free III-V nanowires quite well and should be useful for understanding and controlling the MOCVD nanowire growth in general.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
11
|
Modeling the Radial Growth of Self-Catalyzed III-V Nanowires. NANOMATERIALS 2022; 12:nano12101698. [PMID: 35630920 PMCID: PMC9142916 DOI: 10.3390/nano12101698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022]
Abstract
A new model for the radial growth of self-catalyzed III-V nanowires on different substrates is presented, which describes the nanowire morphological evolution without any free parameters. The model takes into account the re-emission of group III atoms from a mask surface and the shadowing effect in directional deposition techniques such as molecular beam epitaxy. It is shown that radial growth is faster for larger pitches of regular nanowire arrays or lower surface density, and can be suppressed by increasing the V/III flux ratio or decreasing re-emission. The model describes quite well the data on the morphological evolution of Ga-catalyzed GaP and GaAs nanowires on different substrates, where the nanowire length increases linearly and the radius enlarges sub-linearly with time. The obtained analytical expressions and numerical data should be useful for morphological control over different III-V nanowires in a wide range of growth conditions.
Collapse
|
12
|
Dubrovskii VG. Theory of MBE Growth of Nanowires on Adsorbing Substrates: The Role of the Shadowing Effect on the Diffusion Transport. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1064. [PMID: 35407180 PMCID: PMC9000702 DOI: 10.3390/nano12071064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
A new model for nanowire growth by molecular beam epitaxy is proposed which extends the earlier approaches treating an isolated nanowire to the case of ensembles of nanowires. I consider an adsorbing substrate on which the arriving growth species (group III adatoms for III-V nanowires) may diffuse to the nanowire base and subsequently to the top without desorption. Analytical solution for the nanowire length evolution at a constant radius shows that the shadowing of the substrate surface is efficient and affects the growth kinetics from the very beginning of growth in dense enough ensembles of nanowires. The model fits quite well the kinetic data on different Au-catalyzed and self-catalyzed III-V nanowires. This approach should work equally well for vapor-liquid-solid and catalyst-free nanowires grown by molecular beam epitaxy and related deposition techniques on unpatterned or masked substrates.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Embankment 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
13
|
Dubrovskii VG. Reconsideration of Nanowire Growth Theory at Low Temperatures. NANOMATERIALS 2021; 11:nano11092378. [PMID: 34578691 PMCID: PMC8470243 DOI: 10.3390/nano11092378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
We present a growth model that describes the nanowire length and radius versus time in the absence of evaporation or scattering of semiconductor atoms (group III atoms in the case of III-V NWs) from the substrate, nanowire sidewalls or catalyst nanoparticle. The model applies equally well to low-temperature metal-catalyzed or selective area growth of elemental or III-V nanowires on patterned substrates. Surface diffusion transport and radial growth on the nanowire sidewalls are carefully considered under the constraint of the total material balance, yielding some new effects. The nanowire growth process is shown to proceed in two steps. In the first step, the nanowire length increases linearly with time and is inversely proportional to the nanowire radius squared and the nanowire surface density, without radial growth. In the second step, the nanowire length obeys the Chini equation, resulting in a non-linear increase in length with time and radial growth. The nanowire radii converge to a stationary value in the large time limit, showing a kind of size-narrowing effect. The model fits the data on the growth kinetics of a single self-catalyzed GaAs nanowire on a Si substrate well.
