1
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
2
|
Sajjad MW, Muzamil F, Sabir M, Ashfaq UA. Regenerative Medicine and Nanotechnology Approaches against Cardiovascular Diseases: Recent Advances and Future Prospective. Curr Stem Cell Res Ther 2025; 20:50-71. [PMID: 38343052 DOI: 10.2174/011574888x263530230921074827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/31/2025]
Abstract
Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Muzamil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Maida Sabir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
3
|
Cheng Y, Lu Y. Physical stimuli-responsive polymeric patches for healthcare. Bioact Mater 2025; 43:342-375. [PMID: 39399837 PMCID: PMC11470481 DOI: 10.1016/j.bioactmat.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024] Open
Abstract
Many chronic diseases have become severe public health problems with the development of society. A safe and efficient healthcare method is to utilize physical stimulus-responsive polymer patches, which may respond to physical stimuli, including light, electric current, temperature, magnetic field, mechanical force, and ultrasound. Under certain physical stimuli, these patches have been widely used in therapy for diabetes, cancer, wounds, hair loss, obesity, and heart diseases since they could realize controllable treatment and reduce the risks of side effects. This review sketches the design principles of polymer patches, including composition, properties, and performances. Besides, control methods of using different kinds of physical stimuli were introduced. Then, the fabrication methods and characterization of patches were explored. Furthermore, recent applications of these patches in the biomedical field were demonstrated. Finally, we discussed the challenges and prospects for its clinical translation. We anticipate that physical stimulus-responsive polymer patches will open up new avenues for healthcare by acting as a platform with multiple functions.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Banik O, Salve AL, Kumar P, Kumar S, Banoth E. Electrically conductive nanomaterials: transformative applications in biomedical engineering-a review. NANOTECHNOLOGY 2024; 36:022001. [PMID: 39389095 DOI: 10.1088/1361-6528/ad857d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
In recent years, significant advancements in nanotechnology have improved the various disciplines of scientific fields. Nanomaterials, like, carbon-based (carbon nanotubes, graphene), metallic, metal oxides, conductive polymers, and 2D materials (MXenes) exhibit exceptional electrical conductivity, mechanical strength, flexibility, thermal property and chemical stability. These materials hold significant capability in transforming material science and biomedical engineering by enabling the creation of more efficient, miniaturized, and versatile devices. The indulgence of nanotechnology with conductive materials in biological fields promises a transformative innovation across various industries, from bioelectronics to environmental regulations. The conductivity of nanomaterials with a suitable size and shape exhibits unique characteristics, which provides a platform for realization in bioelectronics as biosensors, tissue engineering, wound healing, and drug delivery systems. It can be explored for state-of-the-art cardiac, skeletal, nerve, and bone scaffold fabrication while highlighting their proof-of-concept in the development of biosensing probes and medical imaging. This review paper highlights the significance and application of the conductive nanomaterials associated with conductivity and their contribution towards a new perspective in improving the healthcare system globally.
Collapse
Affiliation(s)
- Oindrila Banik
- Opto-Biomedical Microsystems Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Amol Lalchand Salve
- Opto-Biomedical Microsystems Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Prasoon Kumar
- BioDesign and Medical Devices, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Santosh Kumar
- Department of Electronics and Communication Engineering, Centre of Excellence for Nanotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Earu Banoth
- Opto-Biomedical Microsystems Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
5
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Sirolli S, Guarnera D, Ricotti L, Cafarelli A. Triggerable Patches for Medical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310110. [PMID: 38860756 DOI: 10.1002/adma.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Medical patches have garnered increasing attention in recent decades for several diagnostic and therapeutic applications. Advancements in material science, manufacturing technologies, and bioengineering have significantly widened their functionalities, rendering them highly versatile platforms for wearable and implantable applications. Of particular interest are triggerable patches designed for drug delivery and tissue regeneration purposes, whose action can be controlled by an external signal. Stimuli-responsive patches are particularly appealing as they may enable a high level of temporal and spatial control over the therapy, allowing high therapeutic precision and the possibility to adjust the treatment according to specific clinical and personal needs. This review aims to provide a comprehensive overview of the existing extensive literature on triggerable patches, emphasizing their potential for diverse applications and highlighting the strengths and weaknesses of different triggering stimuli. Additionally, the current open challenges related to the design and use of efficient triggerable patches, such as tuning their mechanical and adhesive properties, ensuring an acceptable trade-off between smartness and biocompatibility, endowing them with portability and autonomy, accurately controlling their responsiveness to the triggering stimulus and maximizing their therapeutic efficacy, are reviewed.
Collapse
Affiliation(s)
- Sofia Sirolli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Andrea Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| |
Collapse
|
7
|
Fallert L, Urigoitia-Asua A, Cipitria A, Jimenez de Aberasturi D. Dynamic 3D in vitro lung models: applications of inorganic nanoparticles for model development and characterization. NANOSCALE 2024; 16:10880-10900. [PMID: 38787741 DOI: 10.1039/d3nr06672j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Being a vital organ exposed to the external environment, the lung is susceptible to a plethora of pathogens and pollutants. This is reflected in high incidences of chronic respiratory diseases, which remain a leading cause of mortality world-wide and pose a persistent global burden. It is thus of paramount importance to improve our understanding of these pathologies and provide better therapeutic options. This necessitates the development of representative and physiologically relevant in vitro models. Advances in bioengineering have enabled the development of sophisticated models that not only capture the three-dimensional architecture of the cellular environment but also incorporate the dynamics of local biophysical stimuli. However, such complex models also require novel approaches that provide reliable characterization. Within this review we explore how 3D bioprinting and nanoparticles can serve as multifaceted tools to develop such dynamic 4D printed in vitro lung models and facilitate their characterization in the context of pulmonary fibrosis and breast cancer lung metastasis.
Collapse
Affiliation(s)
- Laura Fallert
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Ane Urigoitia-Asua
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
- POLYMAT, Basque Centre for Macromolecular Design and Engineering, 20018 Donostia-San Sebastián, Spain
| | - Amaia Cipitria
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- Department of Hybrid Biofunctional Materials, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
8
|
Jiang H, Zhao Q, Ye X. Application of nanomaterials in heart transplantation: a narrative review. J Thorac Dis 2024; 16:3389-3405. [PMID: 38883645 PMCID: PMC11170395 DOI: 10.21037/jtd-23-1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/15/2024] [Indexed: 06/18/2024]
Abstract
Background and Objective Heart transplantation (HT) is a therapeutic option for end-stage heart disease. Still, it faces many challenges, especially the shortage of donor sources and the poor durability of grafts, which are the two critical issues. In this review, we generalize the application of existing nanomedicine technologies in donor management as well as prevention and diagnosis of post-transplantation complications, also including the current preclinical studies of nanomaterials in cardiac tissue engineering and gene-editing xeno-donor grafts. Finally, we discuss the remaining problems and future directions of nanomaterials in the field of HT. Methods A narrative review using current search of the most recent literature on the topic. The terms "nanomaterials", "nano medicine'', "Heart transplantation (HT)", "Nano-drug delivery system (NDDS)" or their combination were searched in PubMed and Google Scholar. The specified timeframe began from 1990, and we prioritized publications mainly from the last 10 years. Key Content and Findings Nano-systems integrating therapeutic and diagnostic functions have been applied to cardiovascular diseases (CVDs) with their unique advantages in multiple fields such as drug delivery, tissue engineering, gene editing, imaging, biomarker editing, and many other aspects. In terms of transplantation, the preservation, transportation, and pretreatment of donor hearts machine perfusion (MP) provide the possibility for nano-systems with unique features, and therapeutic and diagnostic functions to be directly and passively targeted in order to improve the functional status of the transplanted organs or to increase the ability to tolerate the graft of patients. The development of nano-imaging, nanosensor, and nano biomarker technologies are also being applied to monitor the status of transplant recipients for early prevention and treatment of post-transplantation-related complications. Nanomaterials combined with cardiac tissue engineering and gene editing technologies could also expand graft sources and alleviate donor shortages. Conclusions Although the overall research on nanomaterial applications in the field of HT is in its infancy, its role in improving the prognosis of transplant recipients and breaking the current dilemma of HT is clear. However, before nanotechnologies can be translated into clinical applications in the future, they must be aimed at ensuring the drug delivery system's safety and pose a challenge in the direction of the ability to intervene with multiple drugs in combination.
