1
|
Kuddushi M, Kanike C, Xu BB, Zhang X. Recent advances in nanoprecipitation: from mechanistic insights to applications in nanomaterial synthesis. SOFT MATTER 2025; 21:2759-2781. [PMID: 40152021 DOI: 10.1039/d5sm00006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanoprecipitation is a versatile, low-energy technique for synthesizing nanomaterials through controlled precipitation, enabling precise tuning of material properties. This review offers a comprehensive and up-to-date perspective on nanoprecipitation, focusing on its role in nanoparticle synthesis and its adaptability in designing diverse nanostructures. The review begins with the foundational principles of nanoprecipitation, emphasizing the impact of key parameters such as flow rate, mixing approach, injection rate, and Reynolds number on nanomaterial characteristics. It also discusses the influence of physicochemical factors, including solvent choice, polymer type, and drug properties. Various nanoprecipitation configurations-batch, flash, and microfluidic are examined for their specific advantages in controlling particle size, morphology, and internal structure. The review further explores the potential of nanoprecipitation to create complex nanostructures, such as core-shell particles, Janus nanoparticles, and porous and semiconducting polymer nanoparticles. Applications in biomedicine and other fields highlight nanoprecipitation's promise as a sustainable and tunable method for fabricating advanced nanomaterials. Finally, the review identifies future directions, including scaling microfluidic techniques, expanding compatibility with hydrophilic compounds, and integrating machine learning to further enhance the development of nanoprecipitation.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| | - Chiranjeevi Kanike
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
2
|
Yi Z, Ma X, Tong Q, Ma L, Tan Y, Liu D, Tan C, Chen J, Li X. A Library of Polyphenol-Amino Acid Condensates for High-Throughput Continuous Flow Production of Nanomedicines with Ultra-High Drug Loading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417534. [PMID: 39901461 PMCID: PMC12004891 DOI: 10.1002/adma.202417534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Synthesizing high drug-loading nanomedicines remains a formidable challenge, and achieving universally applicable, continuous, large-scale engineered production of such nanomedicines presents even greater difficulties. This study presents a scalable library of polyphenol-amino acid condensates. By selecting amino acids, the library enables precise customization of key properties, such as carrier capacity, bioactivity, and other critical attributes, offering a versatile range of options for various application scenarios. Leveraging the properties of solvent-mediated disassembly and reassembly of condensates achieved an ultra-high drug loading of 86% for paclitaxel. For a range of poorly soluble molecules, the drug loading capacity exceeded 50%, indicating broad applicability. Furthermore, employing a continuous microfluidic device, the production rate can reach 5 mL min-1 (36 g per day), with the nanoparticle size precisely tunable and a polydispersity index (PDI) below 0.2. The polyphenol-based carrier demonstrates efficient cellular uptake and, in three distinct animal models, has been shown to enhance the therapeutic efficacy of paclitaxel without significant side effects. This study presents a streamlined, efficient, and scalable approach using microfluidics to produce nanomedicines with ultra-high drug loading, offering a promising strategy for the nanoformulation of poorly soluble drugs.
Collapse
Affiliation(s)
- Zeng Yi
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Xiaomin Ma
- Department of Respiratory and Critical Care MedicineInstitute of Respiratory Health, Precision Medicine CenterPrecision Medicine Key Laboratory of Sichuan ProvinceFrontiers Science Center for Disease‐related Molecular NetworkWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Qiulan Tong
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Lei Ma
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Yunfei Tan
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Danni Liu
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Chaoliang Tan
- Department of Electrical EngineeringCity University of Hong Kong83 Tat Chee AveKowloon TongHong Kong SAR999077China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)City University of Hong KongKowloonHong Kong SAR999077China
| | - Junze Chen
- College of Materials Science and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xudong Li
- National Engineering Research Center for BiomaterialsSichuan UniversityChengdu610064P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| |
Collapse
|
3
|
Li S, Yang B, Ye L, Hu S, Li B, Yang Y, Hu Y, Jia X, Feng L, Xiong Z. Multistage microfluidic assisted Co-Delivery platform for dual-agent facile sequential encapsulation. Eur J Pharm Biopharm 2025; 207:114616. [PMID: 39694079 DOI: 10.1016/j.ejpb.2024.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
The integration of multiple therapeutic agents within a single nano-drug carrier holds promise for advancing anti-tumor therapies, despite challenges posed by their diverse physicochemical properties. This study introduces a novel multi-stage microfluidic co-encapsulation platform designed to address these challenges. By carefully orchestrating the nano-precipitation process sequence, this platform achieves sequential encapsulation of two drugs with markedly different physicochemical characteristics. Using the multi-stage microfluidic TrH chip, hybrid nanoparticles (HNPs) loaded with paclitaxel (PTX)-simvastatin (SV), PTX-lenvatinib (LV), and SV-LV were synthesized. Unlike conventional Bulk methods and existing commercial microfluidic Tesla and Baffle chips, the HNPs produced here exhibit a core-shell structure and uniform particle size distribution, crucial for enhancing drug delivery efficacy. Notably, this method achieves nearly 100 % encapsulation efficiency for both drugs across a dual-drug feed ratio range from 1:4 to 4:1. Drug loading efficiencies were quantified for PTX-SV/HNPs (14.97 ± 1.19 %), PTX-LV/HNPs (16.58 ± 0.69 %), and SV-LV/HNPs (19.21 ± 2.38 %). PTX-SV/HNPs demonstrated sequential release characteristics of SV and PTX, as confirmed by in vitro drug release experiments. Significantly, PTX-SV/HNPs exhibited superior cytotoxicity against HepG2 cells compared to individual PTX and SV treatments, underscoring their potential in cancer therapy. In conclusion, the developed multi-stage microfluidic platform represents a robust strategy for co-encapsulating drugs with substantial physicochemical disparities, thereby offering a promising avenue for advancing multi-drug delivery in nanomedicine applications.
Collapse
Affiliation(s)
- Shixin Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Liang Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Shuqi Hu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Benhong Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Yichuan Hu
- School of Pharmacy, Nanchang Medical College, 330052 Nanchang, Jiangxi, PR China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; Affiliated Jiangning Hospital of Chinese Medicine, China Pharmaceutical University, 211100 Nanjing, Jiangsu, PR China.
| | - Zhiwei Xiong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China.
| |
Collapse
|
4
|
Ding B, Zheng Z, Su J, Zhou J, Xu S, Luo W, Su H, Li Y, Xiong W. Unraveling the Impact of Stabilizers on Nanocrystal Preparation and Oral Absorption: A Case Study of Poorly Soluble Andrographolide. NANO LETTERS 2025; 25:820-827. [PMID: 39714913 DOI: 10.1021/acs.nanolett.4c05230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Drug nanocrystal engineering is an attractive pharmaceutical approach to enhancing the oral bioavailability of poorly soluble drugs. The mechanism of drug nanocrystal stabilization, however, is unclear. Here we developed andrographolide nanocrystals (AG-NCs) with various nonionic surfactants (Pluronic-F127, TPGS, or Brij-S20). We detected AG micelles (AG-MCs) at an andrographolide to nonionic surfactant ratio of 10:10 (w/w) and poor AG-NC size stability. We thus quantified the unbound Pluronic-F127 in AG-NCs and found that the proposed instantaneous binding rate sharply declined with increasing Pluronic-F127 input. We determined that the saturation dose of TPGS on AG-NCs was approximately 10:10 (w/w) and recommend it as a key criterion for nanocrystal formulation. Although AG-NCs exhibited a marginally faster dissolution rate, they possessed better mucus-penetrating and transmembrane transport capacities and significantly enhanced oral absorption compared to AG-MCs. These findings give insights into the impact of a stabilizer during the preparation process and the oral absorption of drug nanocrystals.