Collapse
Affiliation(s)
- Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
14
|
Xu D, Mo J, Xie X, Hu N. In-Cell Nanoelectronics: Opening the Door to Intracellular Electrophysiology. NANO-MICRO LETTERS 2021; 13:127. [PMID: 34138366 PMCID: PMC8124030 DOI: 10.1007/s40820-021-00655-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 05/07/2023]
Abstract
Establishing a reliable electrophysiological recording platform is crucial for cardiology and neuroscience research. Noninvasive and label-free planar multitransistors and multielectrode arrays are conducive to perform the large-scale cellular electrical activity recordings, but the signal attenuation limits these extracellular devices to record subthreshold activities. In recent decade, in-cell nanoelectronics have been rapidly developed to open the door to intracellular electrophysiology. With the unique three-dimensional nanotopography and advanced penetration strategies, high-throughput and high-fidelity action potential like signal recordings is expected to be realized. This review summarizes in-cell nanoelectronics from versatile nano-biointerfaces, penetration strategies, active/passive nanodevices, systematically analyses the applications in electrogenic cells and especially evaluates the influence of nanodevices on the high-quality intracellular electrophysiological signals. Further, the opportunities, challenges and broad prospects of in-cell nanoelectronics are prospected, expecting to promote the development of in-cell electrophysiological platforms to meet the demand of theoretical investigation and clinical application.
Collapse
Affiliation(s)
- Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Jingshan Mo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| |
Collapse
|
15
|
Wang N, Wong WW, Yuan X, Li L, Jagadish C, Tan HH. Understanding Shape Evolution and Phase Transition in InP Nanostructures Grown by Selective Area Epitaxy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100263. [PMID: 33856732 DOI: 10.1002/smll.202100263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Indexed: 06/12/2023]
Abstract
There is a strong demand for III-V nanostructures of different geometries and in the form of interconnected networks for quantum science applications. This can be achieved by selective area epitaxy (SAE) but the understanding of crystal growth in these complicated geometries is still insufficient to engineer the desired shape. Here, the shape evolution and crystal structure of InP nanostructures grown by SAE on InP substrates of different orientations are investigated and a unified understanding to explain these observations is established. A strong correlation between growth direction and crystal phase is revealed. Wurtzite (WZ) and zinc-blende (ZB) phases form along <111>A and <111>B directions, respectively, while crystal phase remains the same along other low-index directions. The polarity induced crystal structure difference is explained by thermodynamic difference between the WZ and ZB phase nuclei on different planes. Growth from the openings is essentially determined by pattern confinement and minimization of the total surface energy, regardless of substrate orientations. A novel type-II WZ/ZB nanomembrane homojunction array is obtained by tailoring growth directions through alignment of the openings along certain crystallographic orientations. The understanding in this work lays the foundation for the design and fabrication of advanced III-V semiconductor devices based on complex geometrical nanostructures.
Collapse
Affiliation(s)
- Naiyin Wang
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Wei Wen Wong
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Xiaoming Yuan
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Li Li
- Australian National Fabrication Facility ACT Node, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Chennupati Jagadish
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Transformative Meta-Optical System, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Transformative Meta-Optical System, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
16
|
Li X, Mo J, Fang J, Xu D, Yang C, Zhang M, Li H, Xie X, Hu N, Liu F. Vertical nanowire array-based biosensors: device design strategies and biomedical applications. J Mater Chem B 2020; 8:7609-7632. [PMID: 32744274 DOI: 10.1039/d0tb00990c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biosensors have been extensively studied in the areas of biology, electronics, chemistry, biotechnology, medicine, and various engineering fields. The interdisciplinarity creates an ideal platform for scientists to analyze biological species and chemical materials in a direct, efficient, and sensitive manner; this is expected to revolutionize the life sciences, basic medicine, and the healthcare industry. To carry out high-performance biosensing, nanoprobes - with specific nanoscale properties - have been proposed for ultrasensitive and in situ monitoring/detection of tracer biomolecules, cellular behavior, cellular microenvironments, and electrophysiological activity. Here, we review the development of vertical nanowire (VNW) array-based devices for the effective collection of biomedical information at the molecular level, extracellular level, and intracellular level. In particular, we summarize VNW-based technologies in the aspects of detecting biochemical information, cellular information, and bioelectrical information, all of which facilitate the understanding of fundamental biology and development of therapeutic techniques. Finally, we present a conclusion and prospects for the development of VNW platforms in practical biomedical applications, and we identify the challenges and opportunities for VNW-based biosensor systems in future biological research.