Collapse
Affiliation(s)
- Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Tripathi S, Rani K, Raj VS, Ambasta RK. Drug repurposing: A multi targetted approach to treat cardiac disease from existing classical drugs to modern drug discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:151-192. [PMID: 38942536 DOI: 10.1016/bs.pmbts.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) are characterized by abnormalities in the heart, blood vessels, and blood flow. CVDs comprise a diverse set of health issues. There are several types of CVDs like stroke, endothelial dysfunction, thrombosis, atherosclerosis, plaque instability and heart failure. Identification of a new drug for heart disease takes longer duration and its safety efficacy test takes even longer duration of research and approval. This chapter explores drug repurposing, nano-therapy, and plant-based treatments for managing CVDs from existing drugs which saves time and safety issues with testing new drugs. Existing drugs like statins, ACE inhibitor, warfarin, beta blockers, aspirin and metformin have been found to be useful in treating cardiac disease. For better drug delivery, nano therapy is opening new avenues for cardiac research by targeting interleukin (IL), TNF and other proteins by proteome interactome analysis. Nanoparticles enable precise delivery to atherosclerotic plaques, inflammation areas, and damaged cardiac tissues. Advancements in nano therapeutic agents, such as drug-eluting stents and drug-loaded nanoparticles are transforming CVDs management. Plant-based treatments, containing phytochemicals from Botanical sources, have potential cardiovascular benefits. These phytochemicals can mitigate risk factors associated with CVDs. The integration of these strategies opens new avenues for personalized, effective, and minimally invasive cardiovascular care. Altogether, traditional drugs, phytochemicals along with nanoparticles can revolutionize the future cardiac health care by identifying their signaling pathway, mechanism and interactome analysis.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Kusum Rani
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| | - Rashmi K Ambasta
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| |
Collapse
|
10
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
11
|
Ullah A, Ullah M, Lim SI. Recent advancements in nanotechnology based drug delivery for the management of cardiovascular disease. Curr Probl Cardiol 2024; 49:102396. [PMID: 38266693 DOI: 10.1016/j.cpcardiol.2024.102396] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Cardiovascular diseases (CVDs) constitute a predominant cause of both global mortality and morbidity. To address the challenges in the early diagnosis and management of CVDs, there is growing interest in the field of nanotechnology and nanomaterials to develop innovative diagnostic and therapeutic approaches. This review focuses on the recent advancements in nanotechnology-based diagnostic techniques, including cardiac immunoassays (CIA), cardiac circulating biomarkers, cardiac exosomal biomarkers, and molecular Imaging (MOI). Moreover, the article delves into the exciting developments in nanoparticles (NPs), biomimetic NPs, nanofibers, nanogels, and nanopatchs for cardiovascular applications. And discuss how these nanoscale technologies can improve the precision, sensitivity, and speed of CVD diagnosis and management. While highlighting their vast potential, we also address the limitations and challenges that must be overcome to harness these innovations successfully. Furthermore, this review focuses on the emerging opportunities for personalized and effective cardiovascular care through the integration of nanotechnology, ultimately aiming to reduce the global burden of CVDs.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea.
| |
Collapse
|
12
|
Lee IC, Li YCE, Thomas JL, Lee MH, Lin HY. Recent advances using MXenes in biomedical applications. MATERIALS HORIZONS 2024; 11:876-902. [PMID: 38175543 DOI: 10.1039/d3mh01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An MXene is a novel two-dimensional transition metal carbide or nitride, with a typical formula of Mn+1XnTx (M = transition metals, X = carbon or nitrogen, and T = functional groups). MXenes have found wide application in biomedicine and biosensing, owing to their high biocompatibility, abundant reactive surface groups, good conductivity, and photothermal properties. Applications include photo- and electrochemical sensors, energy storage, and electronics. This review will highlight recent applications of MXene and MXene-derived materials in drug delivery, tissue engineering, antimicrobial activity, and biosensors (optical and electrochemical). We further elaborate on recent developments in utilizing MXenes for photothermal cancer therapy, and we explore multimodal treatments, including the integration of chemotherapeutic agents or magnetic nanoparticles for enhanced therapeutic efficacy. The high surface area and reactivity of MXenes provide an interface to respond to the changes in the environment, allowing MXene-based drug carriers to respond to changes in pH, reactive oxygen species (ROS), and electrical signals for controlled release applications. Furthermore, the conductivity of MXene enables it to provide electrical stimulation for cultured cells and endows it with photocatalytic capabilities that can be used in antibiotic applications. Wearable and in situ sensors incorporating MXenes are also included. Major challenges and future development directions of MXenes in biomedical applications are also discussed. The remarkable properties of MXenes will undoubtedly lead to their increasing use in the applications discussed here, as well as many others.
Collapse
Affiliation(s)
- I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung 81148, Taiwan.
| |
Collapse
|
13
|
Xu X, Hu J, Xue H, Hu Y, Liu YN, Lin G, Liu L, Xu RA. Applications of human and bovine serum albumins in biomedical engineering: A review. Int J Biol Macromol 2023; 253:126914. [PMID: 37716666 DOI: 10.1016/j.ijbiomac.2023.126914] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Serum albumin, commonly recognized as a predominant major plasma protein, is ubiquitously distributed among vertebrates, demonstrating versatility and widespread accessibility. Numerous studies have discussed the composition and attributes of human and bovine serum albumin; nonetheless, few systematic and comprehensive summaries on human and bovine serum albumin exist. This paper reviews the applications of human and bovine serum albumin in biomedical engineering. First, we introduce the differences in the structure of human and bovine serum albumin. Next, we describe the extraction methods for human and bovine serum albumin (fractionation process separation, magnetic adsorption, reverse micellar (RM) extraction, and genetic engineering) and the advantages and disadvantages of recently developed extraction methods. The characteristics of different processing forms of human and bovine serum albumin are also discussed, concomitantly elucidating their intrinsic properties, functions, and applications in biomedicine. Notably, their pivotal functions as carriers for drugs and tissue-engineered scaffolds, as well as their contributions to cell reproduction and bioimaging, are critically examined. Finally, to provide guidance for researchers in their future work, this review summarizes the current state of human and bovine serum albumin research and outlines potential future research topics.
Collapse
Affiliation(s)
- Xinhao Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinyu Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
14
|
Edrisi F, Baheiraei N, Razavi M, Roshanbinfar K, Imani R, Jalilinejad N. Potential of graphene-based nanomaterials for cardiac tissue engineering. J Mater Chem B 2023; 11:7280-7299. [PMID: 37427687 DOI: 10.1039/d3tb00654a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cardiovascular diseases are the primary cause of death worldwide. Despite significant advances in pharmacological treatments and surgical interventions to restore heart function after myocardial infarction, it can progress to heart failure due to the restricted inherent potential of adult cardiomyocytes to self-regenerate. Hence, the evolution of new therapeutic methods is critical. Nowadays, novel approaches in tissue engineering have assisted in restoring biological and physical specifications of the injured myocardium and, hence, cardiac function. The incorporation of a supporting matrix that could mechanically and electronically support the heart tissue and stimulate the cells to proliferate and regenerate will be advantageous. Electroconductive nanomaterials can facilitate intracellular communication and aid synchronous contraction via electroactive substrate creation, preventing the issue of arrhythmia in the heart. Among a wide range of electroconductive materials, graphene-based nanomaterials (GBNs) are promising for cardiac tissue engineering (CTE) due to their outstanding features including high mechanical strength, angiogenesis, antibacterial and antioxidant properties, low cost, and scalable fabrication. In the present review, we discuss the effect of applying GBNs on angiogenesis, proliferation, and differentiation of implanted stem cells, their antibacterial and antioxidant properties, and their role in improving the electrical and mechanical properties of the scaffolds for CTE. Also, we summarize the recent research that has applied GBNs in CTE. Finally, we present a concise discussion on the challenges and prospects.
Collapse
Affiliation(s)
- Fatemeh Edrisi
- Modern Technologies in Engineering Group, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran.