Collapse
Affiliation(s)
- Bingwen Ding
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhenting Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jianjia Su
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jieying Zhou
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Shihao Xu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
- School of Chinese Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Luo
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Houlin Su
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Ying Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Wei Xiong
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
5
|
Inam W, Vladyka A, Pylvänäinen JW, Solis J, Tokic D, Kankaanpää P, Zhang H. An imaging scheme to study the flow dynamics of co-flow regimes in microfluidics: implications for nanoprecipitation. LAB ON A CHIP 2024. [PMID: 39529491 DOI: 10.1039/d4lc00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Co-flow microfluidics, in addition to its applications in droplet generation, has gained popularity for use with miscible solvent systems (continuous microfluidics). By leveraging the short diffusional distances in miniature devices, processes like nanomaterial synthesis can be precisely tailored for high-throughput production. In this context, the manipulation of flow regimes-from laminar to vortex formation, as well as the generation of turbulent and turbulent jet flows-plays a significant role in optimizing these processes. Therefore, a detailed understanding of fluid interactions within microchannels is crucial. Imaging with tracer particles is a commonly used approach to study fluid behavior. Alternatively, label-free imaging methodologies are rarely employed for studying fluid dynamics. In this pursuit, we present a new imaging-based scheme to explore fluid interactions in various co-flow regimes through optical flow analysis, specifically using Gaussian window mean squared error (MSE). By examining fluid flow characteristics such as flow intensities (caused by fluctuations) and the projected movement of fluid spots, we characterize slow vortexing and chaotic flow behaviors in co-flow regimes. Consequently, we use imaging data to illustrate the influence of co-flow regimes on particle synthesis. This new tool provides the scientific community with an innovative method to study fluid interactions, which can be further explored to develop a more effective understanding of fluid mixing and optimize fluid manipulation in microfluidic devices.
Collapse
Affiliation(s)
- Wali Inam
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland.
| | - Anton Vladyka
- Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto, Finland
| | - Joanna W Pylvänäinen
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
| | - Junel Solis
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dado Tokic
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pasi Kankaanpää
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland.
- Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
6
|
Almeida DRS, Gil JF, Guillot AJ, Li J, Pinto RJB, Santos HA, Gonçalves G. Advances in Microfluidic-Based Core@Shell Nanoparticles Fabrication for Cancer Applications. Adv Healthc Mater 2024; 13:e2400946. [PMID: 38736024 DOI: 10.1002/adhm.202400946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Current research in cancer therapy focuses on personalized therapies, through nanotechnology-based targeted drug delivery systems. Particularly, controlled drug release with nanoparticles (NPs) can be designed to safely transport various active agents, optimizing delivery to specific organs and tumors, minimizing side effects. The use of microfluidics (MFs) in this field has stood out against conventional methods by allowing precise control over parameters like size, structure, composition, and mechanical/biological properties of nanoscale carriers. This review compiles applications of microfluidics in the production of core-shell NPs (CSNPs) for cancer therapy, discussing the versatility inherent in various microchannel and/or micromixer setups and showcasing how these setups can be utilized individually or in combination, as well as how this technology allows the development of new advances in more efficient and controlled fabrication of core-shell nanoformulations. Recent biological studies have achieved an effective, safe, and controlled delivery of otherwise unreliable encapsulants such as small interfering RNA (siRNA), plasmid DNA (pDNA), and cisplatin as a result of precisely tuned fabrication of nanocarriers, showing that this technology is paving the way for innovative strategies in cancer therapy nanofabrication, characterized by continuous production and high reproducibility. Finally, this review analyzes the technical, biological, and technological limitations that currently prevent this technology from becoming the standard.
Collapse
Affiliation(s)
- Duarte R S Almeida
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| | - João Ferreira Gil
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, Burjassot, Valencia, 46100, Spain
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Jiachen Li
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Ricardo J B Pinto
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Gil Gonçalves
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| |
Collapse
|
7
|
Du J, Shi LL, Jiang WW, Liu XA, Wu XH, Huang XX, Huo MW, Shi LZ, Dong J, Jiang X, Huang R, Cao QR, Zhang W. Crafting Docetaxel-Loaded Albumin Nanoparticles Through a Novel Thermal-Driven Self-Assembly/Microfluidic Combination Technology: Formulation, Process Optimization, Stability, and Bioavailability. Int J Nanomedicine 2024; 19:5071-5094. [PMID: 38846644 PMCID: PMC11155381 DOI: 10.2147/ijn.s457482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Background The commercial docetaxel (DTX) formulation causes severe side effects due to polysorbate 80 and ethanol. Novel surfactant-free nanoparticle (NP) systems are needed to improve bioavailability and reduce side effects. However, controlling the particle size and stability of NPs and improving the batch-to-batch variation are the major challenges. Methods DTX-loaded bovine serum albumin nanoparticles (DTX-BSA-NPs) were prepared by a novel thermal-driven self-assembly/microfluidic technology. Single-factor analysis and orthogonal test were conducted to obtain the optimal formulation of DTX-BSA-NPs in terms of particle size, encapsulation efficiency (EE), and drug loading (DL). The effects of oil/water flow rate and pump pressure on the particle size, EE, and DL were investigated to optimize the preparation process of DTX-BSA-NPs. The drug release, physicochemical properties, stability, and pharmacokinetics of NPs were evaluated. Results The optimized DTX-BSA-NPs were uniform, with a particle size of 118.30 nm, EE of 89.04%, and DL of 8.27%. They showed a sustained release of 70% over 96 hours and an increased stability. There were some interactions between the drug and excipients in DTX-BSA-NPs. The half-life, mean residence time, and area under the curve (AUC) of DTX-BSA-NPs increased, but plasma clearance decreased when compared with DTX. Conclusion The thermal-driven self-assembly/microfluidic combination method effectively produces BSA-based NPs that improve the bioavailability and stability of DTX, offering a promising alternative to traditional formulations.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Li-Li Shi
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Wei-Wei Jiang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xue-Ai Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xin-Hong Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xiang-Xiang Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ming-Wei Huo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ling-Zhi Shi
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Jingjian Dong
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Xiaohong Jiang
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Renyu Huang
- College of Social Science, Soochow University, Institute of Culture and Tourism Development, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| |
Collapse
|
8
|
Petrova SL, Pavlova E, Pokorný V, Sincari V. Effect of polymer concentration on the morphology of the PHPMAA- g-PLA graft copolymer nanoparticles produced by microfluidics nanoprecipitation. NANOSCALE ADVANCES 2024; 6:1992-1996. [PMID: 38633038 PMCID: PMC11019477 DOI: 10.1039/d3na01038d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Successful generation of micelles, vesicles, and/or worms with controllable sizes was achieved through the self-assembly process of the poly[N-(2-hydroxypropyl)]methacrylamide-g-polylactide (PHPMAA-g-PLA) graft copolymer within a microfluidic channel. A product diagram was created to illustrate various morphologies associated with different polymer concentrations, all while maintaining a constant flow velocity ratio between water and the polymer solution.
Collapse
Affiliation(s)
- Svetlana Lukáš Petrova
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Václav Pokorný
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Vladimir Sincari
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| |
Collapse
|
9
|
Shen Y, Gwak H, Han B. Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics. Analyst 2024; 149:614-637. [PMID: 38083968 PMCID: PMC10842755 DOI: 10.1039/d3an01739g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Numerous innovative nanoparticle formulations of drugs and biologics, named nano-formulations, have been developed in the last two decades. However, methods for their scaled-up production are still lagging, as the amount needed for large animal tests and clinical trials is typically orders of magnitude larger. This manufacturing challenge poses a critical barrier to successfully translating various nano-formulations. This review focuses on how microfluidics technology has become a powerful tool to overcome this challenge by synthesizing various nano-formulations with improved particle properties and product purity in large quantities. This microfluidic-based manufacturing is enabled by microfluidic mixing, which is capable of the precise and continuous control of the synthesis of nano-formulations. We further discuss the specific applications of hydrodynamic flow focusing, a staggered herringbone micromixer, a T-junction mixer, a micro-droplet generator, and a glass capillary on various types of nano-formulations of polymeric, lipid, inorganic, and nanocrystals. Various separation and purification microfluidic methods to enhance the product purity are reviewed, including acoustofluidics, hydrodynamics, and dielectrophoresis. We further discuss the challenges of microfluidics being used by broader research and industrial communities. We also provide future outlooks of its enormous potential as a decentralized approach for manufacturing nano-formulations.
Collapse
Affiliation(s)
- Yingnan Shen
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Hogyeong Gwak
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| |
Collapse
|
10
|
Rosenfeld J, Ganachaud F, Lee D. Nanocomposite colloids prepared by the Ouzo effect. J Colloid Interface Sci 2024; 653:1753-1762. [PMID: 37827013 DOI: 10.1016/j.jcis.2023.09.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
HYPOTHESIS The organization of nanoparticles within nanocomposite colloids can imbue added functionality to these suprastructures. We hypothesize that the arrangement of nanoparticles in nanocomposite colloids can be systematically controlled by inducing co-precipitation of oil and a hydrophilic polymer in the presence of nanoparticles with a range of wetting properties. This process will produce oil core/polymer shell nanocapsules with nanoparticles strategically positioned within the suprastructures. EXPERIMENTS Coprecipitation of oil and polymer in the presence of nanoparticles is performed in glass capillary microfluidics. Silica nanoparticles of varying surface properties and morphology are used to investigate the relationship between nanoparticle wetting properties and nanocolloid morphology. The features of the nanocomposites formed are investigated using electron microscopy, sessile drop, and zeta potential measurements. FINDINGS When spherical nanoparticles with wetting properties ranging from hydrophilic to hydrophobic are used, the nanocomposite morphologies formed range from nanoparticles partially engulfed in the polymer shell to nanoparticles embedded in the oil core of the nanocapsule. The number of nanoparticles introduced in the nanocomposite is adjusted by changing their concentration in the precursor solution. The structure of nanocolloids formed with non-spherical or hollow silica nanoparticles depends on their wetting properties.
