1
|
Yuan Y, Qian C, Sun S, Lei Y, Yang J, Yang L, Fu B, Yan S, Zhu R, Li H, Chen X, Zuo Z, Li BB, Xiao YF, Zhong H, Wang C, Jin K, Gong Q, Xu X. Enhanced Spontaneous Emission Rate and Luminescence Intensity of CsPbBr 3 Quantum Dots Using a High- Q Microdisk Cavity. J Phys Chem Lett 2025; 16:1095-1102. [PMID: 39844533 DOI: 10.1021/acs.jpclett.4c03615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Perovskite quantum dots (QDs) are high-efficiency optoelectronic materials attracting great interest, but further improvement in the luminescence efficiency is crucial for their application. In this work, we enhance both the spontaneous emission rate and the photoluminescence (PL) intensity of CsPbBr3 QDs by coupling them to a high quality (Q) factor SiO2 microdisk cavity. Compared to conventional metal plasmonic cavities, the dielectric cavity structure suppresses the effects of quenching and energy transfer, which could introduce complex fluctuations and nonradiative decays. As such, we obtain a 5.9-fold enhancement of the PL intensity and a 5.6-fold enhancement of the emission rate. Moreover, the different enhancement behaviors for phonon sidebands allow us to further explore the different components in the broad emission peak of ensembled QDs. These results demonstrate the great potential of microdisk cavities in enhancing the luminescence in optoelectronic devices and exploring the exciton-photophysics of perovskite QDs.
Collapse
Affiliation(s)
- Yu Yuan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenjiang Qian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shipei Sun
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yuechen Lei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingnan Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Longlong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Bowen Fu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Sai Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hancong Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiqing Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zhanchun Zuo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiulai Xu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
2
|
Sanders SE, Zhang M, Javed A, Ogilvie JP. Expanding the bandwidth of fluorescence-detected two-dimensional electronic spectroscopy using a broadband continuum probe pulse pair. OPTICS EXPRESS 2024; 32:8887-8902. [PMID: 38571135 DOI: 10.1364/oe.516963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
We demonstrate fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) with a broadband, continuum probe pulse pair in the pump-probe geometry. The approach combines a pump pulse pair generated by an acousto-optic pulse-shaper with precise control of the relative pump pulse phase and time delay with a broadband, continuum probe pulse pair created using the Translating Wedge-based Identical pulses eNcoding System (TWINS). The continuum probe expands the spectral range of the detection axis and lengthens the waiting times that can be accessed in comparison to implementations of F-2DES using a single pulse-shaper. We employ phase-cycling of the pump pulse pair and take advantage of the separation of signals in the frequency domain to isolate rephasing and non-rephasing signals and optimize the signal-to-noise ratio. As proof of principle, we demonstrate broadband F-2DES on a laser dye and bacteriochlorophyll a.
Collapse
|
3
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
4
|
Stingel AM, Leemans J, Hens Z, Geiregat P, Petersen PB. Narrow homogeneous linewidths and slow cooling dynamics across infrared intra-band transitions in n-doped HgSe colloidal quantum dots. J Chem Phys 2023; 158:114202. [PMID: 36948807 DOI: 10.1063/5.0139795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Intra-band transitions in colloidal quantum dots (QDs) are promising for opto-electronic applications in the mid-IR spectral region. However, such intra-band transitions are typically very broad and spectrally overlapping, making the study of individual excited states and their ultrafast dynamics very challenging. Here, we present the first full spectrum two-dimensional continuum infrared (2D CIR) spectroscopy study of intrinsically n-doped HgSe QDs, which exhibit mid-infrared intra-band transitions in their ground state. The obtained 2D CIR spectra reveal that underneath the broad absorption line shape of ∼500 cm-1, the transitions exhibit surprisingly narrow intrinsic linewidths with a homogeneous broadening of 175-250 cm-1. Furthermore, the 2D IR spectra are remarkably invariant, with no sign of spectral diffusion dynamics at waiting times up to 50 ps. Accordingly, we attribute the large static inhomogeneous broadening to the distribution of size and doping level of the QDs. In addition, the two higher-lying P-states of the QDs can be clearly identified in the 2D IR spectra along the diagonal with a cross-peak. However, there is no indication of cross-peak dynamics indicating that, despite the strong spin-orbit coupling in HgSe, transitions between the P-states must be longer than our maximum waiting time of 50 ps. This study illustrates a new frontier of 2D IR spectroscopy enabling the study of intra-band carrier dynamics in nanocrystalline materials across the entire mid-infrared spectrum.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Jari Leemans
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Abécassis B, Greenberg MW, Bal V, McMurtry BM, Campos MP, Guillemeney L, Mahler B, Prevost S, Sharpnack L, Hendricks MP, DeRosha D, Bennett E, Saenz N, Peters B, Owen JS. Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals. Chem Sci 2022; 13:4977-4983. [PMID: 35655873 PMCID: PMC9067564 DOI: 10.1039/d1sc06134h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/25/2022] [Indexed: 01/03/2023] Open
Abstract
Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid "burst of nucleation" (La Mer, JACS, 1950, 72(11), 4847-4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and 13C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (k G) across all three precursors. However, the magnitude of the k G and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results.