Collapse
Affiliation(s)
- Xiangling Li
- The First Affiliated Hospital of Sun Yat-Sen University, School of Biomedical Engineering, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Review on III-V Semiconductor Single Nanowire-Based Room Temperature Infrared Photodetectors. MATERIALS 2020; 13:ma13061400. [PMID: 32204482 PMCID: PMC7142779 DOI: 10.3390/ma13061400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Recently, III-V semiconductor nanowires have been widely explored as promising candidates for high-performance photodetectors due to their one-dimensional morphology, direct and tunable bandgap, as well as unique optical and electrical properties. Here, the recent development of III-V semiconductor-based single nanowire photodetectors for infrared photodetection is reviewed and compared, including material synthesis, representative types (under different operation principles and novel concepts), and device performance, as well as their challenges and future perspectives.
Collapse
|
18
|
Barrigón E, Heurlin M, Bi Z, Monemar B, Samuelson L. Synthesis and Applications of III-V Nanowires. Chem Rev 2019; 119:9170-9220. [PMID: 31385696 DOI: 10.1021/acs.chemrev.9b00075] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Low-dimensional semiconductor materials structures, where nanowires are needle-like one-dimensional examples, have developed into one of the most intensely studied fields of science and technology. The subarea described in this review is compound semiconductor nanowires, with the materials covered limited to III-V materials (like GaAs, InAs, GaP, InP,...) and III-nitride materials (GaN, InGaN, AlGaN,...). We review the way in which several innovative synthesis methods constitute the basis for the realization of highly controlled nanowires, and we combine this perspective with one of how the different families of nanowires can contribute to applications. One reason for the very intense research in this field is motivated by what they can offer to main-stream semiconductors, by which ultrahigh performing electronic (e.g., transistors) and photonic (e.g., photovoltaics, photodetectors or LEDs) technologies can be merged with silicon and CMOS. Other important aspects, also covered in the review, deals with synthesis methods that can lead to dramatic reduction of cost of fabrication and opportunities for up-scaling to mass production methods.
Collapse
Affiliation(s)
- Enrique Barrigón
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Magnus Heurlin
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden.,Sol Voltaics AB , Scheelevägen 63 , 223 63 Lund , Sweden
| | - Zhaoxia Bi
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Bo Monemar
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| | - Lars Samuelson
- Division of Solid State Physics and NanoLund , Lund University , Box 118, 22100 Lund , Sweden
| |
Collapse
|
19
|
Abstract
Semiconductor nanowires have attracted extensive interest as one of the best-defined classes of nanoscale building blocks for the bottom-up assembly of functional electronic and optoelectronic devices over the past two decades. The article provides a comprehensive review of the continuing efforts in exploring semiconductor nanowires for the assembly of functional nanoscale electronics and macroelectronics. Specifically, we start with a brief overview of the synthetic control of various semiconductor nanowires and nanowire heterostructures with precisely controlled physical dimension, chemical composition, heterostructure interface, and electronic properties to define the material foundation for nanowire electronics. We then summarize a series of assembly strategies developed for creating well-ordered nanowire arrays with controlled spatial position, orientation, and density, which are essential for constructing increasingly complex electronic devices and circuits from synthetic semiconductor nanowires. Next, we review the fundamental electronic properties and various single nanowire transistor concepts. Combining the designable electronic properties and controllable assembly approaches, we then discuss a series of nanoscale devices and integrated circuits assembled from nanowire building blocks, as well as a unique design of solution-processable nanowire thin-film transistors for high-performance large-area flexible electronics. Last, we conclude with a brief perspective on the standing challenges and future opportunities.