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida 32827, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054 Erlangen, Germany
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Negin Jalilinejad
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
15
|
Basara G, Bahcecioglu G, Ren X, Zorlutuna P. An Experimental and Numerical Investigation of Cardiac Tissue-Patch Interrelation. J Biomech Eng 2023; 145:081004. [PMID: 37337466 PMCID: PMC10321148 DOI: 10.1115/1.4062736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Tissue engineered cardiac patches have great potential as a regenerative therapy for myocardial infarction. Yet, the mutual interaction of cardiac patches with healthy tissue has not been completely understood. Here, we investigated the impact of acellular and cellular patches on a beating two-dimensional (2D) cardiac cell layer, and the effect of the beating of this layer on the cells encapsulated in the patch. We cultured human-induced pluripotent stem cell-derived cardiomyocytes (iCMs) on a coverslip and placed gelatin methacryloyl hydrogel alone or with encapsulated iCMs to create acellular and cellular patches, respectively. When the acellular patch was placed on the cardiac cell layer, the beating characteristics and Ca+2 handling properties reduced, whereas placing the cellular patch restored these characteristics. To better understand the effects of the cyclic contraction and relaxation induced by the beating cardiac cell layer on the patch placed on top of it, a simulation model was developed, and the calculated strain values were in agreement with the values measured experimentally. Moreover, this dynamic culture induced by the beating 2D iCM layer on the iCMs encapsulated in the cellular patch improved their beating velocity and frequency. Additionally, the encapsulated iCMs were observed to be coupled with the underlying beating 2D iCM layer. Overall, this study provides a detailed investigation on the mutual relationship of acellular/cellular patches with the beating 2D iCM layer, understanding of which would be valuable for developing more advanced cardiac patches.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, 225 Multidisciplinary Research Building, Notre Dame, IN 46556
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, 108B Multidisciplinary Research Building, Notre Dame, IN 46556
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556; Department of Chemical and Biomolecular Engineering, University of Notre Dame, 143 Multidisciplinary Research Building, Notre Dame, IN 46556
| |
Collapse
|
16
|
Han WB, Ko GJ, Lee KG, Kim D, Lee JH, Yang SM, Kim DJ, Shin JW, Jang TM, Han S, Zhou H, Kang H, Lim JH, Rajaram K, Cheng H, Park YD, Kim SH, Hwang SW. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat Commun 2023; 14:2263. [PMID: 37081012 PMCID: PMC10119106 DOI: 10.1038/s41467-023-38040-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kang-Gon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Donghak Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188 Pangyoyeok-ro, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13524, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Honglei Zhou
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong-Doo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Smith BR, Edelman ER. Nanomedicines for cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:351-367. [PMID: 39195953 DOI: 10.1038/s44161-023-00232-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/25/2023] [Indexed: 08/29/2024]
Abstract
The leading cause of death in the world, cardiovascular disease (CVD), remains a formidable condition for researchers, clinicians and patients alike. CVD comprises a broad collection of diseases spanning the heart, the vasculature and the blood that runs through and interconnects them. Limitations in CVD therapeutic and diagnostic landscapes have generated excitement for advances in nanomedicine, a field focused on improving patient outcomes through transformative therapies, imaging agents and ex vivo diagnostics. CVD nanomedicines are fundamentally shaped by their intended clinical application, including (1) cardiac or heart-related biomaterials, which can be functionally (for example, mechanically, immunologically, electrically) improved by incorporating nanomaterials; (2) the vasculature, involving systemically injected nanotherapeutics and imaging nanodiagnostics, nano-enabled biomaterials or tissue-nanoengineered solutions; and (3) improving the sensitivity and/or specificity of ex vivo diagnostic devices for patient samples. While immunotherapy has developed into a key pillar of oncology in the past dozen years, CVD immunotherapy and immunoimaging are recently emergent and likely to factor substantially in CVD management in the coming decade. The nanomaterials in CVD-related clinical trials and many promising preclinical strategies indicate that nanomedicine is on the cusp of greatly impacting patients with CVD. Here we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD nanomedicine.
Collapse
Affiliation(s)
- Bryan Ronain Smith
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Wu X, Chen J, Zhou A, Zhao Y, Tian Z, Zhang Y, Chen K, Ning X, Xu Y. Light-Activated Chemically Reactive Fibrous Patch Revolutionizes Wound Repair Through the Prevention of Postoperative Adhesion. NANO LETTERS 2023; 23:1435-1444. [PMID: 36752657 DOI: 10.1021/acs.nanolett.2c04774] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A light-activated chemically reactive fibrous patch (ChemPatch) with tissue adhesion and wound healing activity was developed for preventing postoperative peritoneal adhesion. ChemPatch was constructed by an integrative electrospinning fabrication strategy, generating multifunctional PCL-NHS fibers encapsulating antioxidant curcumin and MnO2 nanoparticles. ChemPatch exhibited excellent photothermal conversion, which not only reformed the physical state to match the tissue but also improved conjugation between ChemPatch and tissues, allowing for strong attachment. Importantly, ChemPatch possessed good antioxidant and radical scavenging activity, which protected cells in an oxidative microenvironment and improved tissue regeneration. Particularly, ChemPatch acted as a multifunctional barrier and could not only promote reepithelialization and revascularization in wound defect model but simultaneously ameliorate inflammation and prevent postoperative peritoneal adhesion in a mouse cecal defect model. Thus, ChemPatch represents a dual-active bioadhesive barrier for reducing the incidence and severity of peritoneal adhesions.
Collapse
Affiliation(s)
- Xiaotong Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yinfeng Zhao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi 830046, P. R. China
| | - Yiping Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Li W, Chen P, Pan Y, Lu L, Ning X, Liu J, Wei J, Chen M, Zhao P, Ou C. Construction of a Band-Aid Like Cardiac Patch for Myocardial Infarction with Controllable H 2 S Release. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204509. [PMID: 36285675 PMCID: PMC9762300 DOI: 10.1002/advs.202204509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Excessive or persistent inflammation incites cardiomyocytes necrosis by generating reactive oxygen species in myocardial infarction (MI). Hydrogen sulfide (H2 S), a gaseous signal molecule, can quickly permeate cells and tissues, growing concerned for its cardioprotective effects. However, short resident time and strong side effects greatly restrict its application. Herein, a complex scaffold (AAB) is first developed to slowly release H2 S for myocardial protection by integrating alginate modified with 2-aminopyridine-5-thiocarboxamide (H2 S donor) into albumin electrospun fibers. Next, a band-aid like patch is constructed based on AAB (center) and nanocomposite scaffold which comprises albumin scaffold and black phosphorus nanosheets (BPNSs). With near-infrared laser (808 nm), thermal energy generated by BPNSs can locally change the molecular structure of fibrous scaffold, thereby attaching patch to the myocardium. In this study, it is also demonstrated that AAB can enhance regenerative M2 macrophage and attenuate inflammatory polarization of macrophages via reduction in intracellular ROS. Eventually, this engineered cardiac patch can relieve inflammation and promote angiogenesis after MI, and thereby recover heart function, providing a promising therapeutic strategy for MI treatment.
Collapse
Affiliation(s)
- Weirun Li
- Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523058China
| | - Peier Chen
- Department of CardiologyLaboratory of Heart CenterHeart CenterZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Yuxuan Pan
- Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523058China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug MetabolismGuangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xiaodong Ning
- Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523058China
| | - Jiamin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug MetabolismGuangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jintao Wei
- Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523058China
| | - Minsheng Chen
- Department of CardiologyLaboratory of Heart CenterHeart CenterZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug MetabolismGuangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Cardiac Function and MicrocirculationSouthern Medical UniversityGuangzhou510515China
| | - Caiwen Ou
- Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523058China
- Guangdong Provincial Key Laboratory of Shock and MicrocirculationGuangzhou510515China
| |
Collapse
|
20
|
Zhou R, Zhang M, Xi J, Li J, Ma R, Ren L, Bai Z, Qi K, Li X. Gold Nanorods-Based Photothermal Therapy: Interactions Between Biostructure, Nanomaterial, and Near-Infrared Irradiation. NANOSCALE RESEARCH LETTERS 2022; 17:68. [PMID: 35882718 PMCID: PMC9325935 DOI: 10.1186/s11671-022-03706-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/21/2022] [Indexed: 05/28/2023]
Abstract
Gold nanorods (AuNRs) are ideal inorganic nanophotothermal agents with unique characteristics, including local surface plasmon resonance effects, easy scale preparation and functional modification, and good biocompatibility. This review summarizes several recent advances in AuNRs-based photothermal therapy (PTT) research. Functionalized AuNRs photothermal agents have optimized biocompatibility and targeting properties. The multifunctional AuNRs nanoplatform composite structure meets the requirements for synergistic effects of PTT, photoacoustic imaging, and other therapeutic methods. Photothermal therapy with AuNRs (AuNRs-PTT) is widely used to treat tumors and inflammatory diseases; its tumor-targeting, tumor metastasis inhibition, and photothermal tumor ablation abilities have remarkable curative effects. An in-depth study of AuNRs in living systems and the interactions between biological structure, nanomaterial, and near-infrared irradiation could lay the foundation for further clinical research and the broad application of AuNRs in PTT.