Collapse
Affiliation(s)
- Benjamin Abécassis
- Laboratoire de Chimie, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1 F69342 Lyon France
| | | | - Vivekananda Bal
- Department of Chemical Engineering, University of Illinois Urbana-Champaign Illinois 10027 USA
| | - Brandon M McMurtry
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Michael P Campos
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Lilian Guillemeney
- Laboratoire de Chimie, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1 F69342 Lyon France
| | - Benoit Mahler
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière F-69622 Villeurbanne France
| | - Sylvain Prevost
- Institut Laue-Langevin 71 Avenue des Martyrs 38042 Grenoble France
| | - Lewis Sharpnack
- Department of Earth Science, University of California Santa Barbara CA 93106 USA
| | - Mark P Hendricks
- Department of Chemistry, Columbia University New York New York 10027 USA
- Department of Chemistry, Whitman College Walla Walla WA 99362 USA
| | - Daniel DeRosha
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Ellie Bennett
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Natalie Saenz
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Baron Peters
- Department of Chemical Engineering, University of Illinois Urbana-Champaign Illinois 10027 USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University New York New York 10027 USA
| |
Collapse
|
6
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
7
|
Ruhman S. Solving Quantum-Dot Excitonic Riddles with Absolute Pump-Probe Spectroscopy. J Phys Chem Lett 2021; 12:9336-9343. [PMID: 34549584 DOI: 10.1021/acs.jpclett.1c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Absolute absorption changes in molecular flash photolysis experiments are routinely translated into molar extinction coefficients and oscillator strengths of reactive intermediates. These direct quantum chemical investigation and allow precise concentration readings in later experiments. In this Perspective we show how a similar approach can deliver crucial information for interpreting transient absorption spectra in colloidal semiconductor quantum dots. The intrinsic complexity of such samples stemming from the inhomogeneity of particle size, shape, and surface chemistry poses unique challenges to mechanistic assignment of ultrafast pump-probe measurements. We will describe applications of this approach to elucidate the photophysics of quantum confined nanocrystals made of various semiconducting materials. These case studies demonstrate how, faced with conflicting interpretations, it has pointed in the right direction in assessing single and multiple exciton generation and relaxation, in searches for ultrafast carrier trapping and scavenging, and in tests of band edge level structure and state degeneracies.