Collapse
Affiliation(s)
- Chuancheng Jia
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Zhaoyang Lin
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yu Huang
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
20
|
Sokolovskii AS, Robson MT, LaPierre RR, Dubrovskii VG. Modeling selective-area growth of InAsSb nanowires. NANOTECHNOLOGY 2019; 30:285601. [PMID: 30913550 DOI: 10.1088/1361-6528/ab1375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An analytical growth model is presented to explain the influence of antimony fractional flux on the morphology evolution of catalyst-free InAs1-x Sb x semiconductor nanowires grown by the selective-area vapor-solid mechanism on a Si (111) substrate by molecular beam epitaxy. Increasing Sb fractional flux promoted radial growth and suppressed axial growth, resulting in 'nano-disks'. This behavior is explained by a model of indium adatom diffusion along nanowire facets.
Collapse
Affiliation(s)
- A S Sokolovskii
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia. Department of Engineering Physics, McMaster University, Hamilton, Ontario, L8S4L7, Canada
| | | | | | | |
Collapse
|
21
|
Schroth P, Al Humaidi M, Feigl L, Jakob J, Al Hassan A, Davtyan A, Küpers H, Tahraoui A, Geelhaar L, Pietsch U, Baumbach T. Impact of the Shadowing Effect on the Crystal Structure of Patterned Self-Catalyzed GaAs Nanowires. NANO LETTERS 2019; 19:4263-4271. [PMID: 31150261 DOI: 10.1021/acs.nanolett.9b00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The growth of regular arrays of uniform III-V semiconductor nanowires is a crucial step on the route toward their application-relevant large-scale integration onto the Si platform. To this end, not only does optimal vertical yield, length, and diameter uniformity have to be engineered, but also, control over the nanowire crystal structure has to be achieved. Depending on the particular application, nanowire arrays with varying area density are required for optimal device efficiency. However, the nanowire area density substantially influences the nanowire growth and presents an additional challenge for nanowire device engineering. We report on the simultaneous in situ X-ray investigation of regular GaAs nanowire arrays with different area density during self-catalyzed vapor-liquid-solid growth on Si by molecular-beam epitaxy. Our results give novel insight into selective-area growth and demonstrate that shadowing of the Ga flux, occurring in dense nanowire arrays, has a crucial impact on the evolution of nanowire crystal structure. We observe that the onset of Ga flux shadowing, dependent on array pitch and nanowire length, is accompanied by an increase of the wurtzite formation rate. Our results moreover reveal the paramount role of the secondary reflected Ga flux for VLS NW growth (specifically, that flux that is reflected directly into the liquid Ga droplet).
Collapse
Affiliation(s)
- Philipp Schroth
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
- Laboratory for Applications of Synchrotron Radiation , Karlsruhe Institute of Technology , Kaiserstraße 12 , D-76131 Karlsruhe , Germany
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - Mahmoud Al Humaidi
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Ludwig Feigl
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - Julian Jakob
- Laboratory for Applications of Synchrotron Radiation , Karlsruhe Institute of Technology , Kaiserstraße 12 , D-76131 Karlsruhe , Germany
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| | - Ali Al Hassan
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Arman Davtyan
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Hanno Küpers
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. , Hausvogteiplatz 5-7 , 10117 Berlin , Germany
| | - Abbes Tahraoui
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. , Hausvogteiplatz 5-7 , 10117 Berlin , Germany
| | - Lutz Geelhaar
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. , Hausvogteiplatz 5-7 , 10117 Berlin , Germany
| | - Ullrich Pietsch
- Solid State Physics, Department of Physics , University of Siegen , Adolf-Reichwein-Straße 2 , D-57068 Siegen , Germany
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation , Karlsruhe Institute of Technology , Kaiserstraße 12 , D-76131 Karlsruhe , Germany
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
| |
Collapse
|
22
|
Dubrovskii VG. Evolution of the Length and Radius of Catalyst-Free III-V Nanowires Grown by Selective Area Epitaxy. ACS OMEGA 2019; 4:8400-8405. [PMID: 31459928 PMCID: PMC6648095 DOI: 10.1021/acsomega.9b00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2019] [Indexed: 06/10/2023]
Abstract
We present a new model for the length and radius evolution of catalyst-free III-V nanowires grown by selective area epitaxy. We consider simultaneous axial and radial growth of nanowires, which is more typical for this technique compared to the vapor-liquid-solid growth of nanowires. Analytic expressions for the time evolution of the nanowire length and radius are derived, showing the following properties. As long as the nanowire length is shorter than the collection length of group III atoms on the sidewalls, the length evolves superlinearly and the radius evolves linearly with time. For longer nanowires, both the length and radius increase sublinearly with time. The scaling growth laws are controlled by a single parameter that depends on group V flux. The model fits well the data on the selective area growth of InAs and GaAs nanowires by different techniques. Overall, these results can be used for controlling the catalyst-free growth of III-V nanowires and their morphology, including ternary III-V material systems.