Collapse
Affiliation(s)
- Joseph Rosenfeld
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104, United States.
| | - Francois Ganachaud
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA-Lyon, Université Jean Monnet, UMR5223, Ingénierie des Matériaux Polymères, F69621 Villeurbanne Cedex, France.
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
11
|
Filippov SK, Khusnutdinov R, Murmiliuk A, Inam W, Zakharova LY, Zhang H, Khutoryanskiy VV. Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results. MATERIALS HORIZONS 2023; 10:5354-5370. [PMID: 37814922 DOI: 10.1039/d3mh00717k] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
In this focus article, we provide a scrutinizing analysis of transmission electron microscopy (TEM) and dynamic light scattering (DLS) as the two common methods to study the sizes of nanoparticles with focus on the application in pharmaceutics and drug delivery. Control over the size and shape of nanoparticles is one of the key factors for many biomedical systems. Particle size will substantially affect their permeation through biological membranes. For example, an enhanced permeation and retention effect requires a very narrow range of sizes of nanoparticles (50-200 nm) and even a minor deviation from these values will substantially affect the delivery of drug nanocarriers to the tumour. However, amazingly a great number of research papers in pharmaceutics and drug delivery report a striking difference in nanoparticle size measured by the two most popular experimental techniques (TEM and DLS). In some cases, this difference was reported to be 200-300%, raising the question of which size measurement result is more trustworthy. In this focus article, we primarily focus on the physical aspects that are responsible for the routinely observed mismatch between TEM and DLS results. Some of these factors such as concentration and angle dependencies are commonly underestimated and misinterpreted. We convincingly show that correctly used experimental procedures and a thorough analysis of results generated using both methods can eliminate the DLS and TEM data mismatch completely or will make the results much closer to each other. Also, we provide a clear roadmap for drug delivery and pharmaceutical researchers to conduct reliable DLS measurements.
Collapse
Affiliation(s)
- Sergey K Filippov
- School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, UK.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Ramil Khusnutdinov
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan, 420126 Kazan, Russian Federation
| | - Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Wali Inam
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Str., 420088 Kazan, Russian Federation
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | |
Collapse
|
12
|
Huang Y, Liu C, Feng Q, Sun J. Microfluidic synthesis of nanomaterials for biomedical applications. NANOSCALE HORIZONS 2023; 8:1610-1627. [PMID: 37723984 DOI: 10.1039/d3nh00217a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The field of nanomaterials has progressed dramatically over the past decades with important contributions to the biomedical area. The physicochemical properties of nanomaterials, such as the size and structure, can be controlled through manipulation of mass and heat transfer conditions during synthesis. In particular, microfluidic systems with rapid mixing and precise fluid control are ideal platforms for creating appropriate synthesis conditions. One notable example of microfluidics-based synthesis is the development of lipid nanoparticle (LNP)-based mRNA vaccines with accelerated clinical translation and robust efficacy during the COVID-19 pandemic. In addition to LNPs, microfluidic systems have been adopted for the controlled synthesis of a broad range of nanomaterials. In this review, we introduce the fundamental principles of microfluidic technologies including flow field- and multiple field-based methods for fabricating nanoparticles, and discuss their applications in the biomedical field. We conclude this review by outlining several major challenges and future directions in the implementation of microfluidic synthesis of nanomaterials.
Collapse
Affiliation(s)
- Yanjuan Huang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Feng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Caggiano NJ, Nayagam SK, Wang LZ, Wilson BK, Lewis P, Jahangir S, Priestley RD, Prud'homme RK, Ristroph KD. Sequential Flash NanoPrecipitation for the scalable formulation of stable core-shell nanoparticles with core loadings up to 90. Int J Pharm 2023; 640:122985. [PMID: 37121493 PMCID: PMC10262063 DOI: 10.1016/j.ijpharm.2023.122985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
Flash NanoPrecipitation (FNP) is a scalable, single-step process that uses rapid mixing to prepare nanoparticles with a hydrophobic core and amphiphilic stabilizing shell. Because the two steps of particle self-assembly - (1) core nucleation and growth and (2) adsorption of a stabilizing polymer onto the growing core surface - occur simultaneously during FNP, nanoparticles formulated at core loadings above approximately 70% typically exhibit poor stability or do not form at all. Additionally, a fundamental limit on the concentration of total solids that can be introduced into the FNP process has been reported previously. These limits are believed to share a common mechanism: entrainment of the stabilizing polymer into the growing particle core, leading to destabilization and aggregation. Here, we demonstrate a variation of FNP which separates the nucleation and stabilization steps of particle formation into separate sequential mixers. This scheme allows the hydrophobic core to nucleate and grow in the first mixing chamber unimpeded by adsorption of the stabilizing polymer, which is later introduced to the growing nuclei in the second mixer. Using this Sequential Flash NanoPrecipitation (SNaP) technique, we formulate stable nanoparticles with up to 90% core loading by mass and at 6-fold higher total input solids concentrations than typically reported.
Collapse
Affiliation(s)
- Nicholas J Caggiano
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Satya K Nayagam
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Leon Z Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Brian K Wilson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Parker Lewis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Shadman Jahangir
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Princeton Materials Institute, Princeton University, Princeton, NJ 08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Kurt D Ristroph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
14
|
Zhang P, Liu Y, Feng G, Li C, Zhou J, Du C, Bai Y, Hu S, Huang T, Wang G, Quan P, Hirvonen J, Fan J, Santos HA, Liu D. Controlled Interfacial Polymer Self-Assembly Coordinates Ultrahigh Drug Loading and Zero-Order Release in Particles Prepared under Continuous Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211254. [PMID: 36802103 DOI: 10.1002/adma.202211254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Indexed: 06/02/2023]
Abstract
Microparticles are successfully engineered through controlled interfacial self-assembly of polymers to harmonize ultrahigh drug loading with zero-order release of protein payloads. To address their poor miscibility with carrier materials, protein molecules are transformed into nanoparticles, whose surfaces are covered with polymer molecules. This polymer layer hinders the transfer of cargo nanoparticles from oil to water, achieving superior encapsulation efficiency (up to 99.9%). To control payload release, the polymer density at the oil-water interface is enhanced, forming a compact shell for microparticles. The resultant microparticles can harvest up to 49.9% mass fraction of proteins with zero-order release kinetics in vivo, enabling an efficient glycemic control in type 1 diabetes. Moreover, the precise control of engineering process offered through continuous flow results in high batch-to-batch reproducibility and, ultimately, excellent scale-up feasibility.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Yingxin Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Guobing Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jun Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Chunyang Du
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuancheng Bai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianhe Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Guan Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Quan
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Dongfei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, 401135, China
| |
Collapse
|
15
|
Rosenfeld J, Ganachaud F, Lee D. Modulation of Oil/Polymer Nanocapsule Size via Phase Diagram-Guided Microfluidic Coprecipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5477-5485. [PMID: 37015180 DOI: 10.1021/acs.langmuir.3c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Flow-based nanoprecipitation of different solutes via rapid mixing of two miscible liquids is a scalable strategy for manufacturing nanoparticles with various shapes and morphologies. Controlling the size of nanoparticles in flow-based nanoprecipitation, however, is often left to empirical variations in the flow rate ratios or the total flow rate of the two streams. In this work, we investigate the coprecipitations of oil and polymer to form nanocapsules via the Ouzo effect using glass capillary microfluidics across a range of mixing conditions. In the range of flow rates studied, the two streams mix convectively in micro-vortices formed at the junction of the two stream inlets. Using computational fluid dynamics simulations and glass capillary microfluidic nanoprecipitation, we establish a relationship between the precipitation conditions occurring experimentally in situ and the location on the ternary Ouzo phase diagram where precipitation is taking place. We find that a key variable in the resulting average diameter of the fabricated capsules is the degree of supersaturation experienced by both the oil and the polymer in the vortex zone of the device, showing a strong correlation between the two values. The control over the nanocapsule size by varying the extent of supersaturation of both precipitants is demonstrated by using two oils having distinct phase diagrams. This work provides a systematic approach to controlling the size of nanoparticles fabricated via continuous nanoprecipitation by linking the in situ flow conditions to ternary phase diagram behavior, enabling accurate control over nanocapsule size.
