1
|
Burgstaller A, Madureira S, Staufer O. Synthetic cells in tissue engineering. Curr Opin Biotechnol 2025; 92:103252. [PMID: 39847957 DOI: 10.1016/j.copbio.2024.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025]
Abstract
Tissue functions rely on complex structural, biochemical, and biomechanical cues that guide cellular behavior and organization. Synthetic cells, a promising new class of biomaterials, hold significant potential for mimicking these tissue properties using simplified, nonliving building blocks. Advanced synthetic cell models have already shown utility in biotechnology and immunology, including applications in cancer targeting and antigen presentation. Recent bottom-up approaches have also enabled synthetic cells to assemble into 3D structures with controlled intercellular interactions, creating tissue-like architectures. Despite these advancements, challenges remain in replicating multicellular behaviors and dynamic mechanical environments. Here, we review recent advancements in synthetic cell-based tissue formation and introduce a three-pillar framework to streamline the development of synthetic tissues. This approach, focusing on synthetic extracellular matrix integration, synthetic cell self-organization, and adaptive biomechanics, could enable scalable synthetic tissues engineering for regenerative medicine and drug development.
Collapse
Affiliation(s)
- Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany
| | - Sara Madureira
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123 Saarbrücken, Germany; Center for Biophysics, Saarland University, Campus Saarland, 66123 Saarbrücken, Germany; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, United Kingdom.
| |
Collapse
|
2
|
Novosedlik S, Reichel F, van Veldhuisen T, Li Y, Wu H, Janssen H, Guck J, van Hest J. Cytoskeleton-functionalized synthetic cells with life-like mechanical features and regulated membrane dynamicity. Nat Chem 2025; 17:356-364. [PMID: 39754015 PMCID: PMC11882449 DOI: 10.1038/s41557-024-01697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/14/2024] [Indexed: 01/23/2025]
Abstract
The cytoskeleton is a crucial determinant of mammalian cell structure and function, providing mechanical resilience, supporting the cell membrane and orchestrating essential processes such as cell division and motility. Because of its fundamental role in living cells, developing a reconstituted or artificial cytoskeleton is of major interest. Here we present an approach to construct an artificial cytoskeleton that imparts mechanical support and regulates membrane dynamics. Our system involves amylose-based coacervates stabilized by a terpolymer membrane, with a cytoskeleton formed from polydiacetylene fibrils. The fibrils bundle due to interactions with the positively charged amylose derivative, forming micrometre-sized structures mimicking a cytoskeleton. Given the intricate interplay between cellular structure and function, the design and integration of this artificial cytoskeleton represent a crucial advancement, paving the way for the development of artificial cell platforms exhibiting enhanced life-like behaviour.
Collapse
Affiliation(s)
- Sebastian Novosedlik
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- SyMO-Chem B.V., Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Felix Reichel
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thijs van Veldhuisen
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Yudong Li
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hanglong Wu
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Henk Janssen
- SyMO-Chem B.V., Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan van Hest
- Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
3
|
Song S, Ivanov T, Doan-Nguyen TP, da Silva LC, Xie J, Landfester K, Cao S. Synthetic Biomolecular Condensates: Phase-Separation Control, Cytomimetic Modelling and Emerging Biomedical Potential. Angew Chem Int Ed Engl 2025; 64:e202418431. [PMID: 39575859 DOI: 10.1002/anie.202418431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 01/24/2025]
Abstract
Liquid-liquid phase separation towards the formation of synthetic coacervate droplets represents a rapidly advancing frontier in the fields of synthetic biology, material science, and biomedicine. These artificial constructures mimic the biophysical principles and dynamic features of natural biomolecular condensates that are pivotal for cellular regulation and organization. Via adapting biological concepts, synthetic condensates with dynamic phase-separation control provide crucial insights into the fundamental cell processes and regulation of complex biological pathways. They are increasingly designed with the ability to display more complex and ambitious cell-like features and behaviors, which offer innovative solutions for cytomimetic modeling and engineering active materials with sophisticated functions. In this minireview, we highlight recent advancements in the design and construction of synthetic coacervate droplets; including their biomimicry structure and organization to replicate life-like properties and behaviors, and the dynamic control towards engineering active coacervates. Moreover, we highlight the unique applications of synthetic coacervates as catalytic centers and promising delivery vehicles, so that these biomimicry assemblies can be translated into practical applications.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Thao P Doan-Nguyen
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, PR China
| | | | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
4
|
Matsubayashi HT, Razavi S, Rock TW, Nakajima D, Nakamura H, Kramer DA, Matsuura T, Chen B, Murata S, Nomura SM, Inoue T. Light-guided actin polymerization drives directed motility in protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617543. [PMID: 39464024 PMCID: PMC11507749 DOI: 10.1101/2024.10.14.617543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Motility is a hallmark of life's dynamic processes, enabling cells to actively chase prey, repair wounds, and shape organs. Recreating these intricate behaviors using well-defined molecules remains a major challenge at the intersection of biology, physics, and molecular engineering. Although the polymerization force of the actin cytoskeleton is characterized as a primary driver of cell motility, recapitulating this process in protocellular systems has proven elusive. The difficulty lies in the daunting task of distilling key components from motile cells and integrating them into model membranes in a physiologically relevant manner. To address this, we developed a method to optically control actin polymerization with high spatiotemporal precision within cell-mimetic lipid vesicles known as giant unilamellar vesicles (GUVs). Within these active protocells, the reorganization of actin networks triggered outward membrane extensions as well as the unidirectional movement of GUVs at speeds of up to 0.43 μm/min, comparable to typical adherent mammalian cells. Notably, our findings reveal a synergistic interplay between branched and linear actin forms in promoting membrane protrusions, highlighting the cooperative nature of these cytoskeletal elements. This approach offers a powerful platform for unraveling the intricacies of cell migration, designing synthetic cells with active morphodynamics, and advancing bioengineering applications, such as self-propelled delivery systems and autonomous tissue-like materials.