Collapse
|
23
|
Güniat L, Caroff P, Fontcuberta I Morral A. Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions. Chem Rev 2019; 119:8958-8971. [PMID: 30998006 DOI: 10.1021/acs.chemrev.8b00649] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanowires are filamentary crystals with a tailored diameter that can be obtained using a plethora of different synthesis techniques. In this review, we focus on the vapor phase, highlighting the most influential achievements along with a historical perspective. Starting with the discovery of VLS, we feature the variety of structures and materials that can be synthesized in the nanowire form. We then move on to establish distinct features such as the three-dimensional heterostructure/doping design and polytypism. We summarize the status quo of the growth mechanisms, recently confirmed by in situ electron microscopy experiments and defining common ground between the different synthesis techniques. We then propose a selection of remaining defects, starting from what we know and going toward what is still to be learned. We believe this review will serve as a reference for neophytes but also as an insight for experts in an effort to bring open questions under a new light.
Collapse
Affiliation(s)
- Lucas Güniat
- Laboratory of Semiconductor Materials, Institute of Materials , École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Philippe Caroff
- Microsoft Quantum Lab Delft , Delft University of Technology , 2600 GA Delft , The Netherlands
| | - Anna Fontcuberta I Morral
- Laboratory of Semiconductor Materials, Institute of Materials , École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland.,Institute of Physics , École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| |
Collapse
|
24
|
Plesco I, Strobel J, Schütt F, Himcinschi C, Ben Sedrine N, Monteiro T, Correia MR, Gorceac L, Cinic B, Ursaki V, Marx J, Fiedler B, Mishra YK, Kienle L, Adelung R, Tiginyanu I. Hierarchical Aerographite 3D flexible networks hybridized by InP micro/nanostructures for strain sensor applications. Sci Rep 2018; 8:13880. [PMID: 30224739 PMCID: PMC6141564 DOI: 10.1038/s41598-018-32005-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
In the present work, we report on development of three-dimensional flexible architectures consisting of an extremely porous three-dimensional Aerographite (AG) backbone decorated by InP micro/nanocrystallites grown by a single step hydride vapor phase epitaxy process. The systematic investigation of the hybrid materials by scanning electron microscopy demonstrates a rather uniform spatial distribution of InP crystallites without agglomeration on the surface of Aerographite microtubular structures. X-ray diffraction, transmission electron microscopy and Raman scattering analysis demonstrate that InP crystallites grown on bare Aerographite are of zincblende structure, while a preliminary functionalization of the Aerographite backbone with Au nanodots promotes the formation of crystalline In2O3 nanowires as well as gold-indium oxide core-shell nanostructures. The electromechanical properties of the hybrid AG-InP composite material are shown to be better than those of previously reported bare AG and AG-GaN networks. Robustness, elastic behavior and excellent translation of the mechanical deformation to variations in electrical conductivity highlight the prospects of AG-InP applications in tactile/strain sensors and other device structures related to flexible electronics.