Collapse
Affiliation(s)
- Sanford Ruhman
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
8
|
Stingel AM, Petersen PB. Full spectrum 2D IR spectroscopy reveals below-gap absorption and phonon dynamics in the mid-IR bandgap semiconductor InAs. J Chem Phys 2021; 155:104202. [PMID: 34525815 DOI: 10.1063/5.0056217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the mid-infrared spectral region spans more than 3000 cm-1, ultrafast mid-IR spectroscopies are normally limited to the spectral bandwidth that can be generated in optical parametric amplifiers-typically a few hundred cm-1. As such, the spectral coverage in conventional two dimensional infrared (2D IR) spectroscopy captures only about 1% of the full potential 2D mid-IR spectrum. Here, we present 2D IR spectra using a continuum source as both the excitation and probe pulses, thus capturing close to the full 2D IR spectrum. While the continuum pulses span the entire mid-IR range, they are currently too weak to efficiently excite molecular vibrational modes but strong enough to induce electronic responses and excite phonons in semiconductors. We demonstrate the full spectrum 2D IR spectroscopy of the mid-IR bandgap semiconductor indium arsenide with a bandgap at 2855 cm-1. The measured response extends far below the bandgap and is due to field-induced band-shifting, causing probe absorption below the bandgap. While the band-shifting induces an instantaneous response that exists only during pulse overlap, the 2D IR spectra reveal additional off-diagonal features that decay on longer timescales. These longer-lived off-diagonal features result from coherent phonons excited via a Raman-like process at specific excitation frequencies. This study illustrates that the full spectrum 2D IR spectroscopy of electronic states in the mid-IR is possible with current continuum pulse technology and is effective in characterizing semiconductor properties.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Ryu J, Park SD, Baranov D, Rreza I, Owen JS, Jonas DM. Relations between absorption, emission, and excited state chemical potentials from nanocrystal 2D spectra. SCIENCE ADVANCES 2021; 7:eabf4741. [PMID: 34049871 PMCID: PMC8163088 DOI: 10.1126/sciadv.abf4741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
For quantum-confined nanomaterials, size dispersion causes a static broadening of spectra that has been difficult to measure and invalidates all-optical methods for determining the maximum photovoltage that an excited state can generate. Using femtosecond two-dimensional (2D) spectroscopy to separate size dispersion broadening of absorption and emission spectra allows a test of single-molecule generalized Einstein relations between such spectra for colloidal PbS quantum dots. We show that 2D spectra and these relations determine the thermodynamic standard chemical potential difference between the lowest excited and ground electronic states, which gives the maximum photovoltage. Further, we find that the static line broadening from many slightly different quantum dot structures allows single-molecule generalized Einstein relations to determine the average single-molecule linewidth from Stokes' frequency shift between ensemble absorption and emission spectra.
Collapse
Affiliation(s)
- Jisu Ryu
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, USA
- General Atomics Electromagnetic Systems Group (GA-EMS), 6685 Gunpark Dr. #230, Boulder, CO 80301, USA
| | - Samuel D Park
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, USA
- U.S. Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375, USA
| | - Dmitry Baranov
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, USA
- Nanochemistry Department, Italian Institute of Technology, via Morego 30, Genova, GE, 16163, Italy
| | - Iva Rreza
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - David M Jonas
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, USA.
| |
Collapse
|
10
|
Skurlov I, Sokolova A, Galle T, Cherevkov S, Ushakova E, Baranov A, Lesnyak V, Fedorov A, Litvin A. Temperature-Dependent Photoluminescent Properties of PbSe Nanoplatelets. NANOMATERIALS 2020; 10:nano10122570. [PMID: 33371429 PMCID: PMC7767437 DOI: 10.3390/nano10122570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/17/2023]
Abstract
Semiconductor colloidal nanoplatelets (NPLs) are a promising new class of nanostructures that can bring much impact on lightning technologies, light-emitting diodes (LED), and laser fabrication. Indeed, great progress has been made in optimizing the optical properties of the NPLs for the visible spectral range, which has already made the implementation of a number of effective devices on their basis possible. To date, state-of-the-art near-infrared (NIR)-emitting NPLs are significantly inferior to their visible-range counterparts, although it would be fair to say that they received significantly less research attention so far. In this study, we report a comprehensive analysis of steady-state and time-dependent photoluminescence (PL) properties of four monolayered (ML) PbSe NPLs. The PL measurements are performed in a temperature range of 78–300 K, and their results are compared to those obtained for CdSe NPLs and PbSe quantum dots (QDs). We show that multiple emissive states, both band-edge and trap-related, are responsible for the formation of the NPLs’ PL band. We demonstrate that the widening of the PL band is caused by the inhomogeneous broadening rather than homogeneous one, and analyze the possible contributions to PL broadening.