Collapse
Affiliation(s)
- Hideaki T. Matsubayashi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| | - Shiva Razavi
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University
- Department of Biological Engineering, School of Engineering, Massachusetts Institute of Technology
| | - T. Willow Rock
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| | - Daichi Nakajima
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | - Hideki Nakamura
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
- Hakubi Center for Advanced Research, Kyoto University
- Department of Synthetic Chemistry and Biological Chemistry, School of Engineering, Kyoto University
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | | | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University
| | - Satoshi Murata
- Department of Robotics, Graduate School of Engineering, Tohoku University
| | | | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University
| |
Collapse
|
5
|
Steinkühler J, Lipowsky R, Miettinen MS. Molecular Dynamics Simulations Show That Short Peptides Can Drive Synthetic Cell Division by Binding to the Inner Membrane Leaflet. J Phys Chem B 2024; 128:8782-8787. [PMID: 39223874 PMCID: PMC11403657 DOI: 10.1021/acs.jpcb.4c04358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An important functionality of lifelike "synthetic cells" is to mimic cell division. Currently, specialized proteins that induce membrane fission in living cells are the primary candidates for dividing synthetic cells. However, interactions between lipid membranes and proteins that are not found in living cells may also be suitable. Here, we discuss the potential of short membrane-anchored peptides to induce cell division. Specifically, we used the coarse-grained MARTINI model to investigate the interaction between short membrane-anchored peptides and a lipid bilayer patch. The simulation revealed that the anchored peptide induces significant spontaneous curvature and suggests that the lipid-peptide complex can be considered as a conically shaped "bulky headgroup" lipid. By systematically increasing the electrostatic charge of the peptide, we find that membrane-anchored peptides may generate sufficiently large constriction forces even at dilute coverages. Finally, we show that when the peptide has an opposite charge to the membrane, the peptide may induce division by binding the inner membrane leaflet of a synthetic cell, that is, cell division from within.
Collapse
Affiliation(s)
- Jan Steinkühler
- Bio-Inspired Computation, Kiel University, Kaiserstraße 2, Kiel 24143, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, Kiel 24118, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam 14476, Germany
| | - Markus S Miettinen
- Department of Chemistry, University of Bergen, Bergen 5007, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5008, Norway
| |
Collapse
|
6
|
Llopis-Lorente A, Schotman MJG, Humeniuk HV, van Hest JCM, Dankers PYW, Abdelmohsen LKEA. Artificial cells with viscoadaptive behavior based on hydrogel-loaded giant unilamellar vesicles. Chem Sci 2024; 15:629-638. [PMID: 38179539 PMCID: PMC10763548 DOI: 10.1039/d3sc04687g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Viscoadaptation is an essential process in natural cells, where supramolecular interactions between cytosolic components drive adaptation of the cellular mechanical features to regulate metabolic function. This important relationship between mechanical properties and function has until now been underexplored in artificial cell research. Here, we have created an artificial cell platform that exploits internal supramolecular interactions to display viscoadaptive behavior. As supramolecular material to mimic the cytosolic component of these artificial cells, we employed a pH-switchable hydrogelator based on poly(ethylene glycol) coupled to ureido-pyrimidinone units. The hydrogelator was membranized in its sol state in giant unilamellar lipid vesicles to include a cell-membrane mimetic component. The resulting hydrogelator-loaded giant unilamellar vesicles (designated as HL-GUVs) displayed reversible pH-switchable sol-gel behavior through multiple cycles. Furthermore, incorporation of the regulatory enzyme urease enabled us to increase the cytosolic pH upon conversion of its substrate urea. The system was able to switch between a high viscosity (at neutral pH) and a low viscosity (at basic pH) state upon addition of substrate. Finally, viscoadaptation was achieved via the incorporation of a second enzyme of which the activity was governed by the viscosity of the artificial cell. This work represents a new approach to install functional self-regulation in artificial cells, and opens new possibilities for the creation of complex artificial cells that mimic the structural and functional interplay found in biological systems.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, CIBER de Bioingeniería, Biomateriales y Nanomedicina, Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 València Spain
| | - Maaike J G Schotman
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Heorhii V Humeniuk
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| |
Collapse
|
7
|
Van de Cauter L, van Buren L, Koenderink GH, Ganzinger KA. Exploring Giant Unilamellar Vesicle Production for Artificial Cells - Current Challenges and Future Directions. SMALL METHODS 2023; 7:e2300416. [PMID: 37464561 DOI: 10.1002/smtd.202300416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Indexed: 07/20/2023]
Abstract
Creating an artificial cell from the bottom up is a long-standing challenge and, while significant progress has been made, the full realization of this goal remains elusive. Arguably, one of the biggest hurdles that researchers are facing now is the assembly of different modules of cell function inside a single container. Giant unilamellar vesicles (GUVs) have emerged as a suitable container with many methods available for their production. Well-studied swelling-based methods offer a wide range of lipid compositions but at the expense of limited encapsulation efficiency. Emulsion-based methods, on the other hand, excel at encapsulation but are only effective with a limited set of membrane compositions and may entrap residual additives in the lipid bilayer. Since the ultimate artificial cell will need to comply with both specific membrane and encapsulation requirements, there is still no one-method-fits-all solution for GUV formation available today. This review discusses the state of the art in different GUV production methods and their compatibility with GUV requirements and operational requirements such as reproducibility and ease of use. It concludes by identifying the most pressing issues and proposes potential avenues for future research to bring us one step closer to turning artificial cells into a reality.