Collapse
Affiliation(s)
- Joseph Rosenfeld
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Francois Ganachaud
- Complex Assemblies of Soft Matter, UMI 3254, Solvay/CNRS/UPenn, 350 George Patterson Boulevard, Bristol, Pennsylvania 19007, United States
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA-Lyon, Université Jean Monnet, UMR5223, Ingénierie des Matériaux Polymères, F69621 Villeurbanne Cedex, France
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Swetha K, Kotla NG, Tunki L, Jayaraj A, Bhargava SK, Hu H, Bonam SR, Kurapati R. Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines. Vaccines (Basel) 2023; 11:658. [PMID: 36992242 PMCID: PMC10059764 DOI: 10.3390/vaccines11030658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid nanoparticles (LNPs) have recently emerged as one of the most advanced technologies for the highly efficient in vivo delivery of exogenous mRNA, particularly for COVID-19 vaccine delivery. LNPs comprise four different lipids: ionizable lipids, helper or neutral lipids, cholesterol, and lipids attached to polyethylene glycol (PEG). In this review, we present recent the advances and insights for the design of LNPs, as well as their composition and properties, with a subsequent discussion on the development of COVID-19 vaccines. In particular, as ionizable lipids are the most critical drivers for complexing the mRNA and in vivo delivery, the role of ionizable lipids in mRNA vaccines is discussed in detail. Furthermore, the use of LNPs as effective delivery vehicles for vaccination, genome editing, and protein replacement therapy is explained. Finally, expert opinion on LNPs for mRNA vaccines is discussed, which may address future challenges in developing mRNA vaccines using highly efficient LNPs based on a novel set of ionizable lipids. Developing highly efficient mRNA delivery systems for vaccines with improved safety against some severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains difficult.
Collapse
Affiliation(s)
- K. Swetha
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Niranjan G. Kotla
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Lakshmi Tunki
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Arya Jayaraj
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
17
|
Känkänen V, Fernandes M, Liu Z, Seitsonen J, Hirvonen SP, Ruokolainen J, Pinto JF, Hirvonen J, Balasubramanian V, Santos HA. Microfluidic preparation and optimization of sorafenib-loaded poly(ethylene glycol-block-caprolactone) nanoparticles for cancer therapy applications. J Colloid Interface Sci 2023; 633:383-395. [PMID: 36462264 DOI: 10.1016/j.jcis.2022.11.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The use of amphiphilic block copolymers to generate colloidal delivery systems for hydrophobic drugs has been the subject of extensive research, with several formulations reaching the clinical development stages. However, to generate particles of uniform size and morphology, with high encapsulation efficiency, yield and batch-to-batch reproducibility remains a challenge, and various microfluidic technologies have been explored to tackle these issues. Herein, we report the development and optimization of poly(ethylene glycol)-block-(ε-caprolactone) (PEG-b-PCL) nanoparticles for intravenous delivery of a model drug, sorafenib. We developed and optimized a glass capillary microfluidic nanoprecipitation process and studied systematically the effects of formulation and process parameters, including different purification techniques, on product quality and batch-to-batch variation. The optimized formulation delivered particles with a spherical morphology, small particle size (dH < 80 nm), uniform size distribution (PDI < 0.2), and high drug loading degree (16 %) at 54 % encapsulation efficiency. Furthermore, the stability and in vitro drug release were evaluated, showing that sorafenib was released from the NPs in a sustained manner over several days. Overall, the study demonstrates a microfluidic approach to produce sorafenib-loaded PEG-b-PCL NPs and provides important insight into the effects of nanoprecipitation parameters and downstream processing on product quality.
Collapse
Affiliation(s)
- Voitto Känkänen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Drug Carrier and Depot Systems, Bayer Oy, FI-20210 Turku, Finland.
| | - Micaela Fernandes
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; iMed-ULisboa, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal; Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan, 1, 9713 AV Groningen, the Netherlands
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja, 2, FI-02150 Espoo, Finland
| | - Sami-Pekka Hirvonen
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja, 2, FI-02150 Espoo, Finland
| | - João F Pinto
- iMed-ULisboa, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan, 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
18
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Recent advances in mixing-induced nanoprecipitation: from creating complex nanostructures to emerging applications beyond biomedicine. NANOSCALE 2023; 15:3594-3609. [PMID: 36727557 DOI: 10.1039/d3nr00280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mixing-induced nanoprecipitation (MINP) is an efficient, controllable, scalable, versatile, and cost-effective technique for the preparation of nanoparticles. In addition to the formulation of drugs, MINP has attracted tremendous interest in other fields. In this review, we highlight recent advances in the preparation of nanoparticles with complex nanostructures via MINP and their emerging applications beyond biomedicine. First, the mechanisms of nanoprecipitation and four mixing approaches for MINP are briefly discussed. Next, three strategies for the preparation of nanoparticles with complex nanostructures including sequential nanoprecipitation, controlling phase separation, and incorporating inorganic nanoparticles, are summarized. Then, emerging applications including the engineering of catalytic nanomaterials, environmentally friendly photovoltaic inks, colloidal surfactants for the preparation of Pickering emulsions, and green templates for the synthesis of nanomaterials, are reviewed. Furthermore, we discuss the structure-function relationships to gain more insight into design principles for the development of functional nanoparticles via MINP. Finally, the remaining issues and future applications are discussed. This review will stimulate the development of nanoparticles with complex nanostructures and their broader applications beyond biomedicine.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
19
|
Scott DM, Nikoubashman A, Register RA, Priestley RD, Prud'homme RK. Rapid Precipitation of Ionomers for Stabilization of Polymeric Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:570-578. [PMID: 36577027 DOI: 10.1021/acs.langmuir.2c02850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polymeric colloids have shown potential as "building blocks" in applications ranging from formulations of Pickering emulsions and drug delivery systems to advanced materials, including colloidal crystals and composites. However, for applications requiring tunable properties of charged colloids, obstacles in fabrication can arise through limitations in process scalability and chemical versatility. In this work, the capabilities of flash nanoprecipitation (FNP), a scalable nanoparticle (NP) fabrication technology, are expanded to produce charged polystyrene colloids using sulfonated polystyrene ionomers as a new class of NP stabilizers. Through experimental exploration of formulation parameters, increases in the ionomer content are shown to reduce the particle size, mitigating a significant trade-off between the final particle size and inlet concentration; thus, expanding the processable material throughput of FNP. Further, the degree of sulfonation is found to impact stabilization with optimal performance achieved by selecting ionomers with intermediate (2.45-5.2 mol %) sulfonation. Simulations of single ionomer chains and their arrangement in multicomponent NPs provide molecular insights into the assembly and structure of NPs wherein the partitioning of ionomers to the particle surface depends on the polymer molecular weight and degree of sulfonation. By combining the insights from simulations with diffusion-limited growth kinetics and parametric fits to experimental data, a simple design formulation relation is proposed and validated. This work highlights the potential of ionomer-based stabilizers for controllably producing charged NP dispersions in a scalable manner.
Collapse
Affiliation(s)
- Douglas M Scott
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz55128, Germany
| | - Richard A Register
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey08544, United States
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
20
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
21
|
Maeki M, Uno S, Niwa A, Okada Y, Tokeshi M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J Control Release 2022; 344:80-96. [PMID: 35183654 PMCID: PMC8851889 DOI: 10.1016/j.jconrel.2022.02.017] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Abstract
In 2021, mRNA vaccines against COVID-19 were approved by the Food and Drug Administration. mRNA vaccines are important for preventing severe COVID-19 and returning to normal life. The development of RNA-delivery technology, including mRNA vaccines, has been investigated worldwide for ~30 years. Lipid nanoparticles (LNPs) are a breakthrough technology that stably delivers RNA to target organs, and RNA-loaded LNP-based nanomedicines have been studied for the development of vaccines and nanomedicines for RNA-, gene-, and cell-based therapies. Recently, microfluidic devices and technologies have attracted attention for the production of LNPs, particularly RNA-loaded LNPs. Microfluidics provides many advantages for RNA-loaded LNP production, including precise LNP size controllability, high reproducibility, high-throughput optimization of LNP formulation, and continuous LNP-production processes. In this review, we summarize microfluidic-based RNA-loaded LNP production and its applications in RNA-based therapy and genome editing.
