1
|
Karimian M, Dashtian K, Zare-Dorabei R. Microfluidic chip and chiroptical gold nanoparticle-based colorimetric sensor for enantioselective detection of L-tryptophan. Talanta 2024; 266:125138. [PMID: 37657378 DOI: 10.1016/j.talanta.2023.125138] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Herein, we introduce a novel integrated system that merges an enantio-discriminative bio-MOF-packed centrifugal microfluidic chip made from PDMS with a user-friendly on-site colorimetric sensor. This innovative approach enables the precise enantioselective recognition of L-tryptophane (L-Trp). This chiral recognition probe was successfully synthesized through meticulous control of nano-ovals-shaped gold nanoparticles morphology and surface passivation. The operational factor of this methodology was optimized to ensure simplicity, practicality, and efficiency. This optimization led to reduced reagent consumption and instantaneous analytical feedback. The integrated system was effectively applied for enantioselective separation and quantification of L-Trp across an extensive linear range of 50 μM-1.5 mM, impressive limit of detection as low as 15 μM. It is noteworthy that this integrated system demonstrated desirable selectivity even in the presence of similar biomolecules, showcasing its robust performance and rapid detection capability. Further extended the application of this strategy to exceptional performance across enantioselective sensing of L-Trp in various sample matrices, comprising bovine serum albumin, bovine milk, blood plasma and urine samples. This integrated microfluidic sample pretreatment, chiroptical sensing, and on-site signal recording with a smartphone hold tremendous potential for widespread implementation, practical applications engaging healthcare and environmental, food safety, and point-of-needs analysis, facilitating successive solution mixing and colorimetric detection.
Collapse
Affiliation(s)
- Mahsa Karimian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
2
|
Li CY, Xu H, Cheng PM, Du MH, Long LS, Zheng LS, Kong XJ. From Helices to Crystals: Multiscale Representation of Chirality in Double-Helix Structures. J Am Chem Soc 2023; 145:22176-22183. [PMID: 37779382 DOI: 10.1021/jacs.3c08257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Single crystals with chiral shapes aroused the interest of chemists due to their fascinating polarization rotation properties. Although the formation of large-scale spiral structures is considered to be a potential factor in chiral crystals, the precise mechanism behind their formation remains elusive. Herein, we present a rare phenomenon involving the multitransfer and expression of chirality at micro-, meso-, and macroscopic levels, starting from chiral carbon atoms and extending to the double-helical secondary structure, ultimately resulting in the chiral geometry of crystals. The assembly of the chiral double helices is facilitated by the dual characteristics of amide groups derived from amino acids, which serve as both hydrogen bond donors and receptors, similar to the assembly pattern observed in DNA. Crystal face analysis and theoretical morphology reveal two critical factors for the mechanism of the chiral crystal: inherent intrinsically symmetrical distribution of crystal faces and their acquired growth. Importantly, the magnetic circular dichroism (MCD) study reveals the strong magneto-optical response of the hypersensitive f-f transition in the UV-vis-NIR region, which is much stronger than previously observed signals. Remarkably, an external magnetic field can reverse the CD signal. This research highlights the potential of lanthanide-based chiral helical structures as promising magneto-optical materials.
Collapse
Affiliation(s)
- Chong-Yang Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Han Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Han Z, Ali W, Mao T, Wang F, Wang X. Magnetoplasmonic gold nanorods for the sensitive and label-free detection of glutathione. NANOSCALE ADVANCES 2023; 5:4670-4674. [PMID: 37705783 PMCID: PMC10496891 DOI: 10.1039/d3na00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023]
Abstract
This work exploits the magneto-optical activity of gold nanorods for the detection of sub-micromolar concentrations of glutathione using magnetic circular dichroism spectroscopy. Modulations of the magnetoplasmonic response of nanorods serve as the basis of the sensing methodology, whereby the presence of glutathione induces the end-to-end assembly of nanorods. In particular, the nanorod self-assembly enables a localized electric field in the nanocavities with adsorbed thiol molecules, whose field strength is amplified by the external magnetic field as confirmed by finite-element modeling, enabling their high-sensitivity detection. Our simple magnetoplasmonic sensor for glutathione requires no specific chemical tags and exhibits an impressive limit of detection of 97 nM.