Collapse
Affiliation(s)
- Lori Van de Cauter
- Autonomous Matter Department, AMOLF, Amsterdam, 1098 XG, The Netherlands
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | | |
Collapse
|
8
|
Shrivastava A, Du Y, Adepu HK, Li R, Madhvacharyula AS, Swett AA, Choi JH. Motility of Synthetic Cells from Engineered Lipids. ACS Synth Biol 2023; 12:2789-2801. [PMID: 37729546 DOI: 10.1021/acssynbio.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Synthetic cells are artificial systems that resemble natural cells. Significant efforts have been made over the years to construct synthetic protocells that can mimic biological mechanisms and perform various complex processes. These include compartmentalization, metabolism, energy supply, communication, and gene reproduction. Cell motility is also of great importance, as nature uses elegant mechanisms for intracellular trafficking, immune response, and embryogenesis. In this review, we discuss the motility of synthetic cells made from lipid vesicles and relevant molecular mechanisms. Synthetic cell motion may be classified into surface-based or solution-based depending on whether it involves interactions with surfaces or movement in fluids. Collective migration behaviors have also been demonstrated. The swarm motion requires additional mechanisms for intercellular signaling and directional motility that enable communication and coordination among the synthetic vesicles. In addition, intracellular trafficking for molecular transport has been reconstituted in minimal cells with the help of DNA nanotechnology. These efforts demonstrate synthetic cells that can move, detect, respond, and interact. We envision that new developments in protocell motility will enhance our understanding of biological processes and be instrumental in bioengineering and therapeutic applications.
Collapse
Affiliation(s)
- Aishwary Shrivastava
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Ruixin Li
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Alexander A Swett
- School of Mechanical Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 W. Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Achimovich AM, Yan T, Gahlmann A. Dimerization of iLID optogenetic proteins observed using 3D single-molecule tracking in live E. coli. Biophys J 2023; 122:3254-3267. [PMID: 37421134 PMCID: PMC10465707 DOI: 10.1016/j.bpj.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/25/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023] Open
Abstract
3D single-molecule tracking microscopy has enabled measurements of protein diffusion in living cells, offering information about protein dynamics and cellular environments. For example, different diffusive states can be resolved and assigned to protein complexes of different size and composition. However, substantial statistical power and biological validation, often through genetic deletion of binding partners, are required to support diffusive state assignments. When investigating cellular processes, real-time perturbations to protein spatial distributions is preferable to permanent genetic deletion of an essential protein. For example, optogenetic dimerization systems can be used to manipulate protein spatial distributions that could offer a means to deplete specific diffusive states observed in single-molecule tracking experiments. Here, we evaluate the performance of the iLID optogenetic system in living E. coli cells using diffraction-limited microscopy and 3D single-molecule tracking. We observed a robust optogenetic response in protein spatial distributions after 488 nm laser activation. Surprisingly, 3D single-molecule tracking results indicate activation of the optogenetic response when illuminating with high-intensity light with wavelengths at which there is minimal photon absorbance by the LOV2 domain. The preactivation can be minimized through the use of iLID system mutants, and titration of protein expression levels.
Collapse
Affiliation(s)
- Alecia M Achimovich
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ting Yan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Andreas Gahlmann
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Chemistry, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
10
|
Nair KS, Bajaj H. Advances in giant unilamellar vesicle preparation techniques and applications. Adv Colloid Interface Sci 2023; 318:102935. [PMID: 37320960 DOI: 10.1016/j.cis.2023.102935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Giant unilamellar vesicles (GUVs) are versatile and promising cell-sized bio-membrane mimetic platforms. Their applications range from understanding and quantifying membrane biophysical processes to acting as elementary blocks in the bottom-up assembly of synthetic cells. Definite properties and requisite goals in GUVs are dictated by the preparation techniques critical to the success of their applications. Here, we review key advances in giant unilamellar vesicle preparation techniques and discuss their formation mechanisms. Developments in lipid hydration and emulsion techniques for GUV preparation are described. Novel microfluidic-based techniques involving lipid or surfactant-stabilized emulsions are outlined. GUV immobilization strategies are summarized, including gravity-based settling, covalent linking, and immobilization by microfluidic, electric, and magnetic barriers. Moreover, some of the key applications of GUVs as biomimetic and synthetic cell platforms during the last decade have been identified. Membrane interface processes like phase separation, membrane protein reconstitution, and membrane bending have been deciphered using GUVs. In addition, vesicles are also employed as building blocks to construct synthetic cells with defined cell-like functions comprising compartments, metabolic reactors, and abilities to grow and divide. We critically discuss the pros and cons of preparation technologies and the properties they confer to the GUVs and identify potential techniques for dedicated applications.