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan; JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Shuya Uno
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Ayuka Niwa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Yuto Okada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| |
Collapse
|
22
|
Küçüktürkmen B, Inam W, Howaili F, Gouda M, Prabhakar N, Zhang H, Rosenholm JM. Microfluidic-Assisted Fabrication of Dual-Coated pH-Sensitive Mesoporous Silica Nanoparticles for Protein Delivery. BIOSENSORS 2022; 12:181. [PMID: 35323451 PMCID: PMC8946851 DOI: 10.3390/bios12030181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 05/08/2023]
Abstract
Microfluidics has become a popular method for constructing nanosystems in recent years, but it can also be used to coat other materials with polymeric layers. The polymeric coating may serve as a diffusion barrier against hydrophilic compounds, a responsive layer for controlled release, or a functional layer introduced to a nanocomposite for achieving the desired surface chemistry. In this study, mesoporous silica nanoparticles (MSNs) with enlarged pores were synthesized to achieve high protein loading combined with high protein retention within the MSN system with the aid of a microfluidic coating. Thus, MSNs were first coated with a cationic polyelectrolyte, poly (diallyldimethylammonium chloride) (PDDMA), and to potentially further control the protein release, a second coating of a pH-sensitive polymer (spermine-modified acetylated dextran, SpAcDEX) was deposited by a designed microfluidic device. The protective PDDMA layer was first formed under aqueous conditions, whereby the bioactivity of the protein could be maintained. The second coating polymer, SpAcDEX, was preferred to provide pH-sensitive protein release in the intracellular environment. The optimized formulation was effectively taken up by the cells along with the loaded protein cargo. This proof-of-concept study thus demonstrated that the use of microfluidic technologies for the design of protein delivery systems has great potential in terms of creating multicomponent systems and preserving protein stability.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Wali Inam
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
| | - Fadak Howaili
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
| | - Mariam Gouda
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
- Turku Bioscience Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (W.I.); (F.H.); (M.G.); (N.P.); (J.M.R.)
| |
Collapse
|
23
|
Heredia NS, Vizuete K, Flores-Calero M, Pazmiño V. K, Pilaquinga F, Kumar B, Debut A. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS One 2022; 17:e0264825. [PMID: 35271644 PMCID: PMC8912140 DOI: 10.1371/journal.pone.0264825] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Poly(lactic-co-glycolic acid) is one of the most used polymers for drug delivery systems (DDSs). It shows excellent biocompatibility, biodegradability, and allows spatio-temporal control of the release of a drug by altering its chemistry. In spite of this, few formulations have reached the market. To characterize and optimize the drug release process, mathematical models offer a good alternative as they allow interpreting and predicting experimental findings, saving time and money. However, there is no general model that describes all types of drug release of polymeric DDSs. This study aims to perform a statistical comparison of several mathematical models commonly used in order to find which of them best describes the drug release profile from PLGA particles synthesized by nanoprecipitation method. For this purpose, 40 datasets extracted from scientific articles published since 2016 were collected. Each set was fitted by the models: order zero to fifth order polynomials, Korsmeyer-Peppas, Weibull and Hyperbolic Tangent Function. Some data sets had few observations that do not allow to apply statistic test, thus bootstrap resampling technique was performed. Statistic evidence showed that Hyperbolic Tangent Function model is the one that best fit most of the data.
Collapse
Affiliation(s)
- Nathaly S. Heredia
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
- * E-mail:
| | - Marco Flores-Calero
- Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Katherine Pazmiño V.
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Fernanda Pilaquinga
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Brajesh Kumar
- Department of Chemistry, TATA College, Chaibasa, Jharkhand, India
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
24
|
Kabay G, Manz A, Dincer C. Microfluidic Roadmap for Translational Nanotheranostics. SMALL METHODS 2022; 6:e2101217. [PMID: 34957704 DOI: 10.1002/smtd.202101217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Nanotheranostic materials (NTMs) shed light on the mechanisms responsible for complex diseases such as cancer because they enable making a diagnosis, monitoring the disease progression, and applying a targeted therapy simultaneously. However, several issues such as the reproducibility and mass production of NTMs hamper their application for clinical practice. To address these issues and facilitate the clinical application of NTMs, microfluidic systems have been increasingly used. This perspective provides a glimpse into the current state-of-art of NTM research, emphasizing the methods currently employed at each development stage of NTMs and the related open problems. This work reviews microfluidic technologies used to develop NTMs, ranging from the fabrication and testing of a single NTM up to their manufacturing on a large scale. Ultimately, a step-by-step vision on the future development of NTMs for clinical practice enabled by microfluidics techniques is provided.
Collapse
Affiliation(s)
- Gozde Kabay
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| | - Andreas Manz
- Korea Institute of Science and Technology (KIST) in Europe, 66123, Saarbrücken, Germany
| | - Can Dincer
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| |
Collapse
|
25
|
Tian F, Cai L, Liu C, Sun J. Microfluidic technologies for nanoparticle formation. LAB ON A CHIP 2022; 22:512-529. [PMID: 35048096 DOI: 10.1039/d1lc00812a] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functional nanoparticles (NPs) hold immense promise in diverse fields due to their unique biological, chemical, and physical properties associated with size or morphology. Microfluidic technologies featuring precise fluid manipulation have become versatile toolkits for manufacturing NPs in a highly controlled manner with low batch-to-batch variability. In this review, we present the fundamentals of microfluidic fabrication strategies, including mixing-, droplet-, and multiple field-based microfluidic methods. We highlight the formation of functional NPs using these microfluidic reactors, with an emphasis on lipid NPs, polymer NPs, lipid-polymer hybrid NPs, supramolecular NPs, metal and metal-oxide NPs, metal-organic framework NPs, covalent organic framework NPs, quantum dots, perovskite nanocrystals, biomimetic NPs, etc. we discuss future directions in microfluidic fabrication for accelerated development of functional NPs, such as device parallelization for large-scale NP production, highly efficient optimization of NP formulations, and AI-guided design of multi-step microfluidic reactors.
Collapse
Affiliation(s)
- Fei Tian
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Cai
- Department of Laboratory Medicine, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Ma S, Guo J, Tian Z, Meng T, Mai Y, Yang J. Multi-directionally evaluating the formation mechanism of 1,4-dihydropyridine drug nanosuspensions through experimental validation and computer-aided drug design. Drug Dev Ind Pharm 2022; 47:1587-1597. [PMID: 35037805 DOI: 10.1080/03639045.2022.2028824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The poor aqueous solubility of 1,4-dihydropyridine drugs needs to be solved urgently to improve the bioavailability. Nanotechnology can improve drug solubility and dissolution by reducing particle size, but usually a specific polymer or surfactant is required for stabilization. In this study, Poloxamer-407(P-407) was screened as the optimal stabilize through energy simulation, molecular docking and particle size. morphological study, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, Raman, in vitro dissolution test and molecular simulation of interactions were utilized to explore the formation mechanisms of four 1,4-dihydropyridine drugs/P-407 nanosuspensions. The result shows that the optimized nanosuspensions had the particle size in the nano-size range and maintained the original crystal state. The in vitro dissolution rate of the nanosuspension was 3-4 times higher than the corresponding API and could reduce the restriction of drug dissolution in different pH environments. Raman spectroscopy, FTIR and molecular docking simulations provided strong supporting evidence for the formation mechanism of 1,4-dihydropyridine drugs/P-407 nanosuspensions at the molecular level, which confirmed that the stable intermolecular hydrogen bond adsorption and hydrophobic interaction were formed between the drug and P-407. This research will provide practical concepts and technologies, which are helpful to develop nanosuspensions for the same class of drugs.
Collapse
Affiliation(s)
- Shijie Ma
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Zonghua Tian
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Tingting Meng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Yaping Mai
- Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| |
Collapse
|
27
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Mater Today Bio 2022; 13:100208. [PMID: 35198957 PMCID: PMC8841842 DOI: 10.1016/j.mtbio.2022.100208] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Nanotechnology in medical applications, especially in oncology as drug delivery systems, has recently shown promising results. However, although these advances have been promising in the pre-clinical stages, the clinical translation of this technology is challenging. To create drug delivery systems with increased treatment efficacy for clinical translation, the physicochemical characteristics of nanoparticles such as size, shape, elasticity (flexibility/rigidity), surface chemistry, and surface charge can be specified to optimize efficiency for a given application. Consequently, interdisciplinary researchers have focused on producing biocompatible materials, production technologies, or new formulations for efficient loading, and high stability. The effects of design parameters can be studied in vitro, in vivo, or using computational models, with the goal of understanding how they affect nanoparticle biophysics and their interactions with cells. The present review summarizes the advances and technologies in the production and design of cancer nanomedicines to achieve clinical translation and commercialization. We also highlight existing challenges and opportunities in the field.