Collapse
Affiliation(s)
- Ruili Zhou
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Meigui Zhang
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Jing Li
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Ruixia Ma
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Longfei Ren
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China
| | - Kuo Qi
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China.
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
21
|
Li Y, Qiu X. Bioelectricity-coupling patches for repairing impaired myocardium. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1787. [PMID: 35233963 DOI: 10.1002/wnan.1787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Cardiac abnormalities, which account for extensive burdens on public health and economy, drive necessary attempts to revolutionize the traditional therapeutic system. Advances in cardiac tissue engineering have expanded a highly efficacious platform to address cardiovascular events, especially cardiac infarction. Current efforts to overcome biocompatible limitations highlight the constructs of a conductive cardiac patch to accelerate the industrial and clinical landscape that is amenable for patient-accurate therapy, regenerative medicine, disease modeling, and drug delivery. With the notion that cardiac tissue synchronically contracts triggered by electrical pulses, the cardiac patches based on conductive materials are developed and treated on the dysfunctional heart. In this review, we systematically summarize distinct conductive materials serving as the most promising alternatives (conductive nanomaterials, conductive polymers, piezoelectric polymers, and ionic electrolytes) to achieve electric signal transmission and engineered cardiac tissues. Existing applications are discussed considering how these patches containing conductive candidates are fabricated into diverse forms with major strategies. Ultimately, we try to define a new concept as a bioelectricity-coupling patch that provides a favorable cardiac micro-environment for cardiac functional activities. Underlying challenges and prospects are presented regarding industrial processing and cardiovascular treatment of conductive patch progress. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Yuedan Li
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Borghei YS, Hosseinkhani S, Ganjali MR. "Plasmonic Nanomaterials": An emerging avenue in biomedical and biomedical engineering opportunities. J Adv Res 2022; 39:61-71. [PMID: 35777917 PMCID: PMC9263747 DOI: 10.1016/j.jare.2021.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Plasmonic nanomaterials asnoble metal-based materials have unique optical characteristic upon exposure to incident light with an appropriate wavelength. Today, generated plasmon by nanoparticles has receivedincreasingattention in nanomedicine; from diagnosis, tissue and tumor imaging to therapeutic and biomedical engineering. AIM OF REVIEW Due to rapid growing of knowledge in the inorganic nanomaterial field, this paper aims to be a comprehensive and authoritative, critical, and broad interest to the scientific community. Here, we introduce basic physicochemical properties of plasmonic nanoparticles and their applications in biomedical and tissue engineering The first part of each division explain the basic physico-chemical properties of each nanomaterial with a graphical abstract. In the second part, concepts by describing classic examples taken from the biomedical and biomedical engineering literature are illustrated. The selected case studies are intended to give an overview of the different systems and mechanisms utilized in nanomedicine. KEY SCIENTIFIC CONCEPTS OF REVIEW In this communication, we have tried to introduce the needed concepts of plasmonic nanomaterials and their implication in a particular part of biomedical over the last 20 years. Moreover, in each part with insist on limitations, a perspective is presented which can guide a researcher how they can develop or modify new scaffolds for biomedical engineering.
Collapse
Affiliation(s)
- Yasaman-Sadat Borghei
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
Ghofrani A, Taghavi L, Khalilivavdareh B, Rohani Shirvan A, Nouri A. Additive manufacturing and advanced functionalities of cardiac patches: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Yu JK, Liang JA, Franceschi WH, Huang Q, Pashakhanloo F, Sung E, Boyle PM, Trayanova NA. Assessment of arrhythmia mechanism and burden of the infarcted ventricles following remuscularization with pluripotent stem cell-derived cardiomyocyte patches using patient-derived models. Cardiovasc Res 2022; 118:1247-1261. [PMID: 33881518 PMCID: PMC8953447 DOI: 10.1093/cvr/cvab140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/14/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS Direct remuscularization with pluripotent stem cell-derived cardiomyocytes (PSC-CMs) seeks to address the onset of heart failure post-myocardial infarction (MI) by treating the persistent muscle deficiency that underlies it. However, direct remuscularization with PSC-CMs could potentially be arrhythmogenic. We investigated two possible mechanisms of arrhythmogenesis-focal vs. re-entrant-arising from direct remuscularization with PSC-CM patches in two personalized, human ventricular computer models of post-MI. Moreover, we developed a principled approach for evaluating arrhythmogenicity of direct remuscularization that factors in the VT propensity of the patient-specific post-MI fibrotic substrate and use it to investigate different conditions of patch remuscularization. METHODS AND RESULTS Two personalized, human ventricular models of post-MI (P1 and P2) were constructed from late gadolinium enhanced (LGE)-magnetic resonance images (MRIs). In each model, remuscularization with PSC-CM patches was simulated under different treatment conditions that included patch engraftment, patch myofibril orientation, remuscularization site, patch size (thickness and diameter), and patch maturation. To determine arrhythmogenicity of treatment conditions, VT burden of heart models was quantified prior to and after simulated remuscularization and compared. VT burden was quantified based on inducibility (i.e. weighted sum of pacing sites that induced) and severity (i.e. the number of distinct VT morphologies induced). Prior to remuscularization, VT burden was significant in P1 (0.275) and not in P2 (0.0, not VT inducible). We highlight that re-entrant VT mechanisms would dominate over focal mechanisms; spontaneous beats emerging from PSC-CM grafts were always a fraction of resting sinus rate. Moreover, incomplete patch engraftment can be particularly arrhythmogenic, giving rise to particularly aberrant electrical activation and conduction slowing across the PSC-CM patches along with elevated VT burden when compared with complete engraftment. Under conditions of complete patch engraftment, remuscularization was almost always arrhythmogenic in P2 but certain treatment conditions could be anti-arrhythmogenic in P1. Moreover, the remuscularization site was the most important factor affecting VT burden in both P1 and P2. Complete maturation of PSC-CM patches, both ionically and electrotonically, at the appropriate site could completely alleviate VT burden. CONCLUSION We identified that re-entrant VT would be the primary VT mechanism in patch remuscularization. To evaluate the arrhythmogenicity of remuscularization, we developed a principled approach that factors in the propensity of the patient-specific fibrotic substrate for VT. We showed that arrhythmogenicity is sensitive to the patient-specific fibrotic substrate and remuscularization site. We demonstrate that targeted remuscularization can be safe in the appropriate individual and holds the potential to non-destructively eliminate VT post-MI in addition to addressing muscle deficiency underlying heart failure progression.