Collapse
Affiliation(s)
- Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India.
| |
Collapse
|
11
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
13
|
Di Iorio D, Bergmann J, Higashi SL, Hoffmann A, Wegner SV. A disordered tether to iLID improves photoswitchable protein patterning on model membranes. Chem Commun (Camb) 2023; 59:4380-4383. [PMID: 36946614 DOI: 10.1039/d3cc00709j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Reversible protein patterning on model membranes is important to reproduce spatiotemporal protein dynamics in vitro. An engineered version of iLID, disiLID, with a disordered domain as a membrane tether improves the recruitment of Nano under blue light and the reversibility in the dark, which enables protein patterning on membranes with higher spatiotemporal precision.
Collapse
Affiliation(s)
- Daniele Di Iorio
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| | - Johanna Bergmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| | - Sayuri L Higashi
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| | - Arne Hoffmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany.
| |
Collapse
|
14
|
Yue K, Li Y, Cao M, Shen L, Gu J, Kai L. Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:1-20. [PMID: 37526707 DOI: 10.1007/10_2023_232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Technical advances in biotechnology have greatly accelerated the development of bottom-up synthetic biology. Unlike top-down approaches, bottom-up synthetic biology focuses on the construction of a minimal cell from scratch and the application of these principles to solve challenges. Cell-free protein synthesis (CFPS) systems provide minimal machinery for transcription and translation, from either a fractionated cell lysate or individual purified protein elements, thus speeding up the development of synthetic cell projects. In this review, we trace the history of the cell-free technique back to the first in vitro fermentation experiment using yeast cell lysate. Furthermore, we summarized progresses of individual cell mimicry modules, such as compartmentalization, gene expression regulation, energy regeneration and metabolism, growth and division, communication, and motility. Finally, current challenges and future perspectives on the field are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mengjiao Cao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingsheng Gu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
15
|
Wubshet NH, Liu AP. Methods to mechanically perturb and characterize GUV-based minimal cell models. Comput Struct Biotechnol J 2022; 21:550-562. [PMID: 36659916 PMCID: PMC9816913 DOI: 10.1016/j.csbj.2022.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Cells shield organelles and the cytosol via an active boundary predominantly made of phospholipids and membrane proteins, yet allowing communication between the intracellular and extracellular environment. Micron-sized liposome compartments commonly known as giant unilamellar vesicles (GUVs) are used to model the cell membrane and encapsulate biological materials and processes in a cell-like confinement. In the field of bottom-up synthetic biology, many have utilized GUVs as substrates to study various biological processes such as protein-lipid interactions, cytoskeletal assembly, and dynamics of protein synthesis. Like cells, it is ideal that GUVs are also mechanically durable and able to stay intact when the inner and outer environment changes. As a result, studies have demonstrated approaches to tune the mechanical properties of GUVs by modulating membrane composition and lumenal material property. In this context, there have been many different methods developed to test the mechanical properties of GUVs. In this review, we will survey various perturbation techniques employed to mechanically characterize GUVs.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Song S, Llopis-Lorente A, Mason AF, Abdelmohsen LKEA, van Hest JCM. Confined Motion: Motility of Active Microparticles in Cell-Sized Lipid Vesicles. J Am Chem Soc 2022; 144:13831-13838. [PMID: 35867803 PMCID: PMC9354240 DOI: 10.1021/jacs.2c05232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Active materials can transduce external energy into kinetic
energy
at the nano and micron length scales. This unique feature has sparked
much research, which ranges from achieving fundamental understanding
of their motility to the assessment of potential applications. Traditionally,
motility is studied as a function of internal features such as particle
topology, while external parameters such as energy source are assessed
mainly in bulk. However, in real-life applications, confinement plays
a crucial role in determining the type of motion active particles
can adapt. This feature has been however surprisingly underexplored
experimentally. Here, we showcase a tunable experimental platform
to gain an insight into the dynamics of active particles in environments
with restricted 3D topology. Particularly, we examined the autonomous
motion of coacervate micromotors confined in giant unilamellar vesicles
(GUVs) spanning 10–50 μm in diameter and varied parameters
including fuel and micromotor concentration. We observed anomalous
diffusion upon confinement, leading to decreased motility, which was
more pronounced in smaller compartments. The results indicate that
the theoretically predicted hydrodynamic effect dominates the motion
mechanism within this platform. Our study provides a versatile approach
to understand the behavior of active matter under controlled, compartmentalized
conditions.
Collapse
Affiliation(s)
- Shidong Song
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Antoni Llopis-Lorente
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland.,Institute of Molecular Recognition and Technological Development (IDM); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alexander F Mason
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| |
Collapse
|
17
|
Guindani C, da Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio-Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022; 61:e202110855. [PMID: 34856047 PMCID: PMC9314110 DOI: 10.1002/anie.202110855] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Bottom-up synthetic biology is the science of building systems that mimic the structure and function of living cells from scratch. To do this, researchers combine tools from chemistry, materials science, and biochemistry to develop functional and structural building blocks to construct synthetic cell-like systems. The many strategies and materials that have been developed in recent decades have enabled scientists to engineer synthetic cells and organelles that mimic the essential functions and behaviors of natural cells. Examples include synthetic cells that can synthesize their own ATP using light, maintain metabolic reactions through enzymatic networks, perform gene replication, and even grow and divide. In this Review, we discuss recent developments in the design and construction of synthetic cells and organelles using the bottom-up approach. Our goal is to present representative synthetic cells of increasing complexity as well as strategies for solving distinct challenges in bottom-up synthetic biology.