Collapse
Affiliation(s)
- Zexiang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Wajid Ali
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Ting Mao
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Fei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaoli Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Foxley J, Green TD, Tofanelli MA, Ackerson CJ, Knappenberger KL. The Evolution from Superatom- to Plasmon-Mediated Magnetic Circular Dichroism in Colloidal Metal Nanoparticles Spanning the Nonmetallic to Metallic Limits. J Phys Chem Lett 2023:5210-5215. [PMID: 37257166 DOI: 10.1021/acs.jpclett.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The magneto-optical absorption properties of colloidal metal nanoclusters spanning nonmetallic to metallic regimes were examined using variable-temperature variable-field magnetic circular dichroism (VTVH-MCD) spectroscopy. Charge neutral Au25(SC8H9)18 exhibited MCD spectra dominated by Faraday C-terms, consistent with expectations for a nonmetallic paramagnetic nanocluster. This response is reconciled by the open-shell superatom configuration of Au25(SC8H9)18. Metallic and plasmon-supporting Au459(pMBA)170 exhibited temperature-independent VTVH-MCD spectra dominated by Faraday A-terms. Au144(SC8H9)60, which is intermediate to the metallic and nonmetallic limits, showed the most complex VTVH-MCD response of the three nanoclusters, consisting of 19 distinguishable peaks spanning the visible and near-infrared (3.0-1.4 eV). Variable-temperature analysis suggested that none of these transitions originated from plasmon excitation. However, evidence for both paramagnetic and mixed (i.e., nondiscrete) transitions of Au144(SC8H9)60 was observed. These results highlight the complexity of gold nanocluster electronic transitions that emerge as sizes approach metallic length scales. Nanoclusters in this regime may provide opportunities for tailoring the magneto-optical properties of colloidal nanostructures.
Collapse
Affiliation(s)
- Juniper Foxley
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas D Green
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Marcus A Tofanelli
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christopher J Ackerson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Xu J, Xu H, Xu L, Ruan Q, Zhu X, Kan C, Shi D. Plasmonic and catalytic Au NBP@AgPd nanoframes for highly efficient photocatalytic reactions. Phys Chem Chem Phys 2023; 25:13189-13197. [PMID: 37129667 DOI: 10.1039/d3cp01153d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heterogeneous metal nanostructures with excellent plasmonic performance and catalytic activity are urgently needed to realize efficient light-driven catalysis. Herein, we demonstrate the preparation of hollow Au nanobipyramid (NBP)@AgPd nanostructures by employing Au NBP@Ag nanorods as templates. The products could transform from Au NBP@AgPd nanoframes to nanocages, along with the redshift and broadening of the plasmon wavelength. Particularly, the plasmon intensity of these nanostructures remained considerable among the shape evolution process. Based on the selective absorption of CTAB, the Ag atoms on the side surfaces of the Au NBP@Ag nanorods were employed as the sacrificial templates to reduce Pd atoms through galvanic replacement. The reduced Pd and Ag atoms produced through the reduction reaction were preferably co-deposited on the corners and edges at the early stage and later deposited directly on the defect sites of the side facets, as more Ag atoms were released. The discontinued distribution of the Pd atoms gives an opportunity to etch away the Ag atoms in the cores, leading to the formation of hollow Au NBP@AgPd nanostructures after the etching process. It is worth noting that the deposition of the ultrathin AgPd nanoframe had little influence on the plasmonic properties of Au NBPs, as verified by electrodynamic simulations. The Au NBP@AgPd nanoframe showed great photocatalytic activity toward Suzuki coupling reactions under laser irradiation. Taken together, these results suggest that the hot electrons successfully transfer from Au NBP to the AgPd nanoframes to participate in the photocatalytic reactions. This study affords a promising route for the synthesis of anisotropic bimetallic nanostructures with excellent plasmonic performances.
Collapse
Affiliation(s)
- Juan Xu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Haiying Xu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- College of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Lihui Xu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Xingzhong Zhu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Caixia Kan
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Daning Shi
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
6
|
Gabbani A, Sangregorio C, Tandon B, Nag A, Gurioli M, Pineider F. Magnetoplasmonics beyond Metals: Ultrahigh Sensing Performance in Transparent Conductive Oxide Nanocrystals. NANO LETTERS 2022; 22:9036-9044. [PMID: 36346871 PMCID: PMC9706655 DOI: 10.1021/acs.nanolett.2c03383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Active modulation of the plasmonic response is at the forefront of today's research in nano-optics. For a fast and reversible modulation, external magnetic fields are among the most promising approaches. However, fundamental limitations of metals hamper the applicability of magnetoplasmonics in real-life active devices. While improved magnetic modulation is achievable using ferromagnetic or ferromagnetic-noble metal hybrid nanostructures, these suffer from severely broadened plasmonic response, ultimately decreasing their performance. Here we propose a paradigm shift in the choice of materials, demonstrating for the first time the outstanding magnetoplasmonic performance of transparent conductive oxide nanocrystals with plasmon resonance in the near-infrared. We report the highest magneto-optical response for a nonmagnetic plasmonic material employing F- and In-codoped CdO nanocrystals, due to the low carrier effective mass and the reduced plasmon line width. The performance of state-of-the-art ferromagnetic nanostructures in magnetoplasmonic refractometric sensing experiments are exceeded, challenging current best-in-class localized plasmon-based approaches.