Collapse
Affiliation(s)
- Joseph K Yu
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, 3400 N Charles Street, 216 Hackerman, Baltimore, MD, USA
| | - Jialiu A Liang
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
| | - William H Franceschi
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
| | - Qinwen Huang
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
| | - Farhad Pashakhanloo
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
| | - Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, 3400 N Charles Street, 216 Hackerman, Baltimore, MD, USA
| | - Patrick M Boyle
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles Street, 208 Hackerman, Baltimore, MD 21218, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, 3400 N Charles Street, 216 Hackerman, Baltimore, MD, USA
| |
Collapse
|
26
|
Li M, Wu H, Yuan Y, Hu B, Gu N. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. VIEW 2022. [DOI: 10.1002/viw.20200153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Mei Li
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
- The Laboratory Center for Basic Medical Sciences Nanjing Medical University Nanjing China
| | - Hao Wu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
| | - Ning Gu
- School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Sciences and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
27
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
28
|
Zhao G, Feng Y, Xue L, Cui M, Zhang Q, Xu F, Peng N, Jiang Z, Gao D, Zhang X. Anisotropic conductive reduced graphene oxide/silk matrices promote post-infarction myocardial function by restoring electrical integrity. Acta Biomater 2022; 139:190-203. [PMID: 33836222 DOI: 10.1016/j.actbio.2021.03.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) remains the leading cause of death globally, often leading to impaired cardiac function and pathological myocardial microenvironment. Electrical conduction abnormalities of the infarcted myocardium not only induce adverse myocardial remodeling but also prevent tissue repair. Restoring the myocardial electrical integrity, particularly the anisotropic electrical signal propagation within the injured area after infarction is crucial for an effective function recovery. Herein, optimized reduced graphene oxide (rGO) functionalized electrospun silk fibroin (rGO/silk) biomaterials presenting anisotropic conductivity and enhanced suturablity were developed and investigated as cardiac patches for their potential in improving the post-MI myocardial function of rat models. The results show that the anisotropic conductive rGO/silk patches exhibit remarkable therapeutic effect on repairing the infarcted myocardium compared to the nonconductive silk and isotropic conductive rGO/silk patches as determined by the enhanced pumping function, reduced susceptibility to arrhythmias, thickened left ventricular walls and improved survival of functional cardiomyocytes. Their notable effect on promoting the angiogenesis of capillaries in the infarcted myocardium has also been demonstrated. This study highlights an effective and biomimetic reconstruction of the electrical myocardial microenvironment based on the anisotropic conductive rGO/silk biomaterials as a promising option for promoting the repair of infarcted myocardium. STATEMENT OF SIGNIFICANCE: The dysfunctional electrical microenvironment in the infarcted myocardium not only aggravates the adverse myocardial remodeling but also limits the effect of cardiac regenerative medicine. Although various conductive biomaterials have been employed to restore the electrical network in the infarcted myocardium in vivo, the anisotropic nature of the myocardial electrical microenvironment which enables directional electrical signal propagation were neglected. In this study, an anisotropic conductive rGO/silk biomaterial system is developed to improve the myocardial function post infarction by restoring the anisotropic electrical microenvironment in the infarcted myocardium. The promoted effects of anisotropic conductive grafts on repairing infarcted hearts are demonstrated with improved pumping function, cardiomyocyte survival, resistance to ventricular fibrillation, and angiogenesis of capillary network.
Collapse
Affiliation(s)
- Guoxu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China; School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, Shaanxi, PR China
| | - Yanjing Feng
- Department of Cardiology, The Second Affiliated Hospital, School of Medical, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, PR China
| | - Li Xue
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Mengjie Cui
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Qi Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Niancai Peng
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Zhuangde Jiang
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, School of Medical, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, PR China.
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China.
| |
Collapse
|
29
|
Li Y, Wei L, Lan L, Gao Y, Zhang Q, Dawit H, Mao J, Guo L, Shen L, Wang L. Conductive biomaterials for cardiac repair: A review. Acta Biomater 2022; 139:157-178. [PMID: 33887448 DOI: 10.1016/j.actbio.2021.04.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) is one of the fatal diseases in humans. Its incidence is constantly increasing annually all over the world. The problem is accompanied by the limited regenerative capacity of cardiomyocytes, yielding fibrous scar tissue formation. The propagation of electrical impulses in such tissue is severely hampered, negatively influencing the normal heart pumping function. Thus, reconstruction of the internal cardiac electrical connection is currently a major concern of myocardial repair. Conductive biomaterials with or without cell loading were extensively investigated to address this problem. This article introduces a detailed overview of the recent progress in conductive biomaterials and fabrication methods of conductive scaffolds for cardiac repair. After that, the advances in myocardial tissue construction in vitro by the restoration of intercellular communication and simulation of the dynamic electrophysiological environment are systematically reviewed. Furthermore, the latest trend in the study of cardiac repair in vivo using various conductive patches is summarized. Finally, we discuss the achievements and shortcomings of the existing conductive biomaterials and the properties of an ideal conductive patch for myocardial repair. We hope this review will help readers understand the importance and usefulness of conductive biomaterials in cardiac repair and inspire researchers to design and develop new conductive patches to meet the clinical requirements. STATEMENT OF SIGNIFICANCE: After myocardial infarction, the infarcted myocardial area is gradually replaced by heterogeneous fibrous tissue with inferior conduction properties, resulting in arrhythmia and heart remodeling. Conductive biomaterials have been extensively adopted to solve the problem. Summarizing the relevant literature, this review presents an overview of the types and fabrication methods of conductive biomaterials, and focally discusses the recent advances in myocardial tissue construction in vitro and myocardial repair in vivo, which is rarely covered in previous reviews. As well, the deficiencies of the existing conductive patches and their construction strategies for myocardial repair are discussed as well as the improving directions. Confidently, the readers of this review would appreciate advantages and current limitations of conductive biomaterials/patches in cardiac repair.
Collapse
Affiliation(s)
- Yimeng Li
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Leqian Wei
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lizhen Lan
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yaya Gao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Hewan Dawit
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China.
| | - Lamei Guo
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Li Shen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Lu Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
30
|
Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol 2022; 19:83-99. [PMID: 34453134 DOI: 10.1038/s41569-021-00603-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Successfully engineering a functional, human, myocardial pump would represent a therapeutic alternative for the millions of patients with end-stage heart disease and provide an alternative to animal-based preclinical models. Although the field of cardiac tissue engineering has made tremendous advances, major challenges remain, which, if properly resolved, might allow the clinical implementation of engineered, functional, complex 3D structures in the future. In this Review, we provide an overview of state-of-the-art studies, challenges that have not yet been overcome and perspectives on cardiac tissue engineering. We begin with the most clinically relevant cell sources used in this field and discuss the use of topological, biophysical and metabolic stimuli to obtain mature phenotypes of cardiomyocytes, particularly in relation to organized cytoskeletal and contractile intracellular structures. We then move from the cellular level to engineering planar cardiac patches and discuss the need for proper vascularization and the main strategies for obtaining it. Finally, we provide an overview of several different approaches for the engineering of volumetric organs and organ parts - from whole-heart decellularization and recellularization to advanced 3D printing technologies.
Collapse
|
31
|
Esmaeili H, Patino-Guerrero A, Hasany M, Ansari MO, Memic A, Dolatshahi-Pirouz A, Nikkhah M. Electroconductive biomaterials for cardiac tissue engineering. Acta Biomater 2022; 139:118-140. [PMID: 34455109 PMCID: PMC8935982 DOI: 10.1016/j.actbio.2021.08.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is still the leading cause of mortality worldwide. The success of cell-based therapies and tissue engineering strategies for treatment of injured myocardium have been notably hindered due to the limitations associated with the selection of a proper cell source, lack of engraftment of engineered tissues and biomaterials with the host myocardium, limited vascularity, as well as immaturity of the injected cells. The first-generation approaches in cardiac tissue engineering (cTE) have mainly relied on the use of desired cells (e.g., stem cells) along with non-conductive natural or synthetic biomaterials for in vitro construction and maturation of functional cardiac tissues, followed by testing the efficacy of the engineered tissues in vivo. However, to better recapitulate the native characteristics and conductivity of the cardiac muscle, recent approaches have utilized electroconductive biomaterials or nanomaterial components within engineered cardiac tissues. This review article will cover the recent advancements in the use of electrically conductive biomaterials in cTE. The specific emphasis will be placed on the use of different types of nanomaterials such as gold nanoparticles (GNPs), silicon-derived nanomaterials, carbon-based nanomaterials (CBNs), as well as electroconductive polymers (ECPs) for engineering of functional and electrically conductive cardiac tissues. We will also cover the recent progress in the use of engineered electroconductive tissues for in vivo cardiac regeneration applications. We will discuss the opportunities and challenges of each approach and provide our perspectives on potential avenues for enhanced cTE. STATEMENT OF SIGNIFICANCE: Myocardial infarction (MI) is still the primary cause of death worldwide. Over the past decade, electroconductive biomaterials have increasingly been applied in the field of cardiac tissue engineering. This review article provides the readers with the leading advances in the in vitro applications of electroconductive biomaterials for cTE along with an in-depth discussion of injectable/transplantable electroconductive biomaterials and their delivery methods for in vivo MI treatment. The article also discusses the knowledge gaps in the field and offers possible novel avenues for improved cardiac tissue engineering.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Masoud Hasany