Collapse
Affiliation(s)
- Camila Guindani
- Chemical Engineering ProgramCOPPEFederal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972Rio de JaneiroRJBrazil
| | - Lucas Caire da Silva
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shoupeng Cao
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Katharina Landfester
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
18
|
Hernandez Bücher JE, Staufer O, Ostertag L, Mersdorf U, Platzman I, Spatz JP. Bottom-up assembly of target-specific cytotoxic synthetic cells. Biomaterials 2022; 285:121522. [DOI: 10.1016/j.biomaterials.2022.121522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/23/2022]
|
19
|
Guindani C, Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio‐Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Camila Guindani
- Chemical Engineering Program COPPE Federal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972 Rio de Janeiro RJ Brazil
| | - Lucas Caire Silva
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
20
|
Sato W, Zajkowski T, Moser F, Adamala KP. Synthetic cells in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1761. [PMID: 34725945 PMCID: PMC8918002 DOI: 10.1002/wnan.1761] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense-and-respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life-like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Wakana Sato
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- USRA at NASA Ames Research Center, Mountain View, CA 94035
- Blue Marble Space Institute of Science, 600 1st Avenue, Seattle WA 98104
| | - Felix Moser
- Synlife, Inc., One Kendall Square Suite B4401, Cambridge, MA 20139
| | - Katarzyna P. Adamala
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| |
Collapse
|
21
|
Lussier F, Schröter M, Diercks NJ, Jahnke K, Weber C, Frey C, Platzman I, Spatz JP. pH-Triggered Assembly of Endomembrane Multicompartments in Synthetic Cells. ACS Synth Biol 2022; 11:366-382. [PMID: 34889607 PMCID: PMC8787813 DOI: 10.1021/acssynbio.1c00472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/29/2022]
Abstract
By using electrostatic interactions as driving force to assemble vesicles, the droplet-stabilized method was recently applied to reconstitute and encapsulate proteins, or compartments, inside giant unilamellar vesicles (GUVs) to act as minimal synthetic cells. However, the droplet-stabilized approach exhibits low production efficiency associated with the troublesome release of the GUVs from the stabilized droplets, corresponding to a major hurdle for the droplet-stabilized approach. Herein, we report the use of pH as a potential trigger to self-assemble droplet-stabilized GUVs (dsGUVs) by either bulk or droplet-based microfluidics. Moreover, pH enables the generation of compartmentalized GUVs with flexibility and robustness. By co-encapsulating pH-sensitive small unilamellar vesicles (SUVs), negatively charged SUVs, and/or proteins, we show that acidification of the droplets efficiently produces dsGUVs while sequestrating the co-encapsulated material. Most importantly, the pH-mediated assembly of dsGUVs significantly improves the production efficiency of free-standing GUVs (i.e., released from the stabilizing-droplets) compared to its previous implementation.
Collapse
Affiliation(s)
- Félix Lussier
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Martin Schröter
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Nicolas J. Diercks
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Kevin Jahnke
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| | - Cornelia Weber
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Christoph Frey
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Ilia Platzman
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, D-69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| |
Collapse
|
22
|
Staufer O, De Lora JA, Bailoni E, Bazrafshan A, Benk AS, Jahnke K, Manzer ZA, Otrin L, Díez Pérez T, Sharon J, Steinkühler J, Adamala KP, Jacobson B, Dogterom M, Göpfrich K, Stefanovic D, Atlas SR, Grunze M, Lakin MR, Shreve AP, Spatz JP, López GP. Building a community to engineer synthetic cells and organelles from the bottom-up. eLife 2021; 10:e73556. [PMID: 34927583 PMCID: PMC8716100 DOI: 10.7554/elife.73556] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.
Collapse
Affiliation(s)
- Oskar Staufer
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
- Max Planck Bristol Center for Minimal Biology, University of BristolBristolUnited Kingdom
| | | | | | | | - Amelie S Benk
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | - Kevin Jahnke
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | | | - Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | | | | | | | | | | | | | - Kerstin Göpfrich
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
| | | | | | - Michael Grunze
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
| | | | | | - Joachim P Spatz
- Max Planck Institute for Medical ResearchHeidelbergGermany
- Max Planck School Matter to LifeHeidelbergGermany
- Max Planck Bristol Center for Minimal Biology, University of BristolBristolUnited Kingdom
| | | |
Collapse
|
23
|
Zhang J, Wong SHD, Wu X, Lei H, Qin M, Shi P, Wang W, Bian L, Cao Y. Engineering Photoresponsive Ligand Tethers for Mechanical Regulation of Stem Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105765. [PMID: 34561928 DOI: 10.1002/adma.202105765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Regulating stem cell functions by precisely controlling the nanoscale presentation of bioactive ligands has a substantial impact on tissue engineering and regenerative medicine but remains a major challenge. Here it is shown that bioactive ligands can become mechanically "invisible" by increasing their tether lengths to the substrate beyond a critical length, providing a way to regulate mechanotransduction without changing the biochemical conditions. Building on this finding, light switchable tethers are rationally designed, whose lengths can be modulated reversibly by switching a light-responsive protein, pdDronpa, in between monomer and dimer states. This allows the regulation of the adhesion, spreading, and differentiation of stem cells by light on substrates of well-defined biochemical and physical properties. Spatiotemporal regulation of differential cell fates on the same substrate is further demonstrated, which may represent an important step toward constructing complex organoids or mini tissues by spatially defining the mechanical cues of the cellular microenvironment with light.