Collapse
Key Words
- CFL, Cell-free layer
- CGMD, Coarse-grained molecular dynamic
- Clinical translation
- DPD, Dissipative particle dynamic
- Drug delivery
- Drug loading
- ECM, Extracellular matrix
- EPR, Permeability and retention
- IFP, Interstitial fluid pressure
- MD, Molecular dynamic
- MDR, Multidrug resistance
- MEC, Minimum effective concentration
- MMPs, Matrix metalloproteinases
- MPS, Mononuclear phagocyte system
- MTA, Multi-tadpole assemblies
- MTC, Minimum toxic concentration
- Nanomedicine
- Nanoparticle design
- RBC, Red blood cell
- TAF, Tumor-associated fibroblast
- TAM, Tumor-associated macrophage
- TIMPs, Tissue inhibitor of metalloproteinases
- TME, Tumor microenvironment
- Tumor microenvironment
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| | | | | | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Lance L. Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
28
|
Illath K, Kar S, Gupta P, Shinde A, Wankhar S, Tseng FG, Lim KT, Nagai M, Santra TS. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2021; 280:121247. [PMID: 34801251 DOI: 10.1016/j.biomaterials.2021.121247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Microfluidic platforms gain popularity in biomedical research due to their attractive inherent features, especially in nanomaterials synthesis. This review critically evaluates the current state of the controlled synthesis of nanomaterials using microfluidic devices. We describe nanomaterials' screening in microfluidics, which is very relevant for automating the synthesis process for biomedical applications. We discuss the latest microfluidics trends to achieve noble metal, silica, biopolymer, quantum dots, iron oxide, carbon-based, rare-earth-based, and other nanomaterials with a specific size, composition, surface modification, and morphology required for particular biomedical application. Screening nanomaterials has become an essential tool to synthesize desired nanomaterials using more automated processes with high speed and repeatability, which can't be neglected in today's microfluidic technology. Moreover, we emphasize biomedical applications of nanomaterials, including imaging, targeting, therapy, and sensing. Before clinical use, nanomaterials have to be evaluated under physiological conditions, which is possible in the microfluidic system as it stimulates chemical gradients, fluid flows, and the ability to control microenvironment and partitioning multi-organs. In this review, we emphasize the clinical evaluation of nanomaterials using microfluidics which was not covered by any other reviews. In the future, the growth of new materials or modification in existing materials using microfluidics platforms and applications in a diversity of biomedical fields by utilizing all the features of microfluidic technology is expected.
Collapse
Affiliation(s)
- Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, UK
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, India
| | - Syrpailyne Wankhar
- Department of Bioengineering, Christian Medical College Vellore, Vellore, India
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, South Korea
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
29
|
Microfluidic preparation and in vitro evaluation of iRGD-functionalized solid lipid nanoparticles for targeted delivery of paclitaxel to tumor cells. Int J Pharm 2021; 610:121246. [PMID: 34737115 DOI: 10.1016/j.ijpharm.2021.121246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 01/22/2023]
Abstract
Solid lipid nanoparticles (SLNs) can combine the advantages of different colloidal carriers and prevent some of their disadvantages. The production of nanoparticles by means of microfluidics represents a successful platform for industrial scale-up of nanoparticle manufacture in a reproducible way. The realisation of a microfluidic technique to obtain SLNs in a continuous and reproducible manner encouraged us to create surface functionalised SLNs for targeted drug release using the same procedure. A tumor homing peptide, iRGD, owning a cryptic C-end Rule (CendR) motif is responsible for neuropilin-1 (NRP-1) binding and for triggering extravasation and tumor penetration of the peptide. In this study, the Paclitaxel loaded-SLNs produced by microfluidics were functionalized with the iRGD peptide. The SLNs proved to be stable in aqueous medium andwere characterized by a Z-average under 150 nm, a polydispersity index below 0.2, a zeta-potential between -20 and -35 mV and a drug encapsulation efficiency around 40%. Moreover, in vitro cytotoxic effects and cellular uptake have been assessed using 2D and 3D tumour models of U87 glioblastoma cell lines. Overall, these results demonstrate that the surface functionalization of SLNs with iRGD allow better cellular uptake and cytotoxicity ability.
Collapse
|
30
|
Ejeta F. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine. Drug Des Devel Ther 2021; 15:3881-3891. [PMID: 34531650 PMCID: PMC8439440 DOI: 10.2147/dddt.s324580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the controlled drug delivery systems of nanomedicine bring many challenges to clinical practice. These difficulties can be attributed to the high batch-to-batch variations and insufficient production rate of traditional preparation methods, as well as a lack of technology for fast screening of nanoparticulate drug delivery structures with high correlation to in vivo tests. These problems may be addressed through microfluidic technology. Microfluidics, for example, can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but it can also continuously create three-dimensional environments to mimic physiological and/or pathological processes. This overview gives a top-level view of the microfluidic devices advanced to put together nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and therapeutic nanoparticles. Additionally, highlighting the current advances of microfluidic systems in fabricating the more and more practical fashions of the in vitro milieus for fast screening of nanoparticles was reviewed. Overall, microfluidic technology provides a promising technique to boost the scientific delivery of nanomedicine and nanoparticulate drug delivery systems. Nonetheless, digital microfluidics with droplets and liquid marbles is the answer to the problems of cumbersome external structures, in addition to the rather big pattern volume. As the latest work is best at the proof-of-idea of liquid-marble-primarily based on totally virtual microfluidics, computerized structures for developing liquid marble, and the controlled manipulation of liquid marble, including coalescence and splitting, are areas of interest for bringing this platform toward realistic use.
Collapse
Affiliation(s)
- Fikadu Ejeta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
31
|
Nanoprecipitation as a simple and straightforward process to create complex polymeric colloidal morphologies. Adv Colloid Interface Sci 2021; 294:102474. [PMID: 34311157 DOI: 10.1016/j.cis.2021.102474] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 01/19/2023]
Abstract
Polymeric nanoparticles are highly important functional nanomaterials for a large range of applications from therapeutics to energy. Advances in nanotechnology have enabled the engineering of multifunctional polymeric nanoparticles with a variety of shapes and inner morphologies. Thanks to its inherent simplicity, the nanoprecipitation technique has progressively become a popular approach to construct polymeric nanoparticles with precise control of nanostructure. The present review highlights the great capability of this technique in controlling the fabrication of various polymeric nanostructures of interest. In particular, we show here how the nanoprecipitation of either block copolymers or mixtures of homopolymers can afford a myriad of colloids displaying equilibrium (typically onion-like) or out-of-equilibrium (stacked lamellae, porous cores) morphologies, depending whether the system "freezes" while passing the glass transition or crystallization point of starting materials. We also show that core-shell morphologies, either from polymeric or oil/polymer mixtures, are attainable by this one-pot process. A final discussion proposes new directions to enlarge the scope and possible achievements of the process.
Collapse
|
32
|
Villalobos-Noriega JMA, Rodríguez-León E, Rodríguez-Beas C, Larios-Rodríguez E, Plascencia-Jatomea M, Martínez-Higuera A, Acuña-Campa H, García-Galaz A, Mora-Monroy R, Alvarez-Cirerol FJ, Rodríguez-Vázquez BE, Carillo-Torres RC, Iñiguez-Palomares RA. Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent. NANOSCALE RESEARCH LETTERS 2021; 16:118. [PMID: 34292415 PMCID: PMC8298724 DOI: 10.1186/s11671-021-03572-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/12/2021] [Indexed: 05/15/2023]
Abstract
In this work, we used a sequential method of synthesis for gold-silver bimetallic nanoparticles with core@shell structure (Au@AgNPs). Rumex hymenosepalus root extract (Rh), which presents high content in catechins and stilbenes, was used as reductor agent in nanoparticles synthesis. Size distribution obtained by Transmission Electron Microscopy (TEM) gives a mean diameter of 36 ± 11 nm for Au@AgNPs, 24 ± 4 nm for gold nanoparticles (AuNPs), and 13 ± 3 nm for silver nanoparticles (AgNPs). The geometrical shapes of NPs were principally quasi-spherical. The thickness of the silver shell over AuNPs is around 6 nm and covered by active biomolecules onto the surface. Nanoparticles characterization included high angle annular dark field images (HAADF) recorded with a scanning transmission electron microscope (STEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-Ray Diffraction (XRD), UV-Vis Spectroscopy, Zeta Potential, and Dynamic Light Scattering (DLS). Fourier Transform Infrared Spectrometer (FTIR), and X-ray Photoelectron Spectroscopy (XPS) show that nanoparticles are stabilized by extract molecules. A growth kinetics study was performed using the Gompertz model for microorganisms exposed to nanomaterials. The results indicate that AgNPs and Au@AgNPs affect the lag phase and growth rate of Escherichia coli and Candida albicans in a dose-dependent manner, with a better response for Au@AgNPs.