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark; Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
32
|
Basara G, Saeidi-Javash M, Ren X, Bahcecioglu G, Wyatt BC, Anasori B, Zhang Y, Zorlutuna P. Electrically conductive 3D printed Ti 3C 2T x MXene-PEG composite constructs for cardiac tissue engineering. Acta Biomater 2022; 139:179-189. [PMID: 33352299 PMCID: PMC8213874 DOI: 10.1016/j.actbio.2020.12.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 02/03/2023]
Abstract
Tissue engineered cardiac patches have great potential as a therapeutic treatment for myocardial infarction (MI). However, for successful integration with the native tissue and proper function of the cells comprising the patch, it is crucial for these patches to mimic the ordered structure of the native extracellular matrix and the electroconductivity of the human heart. In this study, a new composite construct that can provide both conductive and topographical cues for human induced pluripotent stem cell derived cardiomyocytes (iCMs) is developed for cardiac tissue engineering applications. The constructs are fabricated by 3D printing conductive titanium carbide (Ti3C2Tx) MXene in pre-designed patterns on polyethylene glycol (PEG) hydrogels, using aerosol jet printing, at a cell-level resolution and then seeded with iCMs and cultured for one week with no signs of cytotoxicity. The results presented in this work illustrate the vital role of 3D-printed Ti3C2Tx MXene on aligning iCMs with a significant increase in MYH7, SERCA2, and TNNT2 expressions, and with an improved synchronous beating as well as conduction velocity. This study demonstrates that 3D printed Ti3C2Tx MXene can potentially be used to create physiologically relevant cardiac patches for the treatment of MI. STATEMENT OF SIGNIFICANCE: As cardiovascular diseases and specifically myocardial infarction (MI) continue to be the leading cause of death worldwide, it is critical that new clinical interventions be developed. Tissue engineered cardiac patches have shown significant potential as clinical therapeutics to promote recovery following MI. Unfortunately, current constructs lack the ordered structure and electroconductivity of native human heart. In this study, we engineered a composite construct that can provide both conductive and topographical cues for human induced pluripotent stem cell derived cardiomyocytes. By 3D printing conductive Ti3C2Tx MXene in pre-designed patterns on polyethylene glycol hydrogels, using aerosol jet printing, at a cell-level resolution, we developed tissue engineered patches that have the potential for providing a new clinical therapeutic to combat cardiovascular disease.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mortaza Saeidi-Javash
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brian C. Wyatt
- Integrated Nanosystems Development Institute and Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Babak Anasori
- Integrated Nanosystems Development Institute and Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA,Corresponding author: Pinar Zorlutuna, , Address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556, Phone no: +1 574 631 8543, Fax no: +1 574 631 8341
| |
Collapse
|
33
|
Malki M, Shapira A, Dvir T. Chondroitin sulfate-AuNRs electroactive scaffolds for on-demand release of biofactors. J Nanobiotechnology 2022; 20:59. [PMID: 35101034 PMCID: PMC8805416 DOI: 10.1186/s12951-022-01261-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Controlled release systems are often integrated into polymeric scaffolds to supply essential biofactors to trigger physiological processes in engineered tissues. Here, we report the modification of chondroitin sulfate (CS) electroactive polymer with gold nanorods (AuNRs) to create hybrid macroporous scaffolds for enhanced on-demand release of growth factors and cytokines. The mechanical properties, porosity and degradation of the hybrid scaffolds were evaluated, and the viability and functionality of seeded cardiac cells were assessed. Following, the ability to control the release of the enzyme lysozyme, and the cytokine, stromal cell-derived factor 1 (SDF-1) by applying electrical stimulation, was demonstrated. The AuNRs were able to increase the current through the scaffolds, providing an efficient on–off release profile of SDF-1, which resulted in higher migration of cells expressing CXCR4 receptor. Finally, the engineered scaffolds were transplanted in rats and SDF-1 was released daily by electrical stimulation, promoting blood vessel-forming cell infiltration and vascularization. We envision that gold nanoparticles and other conducting nanomaterials can be incorporated into different electroactive materials to improve their capabilities not only for tissue engineering applications, but for a variety of biomedical applications, where enhanced electrical stimulation is needed.
Collapse
|
34
|
Huang W, Huo M, Cheng N, Wang R. New Forms of Electrospun Nanofibers Applied in Cardiovascular Field. Front Cardiovasc Med 2022; 8:801077. [PMID: 35127862 PMCID: PMC8814313 DOI: 10.3389/fcvm.2021.801077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. In recent years, regenerative medicine, tissue engineering and the development of new materials have become the focus of attention this field, and electrospinning technology to prepare nanofibrous materials for the treatment of cardiovascular diseases has attracted people's attention. Unlike previous reviews, this research enumerates the experimental methods and applications of electrospinning technology combined with nanofibrous materials in the directions of myocardial infarction repair, artificial heart valves, artificial blood vessels and cardiovascular patches from the perspective of cardiovascular surgery. In the end, this review also summarizes the limitations, unresolved technical challenges, and possible future directions of this technology for cardiovascular disease applications.
Collapse
Affiliation(s)
- Weimin Huang
- Baotou Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Mengen Huo
- Institute of Poisons and Drugs, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Nan Cheng
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Rong Wang
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Rong Wang
| |
Collapse
|
35
|
Vasu S, Zhou J, Chen J, Johnston PV, Kim DH. Biomaterials-based Approaches for Cardiac Regeneration. Korean Circ J 2021; 51:943-960. [PMID: 34854577 PMCID: PMC8636758 DOI: 10.4070/kcj.2021.0291] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease is a prevalent cause of mortality and morbidity, largely due to the limited ability of cardiomyocytes to proliferate. Existing therapies for cardiac regeneration include cell-based therapies and bioactive molecules. However, delivery remains one of the major challenges impeding such therapies from having significant clinical impact. Recent advancements in biomaterials-based approaches for cardiac regeneration have shown promise in improving cardiac function, promoting angiogenesis, and reducing adverse immune response in both human clinical trials and animal studies. These advances in therapeutic delivery via extracellular vesicles, cardiac patches, and hydrogels have the potential to enable clinical impact of cardiac regeneration therapies. The limited ability of cardiomyocytes to proliferate is a major cause of mortality and morbidity in cardiovascular diseases. There exist therapies for cardiac regeneration that are cell-based as well as that involve bioactive molecules. However, delivery remains one of the major challenges impeding such therapies from having clinical impact. Recent advancements in biomaterials-based approaches for cardiac regeneration have shown promise in clinical trials and animal studies in improving cardiac function, promoting angiogenesis, and reducing adverse immune response. This review will focus on current clinical studies of three contemporary biomaterials-based approaches for cardiac regeneration (extracellular vesicles, injectable hydrogels, and cardiac patches), remaining challenges and shortcomings to be overcome, and future directions for the use of biomaterials to promote cardiac regeneration.
Collapse
Affiliation(s)
- Samhita Vasu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Zhou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter V Johnston
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Shilo M, Oved H, Wertheim L, Gal I, Noor N, Green O, Baruch E, Shabat D, Shapira A, Dvir T. Injectable Nanocomposite Implants Reduce ROS Accumulation and Improve Heart Function after Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102919. [PMID: 34719885 PMCID: PMC8693049 DOI: 10.1002/advs.202102919] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Indexed: 05/03/2023]
Abstract
In a myocardial infarction, blood supply to the left ventricle is abrogated due to blockage of one of the coronary arteries, leading to ischemia, which further triggers the generation of reactive oxygen species (ROS). These sequential processes eventually lead to the death of contractile cells and affect the integrity of blood vessels, resulting in the formation of scar tissue. A new heart therapy comprised of cardiac implants encapsulated within an injectable extracellular matrix-gold nanoparticle composite hydrogel is reported. The particles on the collagenous fibers within the hydrogel promote fast transfer of electrical signal between cardiac cells, leading to the functional assembly of the cardiac implants. The composite hydrogel is shown to absorb reactive oxygen species in vitro and in vivo in mice ischemia reperfusion model. The reduction in ROS levels preserve cardiac tissue morphology and blood vessel integrity, reduce the scar size and the inflammatory response, and significantly prevent the deterioration of heart function.