Collapse
Affiliation(s)
- Ivan Skurlov
- Center of Information Optical Technology, The Laboratory “Optics of Quantum Nanostructures”, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia; (I.S.); (A.S.); (S.C.); (E.U.); (A.B.); (A.F.)
| | - Anastasiia Sokolova
- Center of Information Optical Technology, The Laboratory “Optics of Quantum Nanostructures”, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia; (I.S.); (A.S.); (S.C.); (E.U.); (A.B.); (A.F.)
| | - Tom Galle
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany; (T.G.); (V.L.)
| | - Sergei Cherevkov
- Center of Information Optical Technology, The Laboratory “Optics of Quantum Nanostructures”, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia; (I.S.); (A.S.); (S.C.); (E.U.); (A.B.); (A.F.)
| | - Elena Ushakova
- Center of Information Optical Technology, The Laboratory “Optics of Quantum Nanostructures”, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia; (I.S.); (A.S.); (S.C.); (E.U.); (A.B.); (A.F.)
| | - Alexander Baranov
- Center of Information Optical Technology, The Laboratory “Optics of Quantum Nanostructures”, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia; (I.S.); (A.S.); (S.C.); (E.U.); (A.B.); (A.F.)
| | - Vladimir Lesnyak
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany; (T.G.); (V.L.)
| | - Anatoly Fedorov
- Center of Information Optical Technology, The Laboratory “Optics of Quantum Nanostructures”, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia; (I.S.); (A.S.); (S.C.); (E.U.); (A.B.); (A.F.)
| | - Aleksandr Litvin
- Center of Information Optical Technology, The Laboratory “Optics of Quantum Nanostructures”, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia; (I.S.); (A.S.); (S.C.); (E.U.); (A.B.); (A.F.)
- Correspondence: ; Tel.: +7-950-0286240
| |
Collapse
|
11
|
Brosseau P, Palato S, Seiler H, Baker H, Kambhampati P. Fifth-order two-quantum absorptive two-dimensional electronic spectroscopy of CdSe quantum dots. J Chem Phys 2020; 153:234703. [PMID: 33353320 DOI: 10.1063/5.0021381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-quantum variants of two-dimensional electronic spectroscopy (2DES) have previously been used to characterize multi-exciton interactions in molecules and semiconductor nanostructures though many implementations are limited by phasing procedures or non-resonant signals. We implement 2DES using phase-cycling to simultaneously measure one-quantum and two-quantum spectra in colloidal CdSe quantum dots. In the pump-probe geometry, fully absorptive spectra are automatically acquired by measuring the sum of the rephasing and nonrephasing signals. Fifth-order two-quantum spectroscopy allows for direct access to multi-exciton states that may be obscured in excited state absorption signals due to population relaxation or third-order two-quantum spectra due to the non-resonant response.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Samuel Palato
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Hélène Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Harry Baker
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | |
Collapse
|
12
|
Abstract
The microscopic origin and timescale of the fluctuations of the energies of electronic states has a significant impact on the properties of interest of electronic materials, with implication in fields ranging from photovoltaic devices to quantum information processing. Spectroscopic investigations of coherent dynamics provide a direct measurement of electronic fluctuations. Modern multidimensional spectroscopy techniques allow the mapping of coherent processes along multiple time or frequency axes and thus allow unprecedented discrimination between different sources of electronic dephasing. Exploiting modern abilities in coherence mapping in both amplitude and phase, we unravel dissipative processes of electronic coherences in the model system of CdSe quantum dots (QDs). The method allows the assignment of the nature of the observed coherence as vibrational or electronic. The expected coherence maps are obtained for the coherent longitudinal optical (LO) phonon, which serves as an internal standard and confirms the sensitivity of the technique. Fast dephasing is observed between the first two exciton states, despite their shared electron state and common environment. This result is contrary to predictions of the standard effective mass model for these materials, in which the exciton levels are strongly correlated through a common size dependence. In contrast, the experiment is in agreement with ab initio molecular dynamics of a single QD. Electronic dephasing in these materials is thus dominated by the realistic electronic structure arising from fluctuations at the atomic level rather than static size distribution. The analysis of electronic dephasing thereby uniquely enables the study of electronic fluctuations in complex materials.