Collapse
Affiliation(s)
- Alessio Gabbani
- INSTM
and Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124Pisa, Italy
- Department
of Physics and Astronomy, Università
degli Studi di Firenze, via Sansone 1, 50019Sesto Fiorentino, FI, Italy
- CNR-ICCOM, Via Madonna
del Piano 10, 50019Sesto Fiorentino, FI, Italy
| | - Claudio Sangregorio
- CNR-ICCOM, Via Madonna
del Piano 10, 50019Sesto Fiorentino, FI, Italy
- INSTM
and Department of Chemistry “U. Schiff”, Università degli Studi di Firenze, via della Lastruccia 3, 50019Sesto Fiorentino, FI, Italy
| | - Bharat Tandon
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune411008, India
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune411008, India
| | - Massimo Gurioli
- Department
of Physics and Astronomy, Università
degli Studi di Firenze, via Sansone 1, 50019Sesto Fiorentino, FI, Italy
| | - Francesco Pineider
- INSTM
and Department of Chemistry and Industrial Chemistry, Università di Pisa, via G. Moruzzi 13, 56124Pisa, Italy
- Department
of Physics and Astronomy, Università
degli Studi di Firenze, via Sansone 1, 50019Sesto Fiorentino, FI, Italy
| |
Collapse
|
7
|
Qi F, Jeong KJ, Gong J, Tang Z. Modulation of Nano-superstructures and Their Optical Properties. Acc Chem Res 2022; 55:2425-2438. [PMID: 35977155 DOI: 10.1021/acs.accounts.2c00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Self-assembly, which enables spontaneous arrangement of objects, is of particular importance for nanomaterials in both fundamental and applied research fields. Multiple types of nanoparticle superstructures have been successfully built in highly controllable and efficient manners through balancing the nanoscale interactions. Uniform and proper arrangement of nanoparticles inside the assembled superstructures is essential to exhibit their constant, reliable, and homogeneous functionalities. To be specific, the long-range ordered superlattices not only succeed with their building blocks' intrinsic property, but also, more importantly, can display collective properties that are absent both in individual nanoparticles and in their bulk states. One of the most attractive aspects of nanomaterials is their exceptional optical properties that have tremendous application potential in multidisciplinary fields. In this regard, constructing the superstructures from optical nano units like noble metal nanostructures, semiconductor nanoparticles, or hybrid nanomaterials is critical for attaining the unique optical properties and exploring their practical applications in multiple fields including photonics, optoelectronics, optical sensing, photocatalysis, etc. In this Account, we provide guidelines for self-assembly strategies to fabricate the superstructures and discuss the optical properties that the superstructures display. In the first part, we categorize and discuss the key factors that strongly affect the self-assembly process and determine the configurational and integral quality of the superstructures. On one hand, the diversity and designability of nanoparticles offer the intrinsic complexity of the building blocks, including geometry, size, composition, and surface ligand, which efficiently tailors the assembly process and superstructure configuration. On the other hand, multiple factors originating from the introduction of extrinsic features are recognized to facilitate the metastable or dynamic self-assembly process. Such extrinsic features include both matter like DNA origami, peptides, small molecules, etc. and nonmatter involved with electric fields, magnetic fields, light, temperature, etc. In the second part, we introduce the state-of the art progress on the collective optical performances of the assembled superstructures, including (1) chiral optics, such as circular dichroism and circularly polarized luminescence, (2) plasmonic properties and related applications, and (3) luminescence related optics and their applications. Finally, we summarize the existing problems and main challenges briefly, and some future directions of this field are proposed. We envision that, with deep understanding of the assembly mechanism and development of the synthetic and surface chemistry, rational modulation of nanoassemblies will be the trend of this field, which is beneficial to achieve the emerging collective performances and create new generation devices with advanced functions.