Collapse
Affiliation(s)
- Junsheng Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xin Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Peng Shi
- School of Biomedical Sciences and EngineeringSouth China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Liming Bian
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- School of Biomedical Sciences and EngineeringSouth China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
24
|
Rubio-Sánchez R, Fabrini G, Cicuta P, Di Michele L. Amphiphilic DNA nanostructures for bottom-up synthetic biology. Chem Commun (Camb) 2021; 57:12725-12740. [PMID: 34750602 PMCID: PMC8631003 DOI: 10.1039/d1cc04311k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
DNA nanotechnology enables the construction of sophisticated biomimetic nanomachines that are increasingly central to the growing efforts of creating complex cell-like entities from the bottom-up. DNA nanostructures have been proposed as both structural and functional elements of these artificial cells, and in many instances are decorated with hydrophobic moieties to enable interfacing with synthetic lipid bilayers or regulating bulk self-organisation. In this feature article we review recent efforts to design biomimetic membrane-anchored DNA nanostructures capable of imparting complex functionalities to cell-like objects, such as regulated adhesion, tissue formation, communication and transport. We then discuss the ability of hydrophobic modifications to enable the self-assembly of DNA-based nanostructured frameworks with prescribed morphology and functionality, and explore the relevance of these novel materials for artificial cell science and beyond. Finally, we comment on the yet mostly unexpressed potential of amphiphilic DNA-nanotechnology as a complete toolbox for bottom-up synthetic biology - a figurative and literal scaffold upon which the next generation of synthetic cells could be built.
Collapse
Affiliation(s)
- Roger Rubio-Sánchez
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Giacomo Fabrini
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Lorenzo Di Michele
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
25
|
|
26
|
Jahnke K, Ritzmann N, Fichtler J, Nitschke A, Dreher Y, Abele T, Hofhaus G, Platzman I, Schröder RR, Müller DJ, Spatz JP, Göpfrich K. Proton gradients from light-harvesting E. coli control DNA assemblies for synthetic cells. Nat Commun 2021; 12:3967. [PMID: 34172734 PMCID: PMC8233306 DOI: 10.1038/s41467-021-24103-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bottom-up and top-down approaches to synthetic biology each employ distinct methodologies with the common aim to harness living systems. Here, we realize a strategic merger of both approaches to convert light into proton gradients for the actuation of synthetic cellular systems. We genetically engineer E. coli to overexpress the light-driven inward-directed proton pump xenorhodopsin and encapsulate them in artificial cell-sized compartments. Exposing the compartments to light-dark cycles, we reversibly switch the pH by almost one pH unit and employ these pH gradients to trigger the attachment of DNA structures to the compartment periphery. For this purpose, a DNA triplex motif serves as a nanomechanical switch responding to the pH-trigger of the E. coli. When DNA origami plates are modified with the pH-sensitive triplex motif, the proton-pumping E. coli can trigger their attachment to giant unilamellar lipid vesicles (GUVs) upon illumination. A DNA cortex is formed upon DNA origami polymerization, which sculpts and deforms the GUVs. We foresee that the combination of bottom-up and top down approaches is an efficient way to engineer synthetic cells.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Noah Ritzmann
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Julius Fichtler
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Anna Nitschke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Yannik Dreher
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Tobias Abele
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Götz Hofhaus
- Centre for Advanced Materials, Heidelberg, Germany
| | - Ilia Platzman
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Heidelberg, Germany
| | | | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Heidelberg, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
27
|
Chakraborty T, Wegner SV. Cell to Cell Signaling through Light in Artificial Cell Communities: Glowing Predator Lures Prey. ACS NANO 2021; 15:9434-9444. [PMID: 34152740 DOI: 10.1021/acsnano.1c01600] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cells commonly communicate with each other through diffusible molecules but nonchemical communication remains elusive. While bioluminescent organisms communicate through light to find prey or attract mates, it is still under debate if signaling through light is possible at the cellular level. Here, we demonstrate that cell to cell signaling through light is possible in artificial cell communities derived from biomimetic vesicles. In our design, artificial sender cells produce an intracellular light signal, which triggers the adhesion to receiver cells. Unlike soluble molecules, the light signal propagates fast, independent of diffusion and without the need for a transporter across membranes. To obtain a predator-prey relationship, the luminescence predator cells is loaded with a secondary diffusible poison, which is transferred to the prey cell upon adhesion and leads to its lysis. This design provides a blueprint for light based intercellular communication, which can be used for programing artificial and natural cell communities.