Collapse
Affiliation(s)
| | - Ericka Rodríguez-León
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico.
| | - César Rodríguez-Beas
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Eduardo Larios-Rodríguez
- Department of Chemical Engineering and Metallurgy, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Maribel Plascencia-Jatomea
- Department of Research and Postgraduate in Food, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Aarón Martínez-Higuera
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Heriberto Acuña-Campa
- Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Alfonso García-Galaz
- Food Science Coordination, Research Center in Food and Development (CIAD), Road Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Roberto Mora-Monroy
- Department of Physic Researching, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | | | | | - Roberto Carlos Carillo-Torres
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Ramón A Iñiguez-Palomares
- Nanotechnology Graduate Program, Department of Physics, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
33
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
34
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
35
|
Shepherd SJ, Issadore D, Mitchell MJ. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 2021; 274:120826. [PMID: 33965797 PMCID: PMC8752123 DOI: 10.1016/j.biomaterials.2021.120826] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics-devices that manipulate fluids on a micrometer scale-have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques-such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.
Collapse
Affiliation(s)
- Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Zhao S, Huang PH, Zhang H, Rich J, Bachman H, Ye J, Zhang W, Chen C, Xie Z, Tian Z, Kang P, Fu H, Huang TJ. Fabrication of tunable, high-molecular-weight polymeric nanoparticles via ultrafast acoustofluidic micromixing. LAB ON A CHIP 2021; 21:2453-2463. [PMID: 33978043 PMCID: PMC8213440 DOI: 10.1039/d1lc00265a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
High-molecular-weight polymeric nanoparticles are critical to increasing the loading efficacy and tuning the release profile of targeted molecules for medical diagnosis, imaging, and therapeutics. Although a number of microfluidic approaches have attained reproducible nanoparticle synthesis, it is still challenging to fabricate nanoparticles from high-molecular-weight polymers in a size and structure-controlled manner. In this work, an acoustofluidic platform is developed to synthesize size-tunable, high-molecular-weight (>45 kDa) poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-PEG) nanoparticles without polymer aggregation by exploiting the characteristics of complete and ultrafast mixing. Moreover, the acoustofluidic approach achieves two features that have not been achieved by existing microfluidic approaches: (1) multi-step (≥2) sequential nanoprecipitation in a single device, and (2) synthesis of core-shell structured PLGA-PEG/lipid nanoparticles with high molecular weights. The developed platform expands microfluidic potential in nanomaterial synthesis, where high-molecular-weight polymers, multiple reagents, or sequential nanoprecipitations are needed.
Collapse
Affiliation(s)
- Shuaiguo Zhao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Po-Hsun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Heying Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Hunter Bachman
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Jennifer Ye
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Wenfen Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Chuyi Chen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Zhemiao Xie
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Zhenhua Tian
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Putong Kang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Hai Fu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
37
|
Vu KB, Phung TK, Tran TT, Mugemana C, Giang HN, Nhi TLP. Polystyrene nanoparticles prepared by nanoprecipitation: A recyclable template for fabricating hollow silica. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Dong B, Xue N, Mu G, Wang M, Xiao Z, Dai L, Wang Z, Huang D, Qian H, Chen W. Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel method, and quick evaluation via machine learning. ULTRASONICS SONOCHEMISTRY 2021; 73:105485. [PMID: 33588207 PMCID: PMC7896189 DOI: 10.1016/j.ultsonch.2021.105485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 05/14/2023]
Abstract
Due to the high reactivity of Ag+ and uncontrolled growth process, the AgNPs produced by conventional Lee-Meisel method always exhibited larger particle size (30-200 nm) and polydisperse morphology (including spherical, triangular, and rod-like shape). An ultrasound-intensified Lee-Meisel (UILM) method is developed in this study to environmental-friendly and controllable synthesize monodisperse spherical AgNPs (~3.7 nm). Effects of Ag:citrate ratio (1:3 or 5:4), ultrasound power (300 to 1200 W) and reaction time (4 to 24 min) on the physical-chemical properties of AgNPs are investigated systematically. The transmission electron microscope (TEM) images, UV-Vis spectra, average particle size, zeta potential and pH value all demonstrate that crystallization and digestive ripening processes are facilitated in the presence of ultrasound irradiation. Therefore, both chemical reaction rate and mass transfer rate are enhanced to accelerate primary nucleation and inhibit uncontrolled particle growth, leading to the formation of monodisperse spherical AgNPs. Moreover, a machine learning approach - Decision Tree Regressor in conjunction with Shapley value analysis reveal the concentration of reactants is a more important feature affecting the particle.
Collapse
Affiliation(s)
- Bin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning Xue
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Guohao Mu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Mengjun Wang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Zonghua Xiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Lin Dai
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhixiang Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
39
|
Wang L, Yu M, Yang H. Recent Progress in the Diagnosis and Precise Nanocarrier-Mediated Therapy of Inflammatory Bowel Disease. J Inflamm Res 2021; 14:1701-1716. [PMID: 33953597 PMCID: PMC8092629 DOI: 10.2147/jir.s304101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
The effective colon drug delivery remains to be an international frontier research in inflammatory bowel disease (IBD) therapy. The exploration and research of nanocarrier-based nanomedicine with great potential brings new opportunities for IBD therapy and diagnoses. Functional nanocarriers with varying morphology and characteristics can not only effectively avoid the destruction of the complex gastrointestinal (GI) tract microenvironment but also endow drugs with target therapy and improved bioavailability, thus elevating therapeutic efficacy. In this review, we illustrated several challenges in IBD therapy, then emphasis on some latest research progress of nanoparticles based therapy of oral administration, rectal administration and parenteral administration, as well as IBD diagnoses. Finally, we described the future perspective of nanocarriers in the treatment and diagnoses of IBD.
Collapse
Affiliation(s)
- Liucan Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
40
|
Wang S, Fontana F, Shahbazi MA, Santos HA. Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chem Commun (Camb) 2021; 57:4212-4229. [PMID: 33913978 DOI: 10.1039/d1cc00811k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acetalated dextran (Ac-DEX) is a pH-responsive dextran derivative polymer. Prepared by a simple acetalation reaction, Ac-DEX has tunable acid-triggered release profile. Despite its relatively short research history, Ac-DEX has shown great potential in various therapeutic applications. Furthermore, the recent functionalization of Ac-DEX makes versatile derivatives with additional properties. Herein, we summarize the cutting-edge development of Ac-DEX and related polymers. Specifically, we focus on the chemical synthesis, nano- and micro-particle fabrication techniques, the controlled-release mechanisms, and the rational design Ac-DEX-based of drug delivery systems in various biomedical applications. Finally, we briefly discuss the challenges and future perspectives in the field.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
41
|
Fabozzi A, Della Sala F, di Gennaro M, Solimando N, Pagliuca M, Borzacchiello A. Polymer based nanoparticles for biomedical applications by microfluidic techniques: from design to biological evaluation. Polym Chem 2021. [DOI: 10.1039/d1py01077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of microfluidic technologies represents a new strategy to produce and test drug delivery systems.