Collapse
Affiliation(s)
- Fenglian Qi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ki-Jae Jeong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jianxiao Gong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Bhalla N, Thakur A, Edelman IS, Ivantsov RD. Endorsing a Hidden Plasmonic Mode for Enhancement of LSPR Sensing Performance in Evolved Metal-insulator Geometry Using an Unsupervised Machine Learning Algorithm. ACS PHYSICAL CHEMISTRY AU 2022; 2:459-467. [PMID: 36855609 PMCID: PMC9955251 DOI: 10.1021/acsphyschemau.2c00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Large-area nanoplasmonic structures with pillared metal-insulator geometry, also called nanomushrooms (NM), consist of an active spherical-shaped plasmonic material such as gold as its cap and silicon dioxide as its stem. NM is a geometry which evolves from its precursor, nanoislands (NI) consisting of aforementioned spherical structures on flat silicon dioxide substrates, via selective physical or chemical etching of the silicon dioxide. The NM geometry is well-known to provide enhanced localized surface plasmon resonance (LSPR) sensitivity in biosensing applications as compared to NI. However, precise optical phenomenon behind this enhancement is unknown and often associated with the existence of electric fields in the large fraction of the spatial region between the pillars of NM, usually accessible by the biomolecules. Here, we uncover the association of LSPR enhancement in such geometries with a hidden plasmonic mode by conducting magneto-optics measurements and by deconvoluting the absorbance spectra obtained during the local refractive index change of the NM and NI geometries. By the virtue of principal component analysis, an unsupervised machine learning technique, we observe an explicit relationship between the deconvoluted modes of LSPR, the differential absorption of left and right circular polarized light, and the refractive index sensitivity of the LSPR sensor. Our findings may lead to the development of new approaches to extract unknown properties of plasmonic materials or establish new fundamental relationships between less understood photonic properties of nanomaterials.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown, Shore Road, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom,Healthcare
Technology Hub, Ulster University, Jordanstown, Shore Road, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom,E-mail:
| | - Atul Thakur
- Amity
Institute of Nanotechnology, Amity University
Haryana, Gurugram, Haryana 122413, India
| | - Irina S. Edelman
- Kirensky
Institute of Physics, FRC KSC Siberian Branch
of Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Ruslan D. Ivantsov
- Kirensky
Institute of Physics, FRC KSC Siberian Branch
of Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| |
Collapse
|
9
|
He N, Wei S, Hu T, Ye Y, Cai Y, Liu J, Li P, Liang C. Surface-Plasmon-Mediated Alloying for Monodisperse Au-Ag Alloy Nanoparticles in Liquid. Inorg Chem 2022; 61:12449-12457. [PMID: 35904272 DOI: 10.1021/acs.inorgchem.2c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasmonic noble-metal nanoparticles with broadly tunable optical properties and catalytically active surfaces offer a unique opportunity for photochemistry. Resonant optical excitation of surface-plasmon generates high-energy hot carriers, which can participate in photochemical reactions. Although the surface-plasmon-driven catalysis on molecules has been extensively studied, surface-plasmon-mediated synthesis of bimetallic nanomaterials is less reported. Herein, we perform a detailed investigation on the formation mechanism and colloidal stability of monodisperse Au-Ag alloy nanoparticles synthesized through irradiating the intermixture of Au nanochains and AgNO3 solution with a nanosecond pulsed laser. It is revealed that the Ag atoms can be extracted from AgNO3 solution by surface-plasmon-generated hot electrons and alloy with Au atoms. Particularly, the obtained Au-Ag alloy nanoparticles without any surfactants or ligands exhibit superior stability that is confirmed by experiments as well as DLVO-based theoretical simulation. Our work would provide novel insights into the synthesis of potentially useful bimetallic nanoparticles via surface-plasmon-medicated alloying.
Collapse
Affiliation(s)
- Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Taiping Hu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Hao L, Zhang T, Sang H, Jiang S, Zhang J, Yang J. Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Bismuth chloride oxide (BiOCl) is a typical V-VI-VII ternary oxide material, which is one of the widely studied metal oxides due to its unique surface, electronic and photocatalytic properties. However, the broad bandgap and the large number of photogenerated electron-hole pair complexes of BiOCl limit its photocatalytic efficiency. Since the photocatalytic performance of BiOCl is highly dependent on its exposed crystallographic facets, research attention has increasingly focused on the different structures and properties possessed by different crystallographic facets of BiOCl. This article reviews the basic principles of using different crystalline surfaces of BiOCl materials to enhance photocatalytic activity, summarizes the applications of BiOCl single-crystal catalysts and composite catalysts in the environmental field, and provides an outlook on the challenges and new research directions for future development in this emerging frontier area. It is hoped that the crystalline surface-related photocatalysis of BiOCl can be used to provide new guidance for the rational design of novel catalysts for various energy and environment-related applications.
Collapse
Affiliation(s)
- Linjing Hao
- School of Ecology and Environment , Zhengzhou University , Henan 450001 , P. R. China
- International Joint Laboratory of Environment and Resources of Henan Province , Henan 450001 , P. R. China
| | - Tingting Zhang
- School of Ecology and Environment , Zhengzhou University , Henan 450001 , P. R. China
- International Joint Laboratory of Environment and Resources of Henan Province , Henan 450001 , P. R. China
| | - Haoran Sang
- School of Ecology and Environment , Zhengzhou University , Henan 450001 , P. R. China
- International Joint Laboratory of Environment and Resources of Henan Province , Henan 450001 , P. R. China
| | - Suyu Jiang
- School of Chemical Engineering , Zhengzhou University , Henan 450001 , P. R. China
- Research Center of Heterogeneous Catalysis & Engineering Sciences , Zhengzhou University , Henan 450001 , P. R. China
| | - Jie Zhang
- School of Ecology and Environment , Zhengzhou University , Henan 450001 , P. R. China
- International Joint Laboratory of Environment and Resources of Henan Province , Henan 450001 , P. R. China
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province , Henan 450001 , P. R. China
| | - Jinghe Yang
- School of Chemical Engineering , Zhengzhou University , Henan 450001 , P. R. China
| |
Collapse
|
11
|
Chen D, Zhao Z, Jiang N, Zhu H, Zhao S, Tan P, Wei D, Zheng H, Shen C. Tunable Polarized Microcavity Characterized by Magnetic Circular Dichroism Spectrum. J Phys Chem Lett 2022; 13:3244-3250. [PMID: 35385286 DOI: 10.1021/acs.jpclett.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tunable resonator is a powerful building block in fields like color filtering and optical sensing. The control of its polarization characteristics can significantly expand the applications. Nevertheless, the methods for resonator dynamic tuning are limited. Here, a magnetically regulated circular polarized resonant microcavity is demonstrated with an ultrathin ferrimagnetic composite metal layer Ta/CoTb. We successfully tuned the cavity resonant frequency and polarization performance. A huge magnetic circular dichroism (MCD) signal (∼3.41%) is observed, and the microcavity valley position shifts 5.41 nm when a small magnetic field is applied. This resonant cavity has two-stable states at 0 T due to the magnetic remanence of CoTb film and can be switched using a tiny magnetic field (∼0.01 T). Our result shows that the ferrimagnetic film-based tunable microcavity can be a highly promising candidate for on-chip magneto-optical (MO) devices.