Collapse
Affiliation(s)
- Taniya Chakraborty
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
28
|
Oh TJ, Fan H, Skeeters SS, Zhang K. Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives. Adv Biol (Weinh) 2021; 5:e2000180. [PMID: 34028216 PMCID: PMC8218620 DOI: 10.1002/adbi.202000180] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Indexed: 12/24/2022]
Abstract
Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub-micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever-increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
Collapse
Affiliation(s)
- Teak-Jung Oh
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Huaxun Fan
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Savanna S Skeeters
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Kai Zhang
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| |
Collapse
|
29
|
Aden S, Snoj T, Anderluh G. The use of giant unilamellar vesicles to study functional properties of pore-forming toxins. Methods Enzymol 2021; 649:219-251. [PMID: 33712188 DOI: 10.1016/bs.mie.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pore-forming toxins (PFTs) act upon lipid membranes and appropriate model systems are of great importance in researching these proteins. Giant unilamellar vesicles (GUVs) are an excellent model membrane system to study interactions between lipids and proteins. Their main advantage is the size comparable to cells, which means that GUVs can be observed directly under the light microscope. Many PFTs properties can be studied by using GUVs, such as binding specificity, membrane reorganization upon protein binding and oligomerization, pore properties and mechanism of pore formation. GUVs also represent a good model for biotechnological approaches, e.g., in applications in synthetic biology and medicine. Each research area has its own demands for GUVs properties, so several different approaches for GUVs preparations have been developed and will be discussed in this chapter.
Collapse
Affiliation(s)
- Saša Aden
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tina Snoj
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
30
|
Jia TZ, Wang PH, Niwa T, Mamajanov I. Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. J Biosci 2021; 46:79. [PMID: 34373367 PMCID: PMC8342986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
One aspect of the study of the origins of life focuses on how primitive chemistries assembled into the first cells on Earth and how these primitive cells evolved into modern cells. Membraneless droplets generated from liquid-liquid phase separation (LLPS) are one potential primitive cell-like compartment; current research in origins of life includes study of the structure, function, and evolution of such systems. However, the goal of primitive LLPS research is not simply curiosity or striving to understand one of life's biggest unanswered questions, but also the possibility to discover functions or structures useful for application in the modern day. Many applicational fields, including biotechnology, synthetic biology, and engineering, utilize similar phaseseparated structures to accomplish specific functions afforded by LLPS. Here, we briefly review LLPS applied to primitive compartment research and then present some examples of LLPS applied to biomolecule purification, drug delivery, artificial cell construction, waste and pollution management, and flavor encapsulation. Due to a significant focus on similar functions and structures, there appears to be much for origins of life researchers to learn from those working on LLPS in applicational fields, and vice versa, and we hope that such researchers can start meaningful cross-disciplinary collaborations in the future.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154 USA
| | - Po-Hsiang Wang
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Graduate Institute of Environmental Engineering, National Central University, Zhongli Dist, 300 Zhongda Rd, Taoyuan City, 32001 Taiwan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8503 Japan
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
31
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
32
|
Xu D, Kleineberg C, Vidaković-Koch T, Wegner SV. Multistimuli Sensing Adhesion Unit for the Self-Positioning of Minimal Synthetic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002440. [PMID: 32776424 DOI: 10.1002/smll.202002440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Cells have the ability to sense different environmental signals and position themselves accordingly in order to support their survival. Introducing analogous capabilities to the bottom-up assembled minimal synthetic cells is an important step for their autonomy. Here, a minimal synthetic cell which combines a multistimuli sensitive adhesion unit with an energy conversion module is reported, such that it can adhere to places that have the right environmental parameters for ATP production. The multistimuli sensitive adhesion unit senses light, pH, oxidative stress, and the presence of metal ions and can regulate the adhesion of synthetic cells to substrates in response to these stimuli following a chemically coded logic. The adhesion unit is composed of the light and redox responsive protein interaction of iLID and Nano and the pH sensitive and metal ion mediated binding of protein His-tags to Ni2+ -NTA complexes. Integration of the adhesion unit with a light to ATP conversion module into one synthetic cell allows it to adhere to places under blue light illumination, non-oxidative conditions, at neutral pH and in the presence of metal ions, which are the right conditions to synthesize ATP. Thus, the multistimuli responsive adhesion unit allows synthetic cells to self-position and execute their functions.