Collapse
|
13
|
Palato S, Seiler H, Baker H, Sonnichsen C, Brosseau P, Kambhampati P. Investigating the electronic structure of confined multiexcitons with nonlinear spectroscopies. J Chem Phys 2020; 152:104710. [DOI: 10.1063/1.5142180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- S. Palato
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| | - H. Seiler
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| | - H. Baker
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| | - C. Sonnichsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| | - P. Brosseau
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| | - P. Kambhampati
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
14
|
Do TN, Khyasudeen MF, Nowakowski PJ, Zhang Z, Tan HS. Measuring Ultrafast Spectral Diffusion and Correlation Dynamics by Two-Dimensional Electronic Spectroscopy. Chem Asian J 2019; 14:3992-4000. [PMID: 31595651 DOI: 10.1002/asia.201900994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 11/07/2022]
Abstract
The frequency fluctuation correlation function (FFCF) measures the spectral diffusion of a state's transition while the frequency fluctuation cross-correlation function (FXCF) measures the correlation dynamics between the transitions of two separate states. These quantities contain a wealth of information on how the chromophores or excitonic states interact and couple with its environment and with each other. We summarize the experimental implementations and theoretical considerations of using two-dimensional electronic spectroscopy to characterize FFCFs and FXCFs. Applications can be found in systems such as the chlorophyll pigment molecules in light-harvesting complexes and CdSe nanomaterials.
Collapse
Affiliation(s)
- Thanh Nhut Do
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - M Faisal Khyasudeen
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore.,Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Paweł J Nowakowski
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - Zhengyang Zhang
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - Howe-Siang Tan
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| |
Collapse
|
15
|
Liu A, Almeida DB, Bae WK, Padilha LA, Cundiff ST. Simultaneous Existence of Confined and Delocalized Vibrational Modes in Colloidal Quantum Dots. J Phys Chem Lett 2019; 10:6144-6150. [PMID: 31556615 DOI: 10.1021/acs.jpclett.9b02474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coupling to phonon modes is a primary mechanism of excitonic dephasing and energy loss in semiconductors. However, low-energy phonons in colloidal quantum dots and their coupling to excitons are poorly understood because their experimental signatures are weak and usually obscured by the unavoidable inhomogeneous broadening of colloidal dot ensembles. We use multidimensional coherent spectroscopy at cryogenic temperatures to extract the homogeneous nonlinear optical response of excitons in a CdSe/CdZnS core/shell colloidal quantum dot ensemble. A comparison to the simulation provides evidence that the observed lineshapes arise from the coexistence of confined and delocalized vibrational modes, both of which couple strongly to excitons in CdSe/CdZnS colloidal quantum dots.
Collapse
Affiliation(s)
- Albert Liu
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Diogo B Almeida
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Wan-Ki Bae
- SKKU Advanced Institute of Nano Technology , Sungkyunkwan University , Suwon , 16419 Gyeonggi , Republic of Korea
| | - Lazaro A Padilha
- Instituto de Fisica "Gleb Wataghin" , Universidade de Campinas , Campinas , 13083-970 Sao Paulo , Brazil
| | - Steven T Cundiff
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
16
|
Green PB, Li Z, Wilson MWB. PbS Nanocrystals Made with Excess PbCl 2 Have an Intrinsic Shell that Reduces Their Stokes Shift. J Phys Chem Lett 2019; 10:5897-5901. [PMID: 31536364 DOI: 10.1021/acs.jpclett.9b01841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of excess PbCl2 in the synthesis of PbS nanocrystals has become a convenient route to produce narrow-line-width infrared emitters. However, these materials have found limited adoption in optoelectronic devices-even compared to PbS nanocrystals prepared with lead oleate. Here, using both transmission electron microscopy and small-angle X-ray scattering, we show that excess PbCl2 results in larger-diameter PbS nanocrystals for the same excitonic features, which is consistent with the formation of an intrinsic insulating shell. We observe further differences in excess-lead-chloride nanocrystals consistent with a shell, including lattice strain and smaller Stokes shifts for intermediate sizes (⌀: 4.8-6.8 nm) that match the passivation/rigidification predicted for a chloride-terminate surface. Our results clarify and rationalize the divergent properties of PbS nanocrystals prepared using different synthetic methodologies, give guidance for device implementation, and offer a new target for synthetic control.