Collapse
Affiliation(s)
- Dingwei Chen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Zhao
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nai Jiang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Shuai Zhao
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingheng Tan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahai Wei
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houzhi Zheng
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Maqbool Q, Jung A, Won S, Cho J, Son JG, Yeom B. Chiral Magneto-Optical Properties of Supra-Assembled Fe 3O 4 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54301-54307. [PMID: 34748312 DOI: 10.1021/acsami.1c16954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Research on the chiral magneto-optical properties of inorganic nanomaterials has enabled novel applications in advanced optical and electronic devices. However, the corresponding chiral magneto-optical responses have only been studied under strong magnetic fields of ≥1 T, which limits the wider application of these novel materials. In this paper, we report on the enhanced chiral magneto-optical activity of supra-assembled Fe3O4 magnetite nanoparticles in the visible range at weak magnetic fields of 1.5 mT. The spherical supra-assembled particles with a diameter of ∼90 nm prepared by solvothermal synthesis had single-crystal-like structures, which resulted from the oriented attachment of nanograins. They exhibited superparamagnetic behavior even with a relatively large supraparticle diameter that exceeded the size limit for superparamagnetism. This can be attributed to the small size of nanograins with a diameter of ∼12 nm that constitute the suprastructured particles. Magnetic circular dichroism (MCD) measurements at magnetic fields of 1.5 mT showed distinct chiral magneto-optical activity from charge transfer transitions of magnetite in the visible range. For the supraparticles with lower crystallinity, the MCD peaks in the 250-550 nm range assigned as the ligand-to-metal charge transfer (LMCT) and the inter-sublattice charge transfer (ISCT) show increased intensities in comparison to those with higher crystallinity samples. On the contrary, the higher crystallinity sample shows higher MCD intensities near 600-700 nm for the intervalence charge transfer (IVCT) transition. The differences in MCD responses can be attributed to the crystallinity determined by the reaction time, lattice distortion near grain boundaries of the constituent nanocrystals, and dipolar interactions in the supra-assembled structures.
Collapse
Affiliation(s)
- Qysar Maqbool
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Arum Jung
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sojeong Won
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Gon Son
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
13
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
Li Y, Higaki T, Du X, Jin R. Chirality and Surface Bonding Correlation in Atomically Precise Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905488. [PMID: 32181554 DOI: 10.1002/adma.201905488] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/16/2019] [Indexed: 05/24/2023]
Abstract
Chirality is ubiquitous in nature and occurs at all length scales. The development of applications for chiral nanostructures is rising rapidly. With the recent achievements of atomically precise nanochemistry, total structures of ligand-protected Au and other metal nanoclusters (NCs) are successfully obtained, and the origins of chirality are discovered to be associated with different parts of the cluster, including the surface ligands (e.g., swirl patterns), the organic-inorganic interface (e.g., helical stripes), and the kernel. Herein, a unified picture of metal-ligand surface bonding-induced chirality for the nanoclusters is proposed. The different bonding modes of M-X (where M = metal and X = the binding atom of ligand) lead to different surface structures on nanoclusters, which in turn give rise to various characteristic features of chirality. A comparison of Au-thiolate NCs with Au-phosphine ones further reveals the important roles of surface bonding. Compared to the Au-thiolate NCs, the Ag/Cu/Cd-thiolate systems exhibit different coordination modes between the metal and the thiolate. Other than thiolate and phosphine ligands, alkynyls are also briefly discussed. Several methods of obtaining chiroptically active nanoclusters are introduced, such as enantioseparation by high-performance liquid chromatography and enantioselective synthesis. Future perspectives on chiral NCs are also proposed.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Tatsuya Higaki
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
15
|
Han B, Gao X, Lv J, Tang Z. Magnetic Circular Dichroism in Nanomaterials: New Opportunity in Understanding and Modulation of Excitonic and Plasmonic Resonances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1801491. [PMID: 30345582 DOI: 10.1002/adma.201801491] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/16/2018] [Indexed: 06/08/2023]
Abstract
The unique capability of magnetic circular dichroism (MCD) in revealing geometry and electronic information has provided new opportunities in exploring the relationship between structure and magneto-optical properties in nanomaterials with extraordinary optical absorption. Here, the representative studies referring to application of the MCD technique in semiconductor and noble metal nanomaterials are overviewed. MCD is powerful in elucidating the structural information of the excitonic transition in semiconductor nanocrystals, electronic transitions in noble metal nanoclusters, and plasmon resonance in noble metal nanostructures. By virtue of these advantages, the MCD technique shows its unrivalled ability in evaluating the magnetic modulation of excitonic and plasmonic optical activity of nanomaterials with varied chemical composition, geometry, assembly conformation, and coupling effect. Knowledge of the key factors in manipulating magneto-optical properties at the nanoscale acquired with the MCD technique will largely boost the application of semiconductor and noble nanomaterials in the fields of sensing, spintronic, nanophotonics, etc.