Collapse
Affiliation(s)
- Irina Plesco
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, MD-2004, Chisinau, Republic of Moldova
| | - Julian Strobel
- Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Fabian Schütt
- Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Cameliu Himcinschi
- Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09596, Freiberg, Germany
| | - Nabiha Ben Sedrine
- Department of Physics and I3N, Institute for Nanostructures, Nanomodelling and Nanofabrication, University of Aveiro, P-3810-193, Aveiro, Portugal
| | - Teresa Monteiro
- Department of Physics and I3N, Institute for Nanostructures, Nanomodelling and Nanofabrication, University of Aveiro, P-3810-193, Aveiro, Portugal
| | - Maria Rosário Correia
- Department of Physics and I3N, Institute for Nanostructures, Nanomodelling and Nanofabrication, University of Aveiro, P-3810-193, Aveiro, Portugal
| | - Leonid Gorceac
- Department of Physics and Engineering, State University of Moldova, Alexei Mateevici str. 60, MD-2009, Chisinau, Republic of Moldova
| | - Boris Cinic
- Department of Physics and Engineering, State University of Moldova, Alexei Mateevici str. 60, MD-2009, Chisinau, Republic of Moldova
| | - Veaceslav Ursaki
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, MD-2004, Chisinau, Republic of Moldova
| | - Janik Marx
- Institute of Polymers and Composites, Hamburg University of Technology, Denickestr. 15, D-21073, Hamburg, Germany
| | - Bodo Fiedler
- Institute of Polymers and Composites, Hamburg University of Technology, Denickestr. 15, D-21073, Hamburg, Germany
| | - Yogendra Kumar Mishra
- Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Lorenz Kienle
- Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany.
| | - Rainer Adelung
- Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany.
| | - Ion Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, MD-2004, Chisinau, Republic of Moldova.
| |
Collapse
|
25
|
Oener SZ, Cavalli A, Sun H, Haverkort JEM, Bakkers EPAM, Garnett EC. Charge carrier-selective contacts for nanowire solar cells. Nat Commun 2018; 9:3248. [PMID: 30108222 PMCID: PMC6092389 DOI: 10.1038/s41467-018-05453-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/04/2018] [Indexed: 11/09/2022] Open
Abstract
Charge carrier-selective contacts transform a light-absorbing semiconductor into a photovoltaic device. Current record efficiency solar cells nearly all use advanced heterojunction contacts that simultaneously provide carrier selectivity and contact passivation. One remaining challenge with heterojunction contacts is the tradeoff between better carrier selectivity/contact passivation (thicker layers) and better carrier extraction (thinner layers). Here we demonstrate that the nanowire geometry can remove this tradeoff by utilizing a permanent local gate (molybdenum oxide surface layer) to control the carrier selectivity of an adjacent ohmic metal contact. We show an open-circuit voltage increase for single indium phosphide nanowire solar cells by up to 335 mV, ultimately reaching 835 mV, and a reduction in open-circuit voltage spread from 303 to 105 mV after application of the surface gate. Importantly, reference experiments show that the carriers are not extracted via the molybdenum oxide but the ohmic metal contacts at the wire ends. Balancing the carrier selectivity and extraction by the selective contacts is of vital importance to the performance of the nanowire solar cells. Here Oener et al. employ a permanent local gate to overcome this tradeoff and substantially increase the open-circuit voltage by 335 mV.
Collapse
Affiliation(s)
- Sebastian Z Oener
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA. .,Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, Netherlands.
| | - Alessandro Cavalli
- Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, Netherlands
| | - Hongyu Sun
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, Netherlands
| | - Jos E M Haverkort
- Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, Netherlands
| | - Erik P A M Bakkers
- Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, Netherlands.,Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629HZ, Netherlands
| | - Erik C Garnett
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, Netherlands.
| |
Collapse
|
26
|
Leshchenko ED, Kuyanov P, LaPierre RR, Dubrovskii VG. Tuning the morphology of self-assisted GaP nanowires. NANOTECHNOLOGY 2018; 29:225603. [PMID: 29509146 DOI: 10.1088/1361-6528/aab47b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Patterned arrays of self-assisted GaP nanowires (NWs) were grown on a Si substrate by gas source molecular beam epitaxy using various V/III flux ratios from 1-6, and various pitches from 360-1000 nm. As the V/III flux ratio was increased from 1-6, the NWs showed a change in morphology from outward tapering to straight, and eventually to inward tapering. The morphologies of the self-assisted GaP NWs are well described by a simple kinetic equation for the NW radius versus the position along the NW axis. The most important growth parameter that governs the NW morphology is the V/III flux ratio. Sharpened NWs with a stable radius equal to only 12 nm at a V/III flux of 6 were achieved, demonstrating their suitability for the insertion of quantum dots.