Collapse
Affiliation(s)
- Philippe B Green
- Department of Chemistry , University of Toronto , Toronto M5S3H6 , Ontario , Canada
| | - Ziqi Li
- Department of Chemistry , University of Toronto , Toronto M5S3H6 , Ontario , Canada
| | - Mark W B Wilson
- Department of Chemistry , University of Toronto , Toronto M5S3H6 , Ontario , Canada
| |
Collapse
|
17
|
Azzaro MS, Le AK, Wang H, Roberts ST. Ligand-Enhanced Energy Transport in Nanocrystal Solids Viewed with Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2019; 10:5602-5608. [PMID: 31475832 DOI: 10.1021/acs.jpclett.9b02040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We examine CdSe NCs functionalized with the exciton-delocalizing ligand phenyldithiocarbamate (PDTC) using two-dimensional electronic spectroscopy (2DES). PDTC forms hybrid molecular orbitals with CdSe's valence band that relax hole spatial confinement and create potential for enhanced exciton migration in NC solids. We find PDTC broadens the intrinsic line width of individual NCs in solution by ∼30 meV, which we ascribe to modulation of NC band edge states by ligand motion. In PDTC-exchanged solids, photoexcited excitons are mobile and rapidly move to low-energy NC sites over ∼30 ps. We also find placing excitons into high-energy states can accelerate their rate of migration by over an order of magnitude, which we attribute to enhanced spatial delocalization of these states that improves inter-NC wave function overlap. Our work demonstrates that NC surface ligands can actively facilitate inter-NC energy transfer and highlights principles to consider when designing ligands for this application.
Collapse
Affiliation(s)
- Michael S Azzaro
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Aaron K Le
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Honghao Wang
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Sean T Roberts
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
18
|
Seiler H, Palato S, Sonnichsen C, Baker H, Kambhampati P. Seeing Multiexcitons through Sample Inhomogeneity: Band-Edge Biexciton Structure in CdSe Nanocrystals Revealed by Two-Dimensional Electronic Spectroscopy. NANO LETTERS 2018; 18:2999-3006. [PMID: 29589448 DOI: 10.1021/acs.nanolett.8b00470] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The electronic structure of multiexcitons significantly impacts the performance of nanostructures in lasing and light-emitting applications. However, these multiexcitons remain poorly understood due to their complexity arising from many-body physics. Standard transient-absorption and photoluminescence spectroscopies are unable to unambiguously distinguish effects of sample inhomogeneity from exciton-biexciton interactions. Here, we exploit the energy and time resolution of two-dimensional electronic spectroscopy to access the electronic structure of the band-edge biexciton in colloidal CdSe quantum dots. By removing effects of inhomogeneities, we show that the band-edge biexciton structure must consist of a discrete manifold of electronic states. Furthermore, the biexciton states within the manifold feature distinctive binding energies. Our findings have direct implications for optical gain thresholds and efficiency droop in light-emitting devices and provide experimental measures of many-body physics in nanostructures.
Collapse
Affiliation(s)
- Hélène Seiler
- Department of Chemistry , McGill University , Montreal , Quebec H3A 0B8 , Canada
| | - Samuel Palato
- Department of Chemistry , McGill University , Montreal , Quebec H3A 0B8 , Canada
| | - Colin Sonnichsen
- Department of Chemistry , McGill University , Montreal , Quebec H3A 0B8 , Canada
| | - Harry Baker
- Department of Chemistry , McGill University , Montreal , Quebec H3A 0B8 , Canada
| | | |
Collapse
|
19
|
Spencer AP, Hutson WO, Irgen-Gioro S, Harel E. Exciton-Phonon Spectroscopy of Quantum Dots Below the Single-Particle Homogeneous Line Width. J Phys Chem Lett 2018; 9:1503-1508. [PMID: 29510628 DOI: 10.1021/acs.jpclett.8b00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate that high-dimensionality coherent spectroscopy yields "super-resolved" spectra whereby peaks may be localized far below their homogeneous line width by resolving them across multiple, coherently coupled dimensions. We implement this technique using a fifth-order photon-echo spectroscopy called Gradient-Assisted Multidimensional Electronic-Raman Spectroscopy (GAMERS) that combines resonant and nonresonant excitation to disperse the optical response across three spectral dimensions: two involving excitonic transitions and one that encodes phonon energies. In analogy to super-resolution localization microscopies, which separate spatially overlapping signals in time, GAMERS isolates signals spectrally using combined electronic and nuclear resolution. Optical phonon lines in a colloidal solution of CdSe quantum dots at room temperature separated by less than 150 μeV are resolved despite the homogeneous line width of these transitions being nearly an order of magnitude broader. The frequency difference between these phonon modes is attributed to softening of the longitudinal phonon mode upon excitation to the lowest exciton state. Further, such phonon mode selectivity yields spectra with electronic line widths that approach the single particle limit. Through this enhanced spectral resolution, the GAMERS method yields insights into the nature of coupling between longitudinal optical and acoustic phonons and specific excitonic transitions that were previously hidden.