Collapse
Affiliation(s)
- Bing Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaoqing Gao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Jiawei Lv
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhiyong Tang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Meng D, Ma W, Wu X, Xu C, Kuang H. DNA-Driven Two-Layer Core-Satellite Gold Nanostructures for Ultrasensitive MicroRNA Detection in Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000003. [PMID: 32374494 DOI: 10.1002/smll.202000003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 05/24/2023]
Abstract
It is a significant challenge to achieve controllable self-assembly of superstructures for biological applications in living cells. Here, a two-layer core-satellite assembly is driven by a Y-DNA, which is designed with three nucleotide chains that hybridized through complementary sequences. The two-layer core-satellite nanostructure (C30 S5 S10 NS) is constructed using 30 nm gold nanoparticles (Au NPs) as the core, 5 nm Au NPs as the first satellite layer, and 10 nm Au NPs as the second satellite layer, resulting in a very strong circular dichroism (CD) and surface-enhanced Raman scattering. After optimization, the yield is up to 85%, and produces a g-factor of 0.16 × 10-2 . The hybridization of the target microRNA (miRNA) with the molecular probe causes a significant drop in the CD and Raman signals, and this phenomenon is used to detect the miRNA in living cells. The CD signal has a good linear range of 0.011-20.94 amol ngRNA-1 and a limit of detection (LOD) of 0.0051 amol ngRNA-1 , while Raman signal with the range of 0.052-34.98 amol ngRNA-1 and an LOD of 2.81 × 10-2 amol ngRNA-1 . This innovative dual-signal method can be used to quantify biomolecules in living cells, opening the way for ultrasensitive, highly accurate, and reliable diagnoses of clinical diseases.
Collapse
Affiliation(s)
- Dan Meng
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Wei Ma
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoling Wu
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection State Key Lab of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
17
|
Wu X, Hao C, Xu L, Kuang H, Xu C. Chiromagnetic Plasmonic Nanoassemblies with Magnetic Field Modulated Chiral Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905734. [PMID: 31851415 DOI: 10.1002/smll.201905734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Chiral plasmonic nanoassemblies, which exhibit outstanding chiroptical activity in the visible or near-infrared region, are popular candidates in molecular sensing, polarized nanophotonics, and biomedical applications. Their optical chirality can be modulated by manipulating chemical molecule stimuli or replacing the building blocks. However, instead of irreversible chemical or material changes, real-time control of optical activity is desired for reversible and noninvasive physical regulating methods, which is a challenging research field. Here, the directionally and reversibly switching optical chirality of magneto-plasmonic nanoassemblies is demonstrated by the application of an external magnetic field. The gold-magnetic nanoparticles core-satellite (Au@Fe3 O4 ) nanostructures exhibit chiral activity in the UV-visible range, and the circular dichroism signal is 12 times greater under the magnetic field. Significantly, the chiral signal can be reversed by regulating the direction of the applied magnetic field. The attained magnetic field-regulated chirality is attributed to the large contributions of the magnetic dipole moments to polarization rotation. This magnetic field-modulated optical activity may be pivotal for photonic devices, information communication, as well as chiral metamaterials.