Collapse
Affiliation(s)
- Malka Shilo
- The Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Hadas Oved
- The Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Lior Wertheim
- The Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Idan Gal
- The Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Nadav Noor
- The Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Ori Green
- School of ChemistryFaculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Ester‐Sapir Baruch
- The Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Doron Shabat
- School of ChemistryFaculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Assaf Shapira
- The Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Tal Dvir
- The Shmunis School of Biomedicine and Cancer ResearchFaculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv6997801Israel
- The Department of Biomedical EngineeringFaculty of EngineeringTel Aviv UniversityTel Aviv6997801Israel
- Sagol Center for Regenerative BiotechnologyTel Aviv UniversityTel Aviv6997801Israel
| |
Collapse
|
37
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
38
|
Wang Z, Cao Y, Zhang K, Guo Z, Liu Y, Zhou P, Liu Z, Lu X. Gold nanoparticles alleviates the lipopolysaccharide-induced intestinal epithelial barrier dysfunction. Bioengineered 2021; 12:6472-6483. [PMID: 34523392 PMCID: PMC8806813 DOI: 10.1080/21655979.2021.1972782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nanotechnology is used in the immune response manipulation to treat various human diseases. In the present study, we explored the effects of Au nanoparticles (AuNPs) on the lipopolysaccharide (LPS)-induced epithelial barrier dysfunction and inflammatory response of colonic epithelial NCM460 cells. According to the results of cell counting kit-8 and flow cytometry analysis, the viability of NCM460 cells was inhibited, and the apoptosis was increased after LPS treatment, and AuNPs reversed these changes in a dose-dependent way. The permeability was evaluated by detecting the flux of fluorescein isothiocyanate-dextran and transepithelial electrical resistance. LPS enhanced the permeability and promoted barrier dysfunction of NCM460 cells. Enzyme-linked immunosorbent sorbent assay results revealed that the concentrations of pro-inflammatory factors and nitric oxide were elevated by LPS treatment and decreased by the AuNPs. LPS aggravated the inflammatory response, which was rescued by the AuNPs. Moreover, LPS promoted the activation of the nuclear factor kappa-B and extracellular signal-regulated kinase/c-Jun NH-terminal kinase signaling pathways, which were inhibited by AuNPs.
Collapse
Affiliation(s)
- Zhen Wang
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Critical Care Medicine, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yinya Cao
- Department of Critical Care Medicine, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Kangzhen Zhang
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhirui Guo
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Liu
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Zhou
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Liu
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Bai R, Liu J, Zhang J, Shi J, Jin Z, Li Y, Ding X, Zhu X, Yuan C, Xiu B, Liu H, Yuan Z, Liu Z. Conductive single-wall carbon nanotubes/extracellular matrix hybrid hydrogels promote the lineage-specific development of seeding cells for tissue repair through reconstructing an integrin-dependent niche. J Nanobiotechnology 2021; 19:252. [PMID: 34425841 PMCID: PMC8381546 DOI: 10.1186/s12951-021-00993-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The niche of tissue development in vivo involves the growth matrix, biophysical cues and cell-cell interactions. Although natural extracellular matrixes may provide good supporting for seeding cells in vitro, it is evitable to destroy biophysical cues during decellularization. Reconstructing the bioactivities of extracellular matrix-based scaffolds is essential for their usage in tissue repair. RESULTS In the study, a hybrid hydrogel was developed by incorporating single-wall carbon nanotubes (SWCNTs) into heart-derived extracellular matrixes. Interestingly, insoluble SWCNTs were well dispersed in hybrid hydrogel solution via the interaction with extracellular matrix proteins. Importantly, an augmented integrin-dependent niche was reconstructed in the hybrid hydrogel, which could work like biophysical cues to activate integrin-related pathway of seeding cells. As supporting scaffolds in vitro, the hybrid hydrogels were observed to significantly promote seeding cell adhesion, differentiation, as well as structural and functional development towards mature cardiac tissues. As injectable carrier scaffolds in vivo, the hybrid hydrogels were then used to delivery stem cells for myocardial repair in rats. Similarly, significantly enhanced cardiac differentiation and maturation(12.5 ± 2.3% VS 32.8 ± 5%) of stem cells were detected in vivo, resulting in improved myocardial regeneration and repair. CONCLUSIONS The study represented a simple and powerful approach for exploring bioactive scaffold to promote stem cell-based tissue repair.
Collapse
Affiliation(s)
- Rui Bai
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jianfeng Liu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiao Zhang
- Department of Cardiology, Beijing Electric Power Hospital, State Grid Corporation of China, Beijing, 100073, China
| | - Jinmiao Shi
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhigeng Jin
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yi Li
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Xiaoyu Ding
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoming Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chao Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Bingshui Xiu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huiliang Liu
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Zengqiang Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
40
|
Advance cardiac nanomedicine by targeting the pathophysiological characteristics of heart failure. J Control Release 2021; 337:494-504. [PMID: 34358590 DOI: 10.1016/j.jconrel.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023]
Abstract
Heart failure (HF) has continued to be a leading cause of morbidity and mortality worldwide. Nanomedicine, which can deliver therapeutic drugs/biomolecules specifically to damaged myocardium and overcome the limitations of conventional therapies, shows great potential in the treatment of HF. Although a number of preclinical studies of cardiac nanoformulations have been published, targeted nanomedicine for HF is yet to be applied in clinical practice. Therefore, it is meaningful to sum up past experiences and deepen the understanding of nanomedicine and HF. In this review, we first emphasized the key biological barriers to cardiac nanomedicine that hinder its targeting effect. Since the rational design of nanoparticles should take into account the specific characteristics of HF, we then summarized the key pathophysiological changes of HF to provide a clear understanding on HF, as well as the latest examples of nanotechnology-based delivery strategies for different pathophysiological characteristics. Finally, the major challenges are discussed in detail, aiming to provide guidance for future development of cardiac nanomedicine.
Collapse
|
41
|
Chen S, Gil CJ, Ning L, Jin L, Perez L, Kabboul G, Tomov ML, Serpooshan V. Adhesive Tissue Engineered Scaffolds: Mechanisms and Applications. Front Bioeng Biotechnol 2021; 9:683079. [PMID: 34354985 PMCID: PMC8329531 DOI: 10.3389/fbioe.2021.683079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
A variety of suture and bioglue techniques are conventionally used to secure engineered scaffold systems onto the target tissues. These techniques, however, confront several obstacles including secondary damages, cytotoxicity, insufficient adhesion strength, improper degradation rate, and possible allergic reactions. Adhesive tissue engineering scaffolds (ATESs) can circumvent these limitations by introducing their intrinsic tissue adhesion ability. This article highlights the significance of ATESs, reviews their key characteristics and requirements, and explores various mechanisms of action to secure the scaffold onto the tissue. We discuss the current applications of advanced ATES products in various fields of tissue engineering, together with some of the key challenges for each specific field. Strategies for qualitative and quantitative assessment of adhesive properties of scaffolds are presented. Furthermore, we highlight the future prospective in the development of advanced ATES systems for regenerative medicine therapies.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Carmen J. Gil
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Lilanni Perez
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Gabriella Kabboul
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
42
|
Zou Y, Zhang Y, Yu Q, Chen H. Photothermal bactericidal surfaces: killing bacteria using light instead of biocides. Biomater Sci 2021; 9:10-22. [DOI: 10.1039/d0bm00617c] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments of photothermal bactericidal surfaces based on immobilized photothermal agents to kill bacteria through hyperthermia effects are reviewed.
Collapse
Affiliation(s)
- Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital
- Soochow University
- Suzhou
- P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
43
|
Boroumand S, Haeri A, Nazeri N, Rabbani S. Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds, and Pharmacological Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:467-496. [PMID: 35194460 PMCID: PMC8842618 DOI: 10.22037/ijpr.2021.114730.15012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heart failure (HF) is one of the most important cardiovascular diseases (CVD), causing many die every year. Cardiac tissue engineering is a multidisciplinary field for creating functional tissues to improve the cardiac function of the damaged heart and get hope for end-stage patients. Recent works have focused on creating engineered cardiac tissue ex-vivo. Simultaneously, new approaches are used to study ways of induction of regeneration in the damaged heart after injury. The heart as a complex physiological pump consists of many cells such as cardiomyocytes (80–90% of the heart volume). These cardiomyocytes are elongated, aligned, and have beating properties. To create the heart muscle, which should be functional, soft and elastic scaffolds are required to resemble the native heart tissue. These mechanical characteristics are not compatible with all materials and should be well selected. Some scaffolds promote the viability and differentiation of stem cells. Each material has advantages and disadvantages with relevant influence behavior for cells. In this review, we present an overview of the general approaches developed to generate functional cardiac tissues, discussing the different cell sources, biomaterials, pharmacological agents, and engineering strategies in this manner. Moreover, we discuss the main challenges in cardiac tissue engineering that cause difficulties to construct heart muscle. We trust that researchers interested in developing cardiac tissue engineering will find the information reviewed here useful. Furthermore, we think that providing a unified framework will further the development of human engineered cardiac tissue constructs.