Collapse
Affiliation(s)
- Austin P Spencer
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - William O Hutson
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Shawn Irgen-Gioro
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Elad Harel
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
20
|
Biswas S, Husek J, Baker LR. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection–absorption spectroscopy. Chem Commun (Camb) 2018; 54:4216-4230. [DOI: 10.1039/c8cc01745j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time-resolved XUV reflection–absorption spectroscopy probes core-to-valence transitions to reveal state-specific electron dynamics at surfaces.
Collapse
|
21
|
Stoll T, Branchi F, Réhault J, Scotognella F, Tassone F, Kriegel I, Cerullo G. Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures. J Phys Chem Lett 2017; 8:2285-2290. [PMID: 28467717 PMCID: PMC6053257 DOI: 10.1021/acs.jpclett.7b00682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/03/2017] [Indexed: 05/21/2023]
Abstract
We use two-dimensional electronic spectroscopy (2DES) to disentangle the separate electron and hole relaxation pathways and dynamics of CdTe nanorods on a sub-100 fs time scale. By simultaneously exciting and probing the first three excitonic transitions (S1, S2, and S3) and exploiting the unique combination of high temporal and spectral resolution of 2DES, we derive a complete picture for the state-selective carrier relaxation. We find that hot holes relax from the 1Σ3/2 to the 1Σ1/2 state (S2 → S1) with 30 ± 10 fs time constant, and the hot electrons relax from the Σ' to the Σ state (S3 → S1) with 50 ± 10 fs time constant. This observation would not have been possible with conventional transient absorption spectroscopy due to the spectral congestion of the transitions and the very fast relaxation time scales.
Collapse
Affiliation(s)
- Tatjana Stoll
- IFN-CNR, Dipartimento di Fisica,
Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Federico Branchi
- IFN-CNR, Dipartimento di Fisica,
Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Julien Réhault
- IFN-CNR, Dipartimento di Fisica,
Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Francesco Scotognella
- IFN-CNR, Dipartimento di Fisica,
Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Francesco Tassone
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Ilka Kriegel
- Department
of Nanochemistry, Instituto Italiano di
Tecnologia (IIT), via Morego, 30, 16163 Genova, Italy
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- I.K.: E-mail:
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica,
Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- G.C.: E-mail:
| |
Collapse
|
22
|
Gellen TA, Lem J, Turner DB. Probing Homogeneous Line Broadening in CdSe Nanocrystals Using Multidimensional Electronic Spectroscopy. NANO LETTERS 2017; 17:2809-2815. [PMID: 28422505 DOI: 10.1021/acs.nanolett.6b05068] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The finite spectral line width of an ensemble of CdSe nanocrystals arises from size and shape inhomogeneity and the single-nanocrystal spectrum itself. This line width directly limits the performance of nanocrystal-based devices, yet most optical measurements cannot resolve the underlying contributions. We use two-dimensional electronic spectroscopy (2D ES) to measure the line width of the band-edge exciton of CdSe nanocrystals as a function of radii and surface chemistry. We find that the homogeneous width decreases for increasing nanocrystal radius and that surface chemistry plays a critical role in controlling this line width. To explore the hypothesis that unpassivated trap states serve to broaden the homogeneous line width and to explain its size-dependence, we use 3D ES to identify the spectral signatures of exciton-phonon coupling to optical and acoustic phonons. We find enhanced coupling to optical phonon modes for nanocrystals that lack electron-passivating ligands, suggesting that localized surface charges enhance exciton-phonon coupling via the Fröhlich interaction. Lastly, the data reveal that spectral diffusion contributes negligibly to the homogeneous line width on subnanosecond time scales.