Collapse
Affiliation(s)
- Antonio Fabozzi
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Mario di Gennaro
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Nicola Solimando
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Maurizio Pagliuca
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| |
Collapse
|
42
|
Lu H, Tang SY, Yun G, Li H, Zhang Y, Qiao R, Li W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis-A Review. BIOSENSORS 2020; 10:E165. [PMID: 33153122 PMCID: PMC7693962 DOI: 10.3390/bios10110165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023]
Abstract
Nanoparticles (NPs) and microparticles (MPs) have been widely used in different areas of research such as materials science, energy, and biotechnology. On-demand synthesis of NPs and MPs with desired chemical and physical properties is essential for different applications. However, most of the conventional methods for producing NPs/MPs require bulky and expensive equipment, which occupies large space and generally need complex operation with dedicated expertise and labour. These limitations hinder inexperienced researchers to harness the advantages of NPs and MPs in their fields of research. When problems individual researchers accumulate, the overall interdisciplinary innovations for unleashing a wider range of directions are undermined. In recent years, modular and integrated systems are developed for resolving the ongoing dilemma. In this review, we focus on the development of modular and integrated systems that assist the production of NPs and MPs. We categorise these systems into two major groups: systems for the synthesis of (1) NPs and (2) MPs; systems for producing NPs are further divided into two sections based on top-down and bottom-up approaches. The mechanisms of each synthesis method are explained, and the properties of produced NPs/MPs are compared. Finally, we discuss existing challenges and outline the potentials for the development of modular and integrated systems.
Collapse
Affiliation(s)
- Hongda Lu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Haiyue Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA;
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weihua Li
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
43
|
Baranyai Z, Soria‐Carrera H, Alleva M, Millán‐Placer AC, Lucía A, Martín‐Rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zsuzsa Baranyai
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - Maria Alleva
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Ana C. Millán‐Placer
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza Zaragoza 50009 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - José A. Aínsa
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Jesús M. la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| |
Collapse
|
44
|
Dong B, Qian H, Xue C, Yang X, Li G, Chen GZ. Controllable synthesis of hierarchical micro/nano structured FePO4 particles under synergistic effects of ultrasound irradiation and impinging stream. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Sun Z, Wu B, Ren Y, Wang Z, Zhao C, Hai M, Weitz DA, Chen D. Diverse Particle Carriers Prepared by Co‐Precipitation and Phase Separation: Formation and Applications. Chempluschem 2020; 86:49-58. [DOI: 10.1002/cplu.202000497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Zhu Sun
- Institute of Process Equipment College of Energy Engineering Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
| | - Baiheng Wu
- Institute of Process Equipment College of Energy Engineering Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
| | - Yixin Ren
- Institute of Process Equipment College of Energy Engineering Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
| | - Zhongzhen Wang
- Institute of Process Equipment College of Energy Engineering Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St Lucia QLD 4072 Australia
| | - Mingtan Hai
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Dong Chen
- Institute of Process Equipment College of Energy Engineering Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Zheda Road No. 38 Hangzhou 310027 China
| |
Collapse
|
46
|
Liu Y, Yang G, Jin S, Xu L, Zhao CX. Development of High-Drug-Loading Nanoparticles. Chempluschem 2020; 85:2143-2157. [PMID: 32864902 DOI: 10.1002/cplu.202000496] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Formulating drugs into nanoparticles offers many attractive advantages over free drugs including improved bioavailability, minimized toxic side effects, enhanced drug delivery, feasibility of incorporating other functions such as controlled release, imaging agents for imaging, targeting delivery, and loading more than one drug for combination therapies. One of the key parameters is drug loading, which is defined as the mass ratio of drug to drug-loaded nanoparticles. Currently, most nanoparticle systems have relatively low drug loading (<10 wt%), and developing methods to increase drug loading remains a challenge. This Minireview presents an overview of recent research on developing nanoparticles with high drug loading (>10 wt%) from the perspective of synthesis strategies, including post-loading, co-loading, and pre-loading. Based on these three different strategies, various nanoparticle systems with different materials and drugs are summarized and discussed in terms of their synthesis methods, drug loadings, encapsulation efficiencies, release profiles, stabilities, and their applications in drug delivery. The advantages and disadvantages of these strategies are presented with an objective of providing useful design rules for future development of high-drug-loading nanoparticles.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Song Jin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
47
|
Wu B, Yang C, Li B, Feng L, Hai M, Zhao CX, Chen D, Liu K, Weitz DA. Active Encapsulation in Biocompatible Nanocapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002716. [PMID: 32578400 DOI: 10.1002/smll.202002716] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Co-precipitation is generally refers to the co-precipitation of two solids and is widely used to prepare active-loaded nanoparticles. Here, it is demonstrated that liquid and solid can precipitate simultaneously to produce hierarchical core-shell nanocapsules that encapsulate an oil core in a polymer shell. During the co-precipitation process, the polymer preferentially deposits at the oil/water interface, wetting both the oil and water phases; the behavior is determined by the spreading coefficients and driven by the energy minimization. The technique is applicable to directly encapsulate various oil actives and avoid the use of toxic solvent or surfactant during the preparation process. The obtained core-shell nanocapsules harness the advantage of biocompatibility, precise control over the shell thickness, high loading capacity, high encapsulation efficiency, good dispersity in water, and improved stability against oxidation. The applications of the nanocapsules as delivery vehicles are demonstrated by the excellent performances of natural colorant and anti-cancer drug-loaded nanocapsules. The core-shell nanocapsules with a controlled hierarchical structure are, therefore, ideal carriers for practical applications in food, cosmetics, and drug delivery.
Collapse
Affiliation(s)
- Baiheng Wu
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, China
| | - Chenjing Yang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, China
| | - Bo Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Leyun Feng
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, China
| | - Mingtan Hai
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Chun-Xia Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dong Chen
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Kai Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
48
|
Yang G, Liu Y, Jin S, Zhao C. Development of Core‐Shell Nanoparticle Drug Delivery Systems Based on Biomimetic Mineralization. Chembiochem 2020; 21:2871-2879. [DOI: 10.1002/cbic.202000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| | - Song Jin
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| |
Collapse
|
49
|
A Microarray Screening Platform with an Experimental Conditions Gradient Generator for the High-Throughput Synthesis of Micro/Nanosized Calcium Phosphates. Int J Mol Sci 2020; 21:ijms21113939. [PMID: 32486293 PMCID: PMC7312371 DOI: 10.3390/ijms21113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022] Open
Abstract
Calcium phosphates (CaP) represent an impressive kind of biomedical material due to their excellent biocompatibility, bioactivity, and biodegradability. Their morphology and structure highly influence their properties and applications. Whilst great progress has been made in research on biomedical materials, there is still a need to develop a method that can rapidly synthesize and screen micro/nanosized biomedical materials. Here, we utilized a microarray screening platform that could provide the high-throughput synthesis of biomedical materials and screen the vital reaction conditions. With this screening platform, 9 × 9 sets of parallel experiments could be conducted simultaneously with one- or two-dimensions of key reaction condition gradients. We used this platform to establish a one-dimensional gradient of the pH and citrate concentration and a two-dimensional gradient of both the Ca/P ratio and pH to synthesize CaP particles with various morphologies. This screening platform also shows the potential to be extended to other reaction systems for rapid high-throughput screening.
Collapse
|
50
|
Hamdallah SI, Zoqlam R, Erfle P, Blyth M, Alkilany AM, Dietzel A, Qi S. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Int J Pharm 2020; 584:119408. [PMID: 32407942 DOI: 10.1016/j.ijpharm.2020.119408] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/25/2022]
Abstract
Using micro-sized channels to manipulate fluids is the essence of microfluidics which has wide applications from analytical chemistry to material science and cell biology research. Recently, using microfluidic-based devices for pharmaceutical research, in particular for the fabrication of micro- and nano-particles, has emerged as a new area of interest. The particles that can be prepared by microfluidic devices can range from micron size droplet-based emulsions to nano-sized drug loaded polymeric particles. Microfluidic technology poses unique advantages in terms of the high precision of the mixing regimes and control of fluids involved in formulation preparation. As a result of this, monodispersity of the particles prepared by microfluidics is often recognised as being a particularly advantageous feature in comparison to those prepared by conventional large-scale mixing methods. However, there is a range of practical drawbacks and challenges of using microfluidics as a direct micron- and nano-particle manufacturing method. Technological advances are still required before this type of processing can be translated for application by the pharmaceutical industry. This review focuses specifically on the application of microfluidics for pharmaceutical solid nanoparticle preparation and discusses the theoretical foundation of using the nanoprecipitation principle to generate particles and how this is translated into microfluidic design and operation.
Collapse
Affiliation(s)
- Sherif I Hamdallah
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Randa Zoqlam
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | - Peer Erfle
- Technische Universität Braunschweig, Institut für Mikrotechnik / Institute of Microtechnology, Alte Salzdahlumer Str. 203, Geb. 1A, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Mark Blyth
- School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Andreas Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik / Institute of Microtechnology, Alte Salzdahlumer Str. 203, Geb. 1A, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|