Collapse
Affiliation(s)
- Xiaoling Wu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
18
|
Extraction of magnetic circular dichroism effects from blended mixture of magnetic linear dichroism signals in the cobalt/Scotch tape system. Sci Rep 2019; 9:17192. [PMID: 31748587 PMCID: PMC6868135 DOI: 10.1038/s41598-019-53880-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/06/2019] [Indexed: 01/23/2023] Open
Abstract
Circular dichroism (CD) signals revealed in some materials may arise from different origins during measurements. Magnetic field dependent CD (MCD) emanating from the spin-polarized band provides direct insight into the spin-spin interband transitions in magnetic materials. On the contrary, natural CD effects which are artefactual signals resulting from the linear polarization (LP) components during the polarization modulation with a photo-elastic modulator in anisotropic polymer systems were usually observed. There is no simple method to reliably distinguish MCD effect due to spin polarized band structures from natural CD effect, which limits our understanding of the magnetic material/polymer hybrid structures. This paper aims to introduce a general strategy of averaging out the magnetic linear dichroism (MLD) contributions due to the anisotropic structure and disentangling MCD signal(s) from natural MCD signal(s). We demonstrate the effectiveness of separating MCD from natural MCD using rotational MCD measurement and presented the results of a sample with Co thin film on polymer Scotch tape (unplasticized polyvinyl chloride) glued on a quartz substrate. We demonstrate that the proposed method can be used as an effective tool in disentangling MCD and natural MCD effects, and it opens prospects to study the magnetic material /polymer hybrid systems.
Collapse
|
19
|
Wang H, Rao H, Luo M, Xue X, Xue Z, Lu X. Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Application of magnetic circular dichroism (MCD) to morphological quality evaluation of silver nanodecahedra. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Wei J, Chen H, Chen H, Cui Y, Qileng A, Qin W, Liu W, Liu Y. Multifunctional Peroxidase-Encapsulated Nanoliposomes: Bioetching-Induced Photoelectrometric and Colorimetric Immunoassay for Broad-Spectrum Detection of Ochratoxins. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23832-23839. [PMID: 31245985 DOI: 10.1021/acsami.9b04136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a versatile dual-modal readout immunoassay platform was achieved for sensitive and broad-spectrum detection of ochratoxins based on the photocurrent response of flexible CdS/ZnO nanorod arrays/reduced graphene oxide and the localized surface plasmon resonance (LSPR) peak shift of Au nanobipyramids (Au NBPs). By using nanoliposomes as the vehicle to carry the secondary antibody and encapsulate horseradish peroxidase (HRP), the photocurrent change and the peak shift can be greatly amplified. The reaction mechanism was investigated in detail, indicating that HRP can trigger enzymatic bioetching in the presence of H2O2. In the photoelectrochemical detection, the oxidized HRP can etch CdS on the photoelectrode, resulting in the photocurrent change, while in the colorimetric detection, HRP can oxidize H2O2 to produce hydroxyl radicals that can etch Au NBPs to form multiple color changes and LSPR shifts. Compared with the common single-modal immunoassay for ochratoxins, such dual-modal immunoassay is more precise and reliable, owing to the completely independent signal conversion and transmission mechanism. Therefore, we hope that this accurate, simple, and visualized strategy may create a new avenue and provide innovative inspiration for food analysis.
Collapse
|
22
|
Wang X, Yin X, Lai XY, Liu YT. Magnetism, stability and electronic properties of a novel one-dimensional infinite monatomic copper wire: a density functional study. NEW J CHEM 2019. [DOI: 10.1039/c8nj04975k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, the structural, magnetic and electronic properties of a novel one-dimensional infinite monatomic copper wire (1D-IMCW) have been investigated using first-principles computational calculation.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Xue Yin
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Xiao-Yong Lai
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Ying-Tao Liu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| |
Collapse
|
23
|
Raju M, Nair RR, Debnath S, Chatterjee PB. Affinity Directed Surface Functionalization of Two Different Metal Nanoparticles by a Natural Ionophore: Probing and Removal of Hg2+ and Al3+ Ions from Aqueous Solutions. Inorg Chem 2018; 58:1674-1683. [DOI: 10.1021/acs.inorgchem.8b03241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Raju
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Ratish R. Nair
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Pabitra B. Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| |
Collapse
|
24
|
Zheng G, Bao Z, Pérez-Juste J, Du R, Liu W, Dai J, Zhang W, Lee LYS, Wong KY. Tuning the Morphology and Chiroptical Properties of Discrete Gold Nanorods with Amino Acids. Angew Chem Int Ed Engl 2018; 57:16452-16457. [DOI: 10.1002/anie.201810693] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Guangchao Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery; Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Zhiyong Bao
- Department of Applied Physics; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Jorge Pérez-Juste
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO); Universidad de Vigo; Vigo Spain
| | - Ruolan Du
- State Key Laboratory of Chemical Biology and Drug Discovery; Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Wei Liu
- State Key Laboratory of Chemical Biology and Drug Discovery; Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Jiyan Dai
- Department of Applied Physics; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics; P. O. Box 8009(28) Beijing 100088 P. R. China