Collapse
Affiliation(s)
- Tobias A Gellen
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Jet Lem
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Daniel B Turner
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
23
|
Gilmore RH, Lee EMY, Weidman MC, Willard AP, Tisdale WA. Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids. NANO LETTERS 2017; 17:893-901. [PMID: 28100050 DOI: 10.1021/acs.nanolett.6b04201] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Energetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σhom2:σinh2 > 19:1, σinh/kBT < 0.4) can be realized if quantum dot batches are sufficiently monodisperse (δ ≲ 3.3%). The homogeneous line width is found to be an inverse function of quantum dot size, monotonically increasing from ∼25 meV for the largest quantum dots (5.8 nm diameter/0.92 eV energy) to ∼55 meV for the smallest (4.1 nm/1.3 eV energy). Furthermore, we show that intrinsic charge carrier hopping rates are faster for smaller quantum dots. This finding is the opposite of the mobility trend commonly observed in device measurements but is consistent with theoretical predictions. Fitting our data to a kinetic Monte Carlo model, we extract charge carrier hopping times ranging from 80 ps for the smallest quantum dots to over 1 ns for the largest, with the same ethanethiol ligand treatment. Additionally, we make the surprising observation that, in slightly polydisperse (δ ≲ 4%) quantum dot solids, structural disorder has a greater impact than energetic disorder in inhibiting charge carrier transport. These findings emphasize how small improvements in batch size dispersity can have a dramatic impact on intrinsic charge carrier hopping behavior and will stimulate further improvements in quantum dot device performance.
Collapse
Affiliation(s)
- Rachel H Gilmore
- Department of Chemical Engineering and ‡Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Y Lee
- Department of Chemical Engineering and ‡Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Mark C Weidman
- Department of Chemical Engineering and ‡Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Adam P Willard
- Department of Chemical Engineering and ‡Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering and ‡Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Campos MP, Hendricks MP, Beecher AN, Walravens W, Swain RA, Cleveland GT, Hens Z, Sfeir MY, Owen JS. A Library of Selenourea Precursors to PbSe Nanocrystals with Size Distributions near the Homogeneous Limit. J Am Chem Soc 2017; 139:2296-2305. [PMID: 28103035 DOI: 10.1021/jacs.6b11021] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a tunable library of N,N,N'-trisubstituted selenourea precursors and their reaction with lead oleate at 60-150 °C to form carboxylate-terminated PbSe nanocrystals in quantitative yields. Single exponential conversion kinetics can be tailored over 4 orders of magnitude by adjusting the selenourea structure. The wide range of conversion reactivity allows the extent of nucleation ([nanocrystal] = 4.6-56.7 μM) and the size following complete precursor conversion (d = 1.7-6.6 nm) to be controlled. Narrow size distributions (σ = 0.5-2%) are obtained whose spectral line widths are dominated (73-83%) by the intrinsic single particle spectral broadening, as observed using spectral hole burning measurements. The intrinsic broadening decreases with increasing size (fwhm = 320-65 meV, d = 1.6-4.4 nm) that derives from exciton fine structure and exciton-phonon coupling rather than broadening caused by the size distribution.
Collapse
Affiliation(s)
- Michael P Campos
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Mark P Hendricks
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Alexander N Beecher
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Willem Walravens
- Department of Chemistry, Columbia University , New York, New York 10027, United States.,Physics and Chemistry of Nanostructures Group (PCN), Ghent University , B-9000 Ghent, Belgium
| | - Robert A Swain
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Gregory T Cleveland
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Zeger Hens
- Physics and Chemistry of Nanostructures Group (PCN), Ghent University , B-9000 Ghent, Belgium.,Center of Nano and Biophotonics, Ghent University , B-9000 Ghent, Belgium
| | - Matthew Y Sfeir
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| |
Collapse
|