Collapse
Affiliation(s)
- E D Leshchenko
- ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russia. Solid State Physics and NanoLund, Lund University, Box 118, SE-22100 Lund, Sweden
| | | | | | | |
Collapse
|
27
|
Kang K, Cho Y, Yu KJ. Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems. MICROMACHINES 2018; 9:E263. [PMID: 30424196 PMCID: PMC6187536 DOI: 10.3390/mi9060263] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022]
Abstract
Recent progress in fabricating flexible electronics has been significantly developed because of the increased interest in flexible electronics, which can be applied to enormous fields, not only conventional in electronic devices, but also in bio/eco-electronic devices. Flexible electronics can be applied to a wide range of fields, such as flexible displays, flexible power storages, flexible solar cells, wearable electronics, and healthcare monitoring devices. Recently, flexible electronics have been attached to the skin and have even been implanted into the human body for monitoring biosignals and for treatment purposes. To improve the electrical and mechanical properties of flexible electronics, nanoscale fabrications using novel nanomaterials are required. Advancements in nanoscale fabrication methods allow the construction of active materials that can be combined with ultrathin soft substrates to form flexible electronics with high performances and reliability. In this review, a wide range of flexible electronic applications via nanoscale fabrication methods, classified as either top-down or bottom-up approaches, including conventional photolithography, soft lithography, nanoimprint lithography, growth, assembly, and chemical vapor deposition (CVD), are introduced, with specific fabrication processes and results. Here, our aim is to introduce recent progress on the various fabrication methods for flexible electronics, based on novel nanomaterials, using application examples of fundamental device components for electronics and applications in healthcare systems.
Collapse
Affiliation(s)
- Kyowon Kang
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| | - Younguk Cho
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| | - Ki Jun Yu
- School of Electrical Engineering, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
28
|
Oh H, Park J, Choi W, Kim H, Tchoe Y, Agrawal A, Yi GC. Vertical ZnO Nanotube Transistor on a Graphene Film for Flexible Inorganic Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800240. [PMID: 29611339 DOI: 10.1002/smll.201800240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/23/2018] [Indexed: 06/08/2023]
Abstract
The bottom-up integration of a 1D-2D hybrid semiconductor nanostructure into a vertical field-effect transistor (VFET) for use in flexible inorganic electronics is reported. Zinc oxide (ZnO) nanotubes on graphene film is used as an example. The VFET is fabricated by growing position- and dimension-controlled single crystal ZnO nanotubes vertically on a large graphene film. The graphene film, which acts as the substrate, provides a bottom electrical contact to the nanotubes. Due to the high quality of the single crystal ZnO nanotubes and the unique 1D device structure, the fabricated VFET exhibits excellent electrical characteristics. For example, it has a small subthreshold swing of 110 mV dec-1 , a high Imax /Imin ratio of 106 , and a transconductance of 170 nS µm-1 . The electrical characteristics of the nanotube VFETs are validated using 3D transport simulations. Furthermore, the nanotube VFETs fabricated on graphene films can be easily transferred onto flexible plastic substrates. The resulting components are reliable, exhibit high performance, and do not degrade significantly during testing.