| | - Lawrence Yoon Suk Lee
- State Key Laboratory of Chemical Biology and Drug Discovery; Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery; Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| |
Collapse
|
25
|
Zheng G, Bao Z, Pérez-Juste J, Du R, Liu W, Dai J, Zhang W, Lee LYS, Wong KY. Tuning the Morphology and Chiroptical Properties of Discrete Gold Nanorods with Amino Acids. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guangchao Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery; Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Zhiyong Bao
- Department of Applied Physics; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Jorge Pérez-Juste
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO); Universidad de Vigo; Vigo Spain
| | - Ruolan Du
- State Key Laboratory of Chemical Biology and Drug Discovery; Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Wei Liu
- State Key Laboratory of Chemical Biology and Drug Discovery; Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Jiyan Dai
- Department of Applied Physics; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics; P. O. Box 8009(28) Beijing 100088 P. R. China
| | - Lawrence Yoon Suk Lee
- State Key Laboratory of Chemical Biology and Drug Discovery; Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery; Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hunghom Kowloon Hong Kong China
| |
Collapse
|
26
|
Wei J, Chang W, Qileng A, Liu W, Zhang Y, Rong S, Lei H, Liu Y. Dual-Modal Split-Type Immunosensor for Sensitive Detection of Microcystin-LR: Enzyme-Induced Photoelectrochemistry and Colorimetry. Anal Chem 2018; 90:9606-9613. [PMID: 29985599 DOI: 10.1021/acs.analchem.8b02546] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microcystins, the lethal cyanotoxins from Microcystis aeruginosa, can inhibit the activity of protein phosphatase and promote liver tumors. Herein, a dual-modal split-type immunosensor was constructed to detect microcystin-LR (MC-LR), based on the photocurrent change of CdS/ZnO hollow nanorod arrays (HNRs) and the blue shift of the surface plasmon resonance peak from Au nanobipyramids@Ag. By using mesoporous silica nanospheres as the carrier to immobilize secondary antibody and DNA primer, a hybridization chain reaction was adopted to capture alkaline phosphatase, while its catalytic reaction product, ascorbic acid, exhibited dual functions. The detailed mechanism was investigated, showing that ascorbic acid can not only act as the electron donor to capture the holes in CdS/ZnO-HNRs, leading to the increase photocurrent, but also as the reductant to form silver shells on Au nanobipyramids, generating multiply vivid color variations and blue shifts. Compared with the traditional photoelectrochemical immunosensor or colorimetric method for MC-LR, a more accurate and reliable result can be obtained, due to different mechanisms and independent signal transduction. Therefore, this work can not only propose a new dual-modal immunosensor for MC-LR detection but also provide innovative inspiration for constructing sensitive, accurate, and visual analysis for toxins.
Collapse
|
27
|
Wang X, Yin X, Yu HL, Liu YT. Theoretical Investigation of a Novel One-Dimensional Infinite Monatomic Zinc Wire with Excellent Electronic Properties. ChemistrySelect 2018. [DOI: 10.1002/slct.201800465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Wang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; College of Chemistry and Chemical Engineering; Ningxia University; Yinchuan 750021 China
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun 130023 China
| | - Xue Yin
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; College of Chemistry and Chemical Engineering; Ningxia University; Yinchuan 750021 China
| | - Hai-Long Yu
- Ningxia (China-Arab) Key Laboratory of Resources Assessment of Environmental Regulation in Arid Regions; Ningxia University; Yinchuan 750021 China
| | - Ying-Tao Liu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering; College of Chemistry and Chemical Engineering; Ningxia University; Yinchuan 750021 China
| |
Collapse
|
28
|
Yeom J, Santos US, Chekini M, Cha M, de Moura AF, Kotov NA. Chiromagnetic nanoparticles and gels. Science 2018; 359:309-314. [PMID: 29348234 DOI: 10.1126/science.aao7172] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.
Collapse
Affiliation(s)
- Jihyeon Yeom
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Uallisson S Santos
- Department of Chemistry, Federal University of São Carlos, 13.565-905, São Carlos, São Paulo, Brazil
| | - Mahshid Chekini
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minjeong Cha
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - André F de Moura
- Department of Chemistry, Federal University of São Carlos, 13.565-905, São Carlos, São Paulo, Brazil.
| | - Nicholas A Kotov
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Gupta SSR, Kantam ML, Bhanage BM. Shape-selective synthesis of gold nanoparticles and their catalytic activity towards reduction of p -nitroaniline. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Feng F, Chen M, Wu JH. Morphology-selective synthesis of Cu(NO3)2·2.5H2O micro/nanostructures achieved by rational manipulation of nucleation pathways and their morphology-preserved conversion to CuO porous micro/nanostructures. CrystEngComm 2018. [DOI: 10.1039/c8ce00049b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A special Cu(NO3)2 thin solution layer was built on highly hydrophilic mica surfaces and subjected to rapid evaporation. Controlling the evaporation time can intentionally manipulate the supersaturation.
Collapse
Affiliation(s)
- Feng Feng
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- 215123 China
| | - Muzi Chen
- Testing & Analysis Center
- Soochow University
- Suzhou
- 215123 China
| | - Ji Hong Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- 215123 China
| |
Collapse
|