Collapse
Affiliation(s)
- Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Niloofar Nazeri
- Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail:
| |
Collapse
|
44
|
Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 7:55-82. [PMID: 33320525 DOI: 10.1021/acsbiomaterials.0c01422] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for discussion. In the present review, we classify and summarize the unique properties of conductive biomaterials considered beneficial for cardiac tissue engineering. We attempt to cover recent advances in conductive biomaterials with a particular focus on their effects on cardiac cell functions and proposed mechanisms of action. Finally, current problems, limitations, challenges, and suggested solutions for applications of these biomaterials are presented.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadaf Vahdat
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Department of Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
45
|
Khan S, Hasan A, Attar F, Sharifi M, Siddique R, Mraiche F, Falahati M. Gold Nanoparticle-Based Platforms for Diagnosis and Treatment of Myocardial Infarction. ACS Biomater Sci Eng 2020; 6:6460-6477. [PMID: 33320615 DOI: 10.1021/acsbiomaterials.0c00955] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, an increasing rate of mortality due to myocardial infarction (MI) has led to the development of nanobased platforms, especially gold nanoparticles (AuNPs), as promising nanomaterials for diagnosis and treatment of MI. These promising NPs have been used to develop different nanobiosensors, mainly optical sensors for early detection of biomarkers as well as biomimetic/bioinspired platforms for cardiac tissue engineering (CTE). Therefore, in this Review, we presented an overview on the potential application of AuNPs as optical (surface plasmon resonance, colorimetric, fluorescence, and chemiluminescence) nanobiosensors for early diagnosis and prognosis of MI. On the other hand, we discussed the potential application of AuNPs either alone or with other NPs/polymers as promising three-dimensional (3D) scaffolds to regulate the microenvironment and mimic the morphological and electrical features of cardiac cells for potential application in CTE. Furthermore, we presented the challenges and ongoing efforts associated with the application of AuNPs in the diagnosis and treatment of MI. In conclusion, this Review may provide outstanding information regarding the development of AuNP-based technology as a promising platform for current MI treatment approaches.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Jingba Road, NO.2, 450014 Zhengzhou, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.,Biomedical Research Centre (BRC), Qatar University, Doha 2713, Qatar
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj 14155-6139, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Jingba Road, NO.2, 450014 Zhengzhou, China
| | | | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
46
|
Carayon I, Gaubert A, Mousli Y, Philippe B. Electro-responsive hydrogels: macromolecular and supramolecular approaches in the biomedical field. Biomater Sci 2020; 8:5589-5600. [PMID: 32996479 DOI: 10.1039/d0bm01268h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogels are soft materials of the utmost importance in the biomedical and healthcare fields. Two approaches can be considered to obtain such biomaterials: the macromolecular one and the supramolecular one. In the first, the chemical gel is based on crosslinking while in the second the physical hydrogel is stabilized thanks to noncovalent interactions. Recently, new trends rely on smart devices able to modify their physico-chemical properties under stimulation. Such stimuli-responsive systems can react to internal (i.e. pH, redox potential, enzyme, etc.) or external (i.e. magnetic field, light, electric field, etc.) triggers leading to smart drug release and drug delivery systems, 3D scaffolds or biosensors. Even if some stimuli-responsive biomaterials are currently widely studied, other ones represent a real challenge. Among them, electro-responsive hydrogels, especially obtained via supramolecular approach, are under-developped leaving room for improvement. Indeed, currently known macromolecular electro-responsive systems are reaching some limitations related to their chemical composition, physicochemical properties, mechanical strength, processing technologies, etc. In contrast, the interest for supramolecular hydrogels has risen for the past few years suggesting that they may provide new solutions as electro-responsive soft materials. In this short review, we give a recent non exhaustive survey on macromolecular and supramolecular approaches for electro-responsive hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Iga Carayon
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | | | | | | |
Collapse
|
47
|
Mostafavi E, Medina-Cruz D, Kalantari K, Taymoori A, Soltantabar P, Webster TJ. Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine. Bioelectricity 2020; 2:120-149. [PMID: 34471843 PMCID: PMC8370325 DOI: 10.1089/bioe.2020.0021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine aims to engineer tissue constructs that can recapitulate the functional and structural properties of native organs. Most novel regenerative therapies are based on the recreation of a three-dimensional environment that can provide essential guidance for cell organization, survival, and function, which leads to adequate tissue growth. The primary motivation in the use of conductive nanomaterials in tissue engineering has been to develop biomimetic scaffolds to recapitulate the electrical properties of the natural extracellular matrix, something often overlooked in numerous tissue engineering materials to date. In this review article, we focus on the use of electroconductive nanobiomaterials for different biomedical applications, particularly, very recent advancements for cardiovascular, neural, bone, and muscle tissue regeneration. Moreover, this review highlights how electroconductive nanobiomaterials can facilitate cell to cell crosstalk (i.e., for cell growth, migration, proliferation, and differentiation) in different tissues. Thoughts on what the field needs for future growth are also provided.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ada Taymoori
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Pooneh Soltantabar
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Yang B, Yao F, Ye L, Hao T, Zhang Y, Zhang L, Dong D, Fang W, Wang Y, Zhang X, Wang C, Li J. A conductive PEDOT/alginate porous scaffold as a platform to modulate the biological behaviors of brown adipose-derived stem cells. Biomater Sci 2020; 8:3173-3185. [PMID: 32367084 DOI: 10.1039/c9bm02012h] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of three-dimensional conductive scaffolds is vital to support the adhesion, proliferation and myocardial differentiation of stem cells in cardiac tissue engineering. Herein, we describe a facile approach for preparing a poly(3,4-ethylenedioxythiophene)/alginate (PEDOT/Alg) porous scaffold with a wide range of desirable properties. In the PEDOT/Alg scaffold, chemically crosslinked alginate networks are formed using adipic acid hydrazide as the crosslinker, and PEDOT is synthesized in situ in the alginate matrix simultaneously. PEDOT exists in the alginate matrix as particles and its morphology can be modulated by adjusting the ratio of PEDOT/alginate. The results also show that the swelling properties, degradation behaviors, mechanical strength and conductivity of the PEDOT/Alg scaffold can be controlled via adjusting the PEDOT/alginate ratio. The introduction of PEDOT can overcome the brittle nature of the pure alginate scaffold. Moreover, the PEDOT/Alg scaffold exhibits excellent conductivity (as high as 6 × 10-2 S cm-1). The introduction of PEDOT improves the protein absorption capacity of the alginate scaffold. To explore its potential application in cardiac tissue engineering, brown adipose-derived stem cells (BADSCs) are seeded in the prepared PEDOT/Alg porous scaffold. The results suggest that the PEDOT/Alg porous scaffold can support the attachment and proliferation of BADSCs. Moreover, it is beneficial for the cardiomyogenic differentiation of BADSCs, especially under electrical stimulation. Overall, we conclude that the PEDOT/Alg porous scaffold may represent an ideal platform to modulate the biological behaviors of BADSCs.
Collapse
Affiliation(s)
- Boguang Yang
- Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bar A, Cohen S. Inducing Endogenous Cardiac Regeneration: Can Biomaterials Connect the Dots? Front Bioeng Biotechnol 2020; 8:126. [PMID: 32175315 PMCID: PMC7056668 DOI: 10.3389/fbioe.2020.00126] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) after myocardial infarction (MI) due to blockage of coronary arteries is a major public health issue. MI results in massive loss of cardiac muscle due to ischemia. Unfortunately, the adult mammalian myocardium presents a low regenerative potential, leading to two main responses to injury: fibrotic scar formation and hypertrophic remodeling. To date, complete heart transplantation remains the only clinical option to restore heart function. In the last two decades, tissue engineering has emerged as a promising approach to promote cardiac regeneration. Tissue engineering aims to target processes associated with MI, including cardiomyogenesis, modulation of extracellular matrix (ECM) remodeling, and fibrosis. Tissue engineering dogmas suggest the utilization and combination of two key components: bioactive molecules and biomaterials. This chapter will present current therapeutic applications of biomaterials in cardiac regeneration and the challenges still faced ahead. The following biomaterial-based approaches will be discussed: Nano-carriers for cardiac regeneration-inducing biomolecules; corresponding matrices for their controlled release; injectable hydrogels for cell delivery and cardiac patches. The concept of combining cardiac patches with controlled release matrices will be introduced, presenting a promising strategy to promote endogenous cardiac regeneration.
Collapse
Affiliation(s)
- Assaf Bar
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beersheba, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
50
|
|