Collapse
Affiliation(s)
- Hongseok Oh
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - JunBeom Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Woojin Choi
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Heehun Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Youngbin Tchoe
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Arpana Agrawal
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Gyu-Chul Yi
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
29
|
Mandl B, Keplinger M, Messing ME, Kriegner D, Wallenberg R, Samuelson L, Bauer G, Stangl J, Holý V, Deppert K. Self-Seeded Axio-Radial InAs-InAs 1-xP x Nanowire Heterostructures beyond "Common" VLS Growth. NANO LETTERS 2018; 18:144-151. [PMID: 29257691 DOI: 10.1021/acs.nanolett.7b03668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Semiconductors are essential for modern electronic and optoelectronic devices. To further advance the functionality of such devices, the ability to fabricate increasingly complex semiconductor nanostructures is of utmost importance. Nanowires offer excellent opportunities for new device concepts; heterostructures have been grown in either the radial or axial direction of the core nanowire but never along both directions at the same time. This is a consequence of the common use of a foreign metal seed particle with fixed size for nanowire heterostructure growth. In this work, we present for the first time a growth method to control heterostructure growth in both the axial and the radial directions simultaneously while maintaining an untapered self-seeded growth. This is demonstrated for the InAs/InAs1-xPx material system. We show how the dimensions and composition of such axio-radial nanowire heterostructures can be designed including the formation of a "pseudo-superlattice" consisting of five separate InAs1-xPx segments with varying length. The growth of axio-radial nanowire heterostructures offers an exciting platform for novel nanowire structures applicable for fundamental studies as well as nanowire devices. The growth concept for axio-radial nanowire heterostructures is expected to be fully compatible with Si substrates.
Collapse
Affiliation(s)
- Bernhard Mandl
- Semiconductor and Solid State Physics, Johannes Kepler University Linz , A-4040 Linz, Austria
| | - Mario Keplinger
- Semiconductor and Solid State Physics, Johannes Kepler University Linz , A-4040 Linz, Austria
| | | | - Dominik Kriegner
- Semiconductor and Solid State Physics, Johannes Kepler University Linz , A-4040 Linz, Austria
| | | | | | - Günther Bauer
- Semiconductor and Solid State Physics, Johannes Kepler University Linz , A-4040 Linz, Austria
| | - Julian Stangl
- Semiconductor and Solid State Physics, Johannes Kepler University Linz , A-4040 Linz, Austria
| | - Václav Holý
- Department of Condensed Matter Physics, Charles University , Ke Karlovu 5, 121 16 Prague, Czech Republic
| | | |
Collapse
|
30
|
Li X, Cheng S, Deng S, Wei X, Zhu J, Chen Q. Direct Observation of the Layer-by-Layer Growth of ZnO Nanopillar by In situ High Resolution Transmission Electron Microscopy. Sci Rep 2017; 7:40911. [PMID: 28098261 PMCID: PMC5241657 DOI: 10.1038/srep40911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023] Open
Abstract
Catalyst-free methods are important for the fabrication of pure nanowires (NWs). However, the growth mechanism remains elusive due to the lack of crucial information on the growth dynamics at atomic level. Here, the noncatalytic growth process of ZnO NWs is studied through in situ high resolution transmission electron microscopy. We observe the layer-by-layer growth of ZnO nanopillars along the polar [0001] direction under electron beam irradiation, while no growth is observed along the radial directions, indicating an anisotropic growth mechanism. The source atoms are mainly from the electron beam induced damage of the sample and the growth is assisted by subsequent absorption and then diffusion of atoms along the side surface to the top (0002) surface. The different binding energy on different ZnO surface is the main origin for the anisotropic growth. Additionally, the coalescence of ZnO nanocrystals related to the nucleation stage is uncovered to realize through the rotational motions and recrystallization. Our in situ results provide atomic-level detailed information about the dynamic growth and coalescence processes in the noncatalytic synthesis of ZnO NW and are helpful for understanding the vapor-solid mechanism of catalyst-free NW growth.
Collapse
Affiliation(s)
- Xing Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, P.R. China
| | - Shaobo Cheng
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Shiqing Deng
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China
| | - Xianlong Wei
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, P.R. China
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, P.R. China
| |
Collapse
|