Collapse
Affiliation(s)
- Dongdong Xu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, Magdeburg, 39106, Germany
| | - Seraphine V Wegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstraße 15, Münster, 48149, Germany
| |
Collapse
|
33
|
Jahnke K, Weiss M, Weber C, Platzman I, Göpfrich K, Spatz JP. Engineering Light-Responsive Contractile Actomyosin Networks with DNA Nanotechnology. ACTA ACUST UNITED AC 2020; 4:e2000102. [PMID: 32696544 DOI: 10.1002/adbi.202000102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023]
Abstract
External control and precise manipulation is key for the bottom-up engineering of complex synthetic cells. Minimal actomyosin networks have been reconstituted into synthetic cells; however, their light-triggered symmetry breaking contraction has not yet been demonstrated. Here, light-activated directional contractility of a minimal synthetic actomyosin network inside microfluidic cell-sized compartments is engineered. Actin filaments, heavy-meromyosin-coated beads, and caged ATP are co-encapsulated into water-in-oil droplets. ATP is released upon illumination, leading to a myosin-generated force which results in a motion of the beads along the filaments and hence a contraction of the network. Symmetry breaking is achieved using DNA nanotechnology to establish a link between the network and the compartment periphery. It is demonstrated that the DNA-linked actin filaments contract to one side of the compartment forming actin asters and quantify the dynamics of this process. This work exemplifies that an engineering approach to bottom-up synthetic biology, combining biological and artificial elements, can circumvent challenges related to active multi-component systems and thereby greatly enrich the complexity of synthetic cellular systems.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, D 69120, Germany
| | - Marian Weiss
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany
| | - Cornelia Weber
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, D 69120, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, D 69120, Germany.,Institute for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, Heidelberg, D 69120, Germany.,Max Planck School Matter to Life, Jahnstraße 29, Heidelberg, D 69120, Germany
| |
Collapse
|
34
|
Staufer O, Schröter M, Platzman I, Spatz JP. Bottom-Up Assembly of Functional Intracellular Synthetic Organelles by Droplet-Based Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906424. [PMID: 32078238 DOI: 10.1002/smll.201906424] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Bottom-up synthetic biology has directed most efforts toward the construction of artificial compartmentalized systems that recreate living cell functions in their mechanical, morphological, or metabolic characteristics. However, bottom-up synthetic biology also offers great potential to study subcellular structures like organelles. Because of their intricate and complex structure, these key elements of eukaryotic life forms remain poorly understood. Here, the controlled assembly of lipid enclosed, organelle-like architectures is explored by droplet-based microfluidics. Three types of giant unilamellar vesicles (GUVs)-based synthetic organelles (SOs) functioning within natural living cells are procedured: (A) synthetic peroxisomes supporting cellular stress-management, mimicking an organelle innate to the host cell by using analogous enzymatic modules; (B) synthetic endoplasmic reticulum (ER) as intracellular light-responsive calcium stores involved in intercellular calcium signalling, mimicking an organelle innate to the host cell but utilizing a fundamentally different mechanism; and (C) synthetic magnetosomes providing eukaryotic cells with a magnetotactic sense, mimicking an organelle that is not natural to the host cell but transplanting its functionality from other branches of the phylogenetic tree. Microfluidic assembly of functional SOs paves the way for high-throughput generation of versatile intracellular structures implantable into living cells. This in-droplet SO design may support or expand cellular functionalities in translational nanomedicine.
Collapse
Affiliation(s)
- Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Martin Schröter
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Ilia Platzman
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Joachim P Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Max Planck School Matter to Life, Jahnstraße 29, D-69120, Heidelberg, Germany
| |
Collapse
|
35
|
Hörner M, Yousefi OS, Schamel WWA, Weber W. Production, Purification and Characterization of Recombinant Biotinylated Phytochrome B for Extracellular Optogenetics. Bio Protoc 2020; 10:e3541. [PMID: 33659515 PMCID: PMC7842835 DOI: 10.21769/bioprotoc.3541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
In the field of extracellular optogenetics, photoreceptors are applied outside of cells to obtain systems with a desired functionality. Among the diverse applied photoreceptors, phytochromes are the only ones that can be actively and reversibly switched between the active and inactive photostate by the illumination with cell-compatible red and far-red light. In this protocol, we describe the production of a biotinylated variant of the photosensory domain of A. thaliana phytochrome B (PhyB-AviTag) in E. coli with a single, optimized expression plasmid. We give detailed instructions for the purification of the protein by immobilized metal affinity chromatography and the characterization of the protein in terms of purity, biotinylation, spectral photoswitching and the light-dependent interaction with its interaction partner PIF6. In comparison to previous studies applying PhyB-AviTag, the optimized expression plasmid used in this protocol simplifies the production process and shows an increased yield and purity.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - O. Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Wolfgang W. A. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Rogers KW, Müller P. Optogenetic approaches to investigate spatiotemporal signaling during development. Curr Top Dev Biol 2019; 137:37-77. [PMID: 32143750 DOI: 10.1016/bs.ctdb.2019.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany; Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
37
|
Oropeza-Guzman E, Ríos-Ramírez M, Ruiz-Suárez JC. Leveraging the Coffee Ring Effect for a Defect-Free Electroformation of Giant Unilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16528-16535. [PMID: 31747518 DOI: 10.1021/acs.langmuir.9b02488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We took advantage of the microflow hydrodynamics in the evaporation of sessile droplets to increase the height uniformity of thin lipid films for the subsequent electroformation of defect-free giant unilamellar vesicles (GUV). By serially casting progressively larger liposome suspension droplets on the same spot of an indium-tin-oxide (ITO) electrode, we managed to leverage the coffee ring effect (CRE) in the evaporation of each droplet to generate a smeared multilayer film of uniform thickness. This multidroplet technique of lipid film formation outperformed the traditional single-droplet deposition, improving the final quality of electroformed GUV samples. The proposed film formation technique constitutes a solvent-free method that results in a dramatic reduction (∼20×) in the appearance of undesirable structures like nonspherical (NSV), multilamellar (MLV), and multivesicular (MVV) vesicles.
Collapse
Affiliation(s)
- Eric Oropeza-Guzman
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Monterrey , Apodaca , Nuevo León 66600 , México
| | - Maricarmen Ríos-Ramírez
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Monterrey , Apodaca , Nuevo León 66600 , México
| | - Jesús Carlos Ruiz-Suárez
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Monterrey , Apodaca , Nuevo León 66600 , México
| |
Collapse
|
38
|
Mognetti BM, Cicuta P, Di Michele L. Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:116601. [PMID: 31370052 DOI: 10.1088/1361-6633/ab37ca] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the heart of the structured architecture and complex dynamics of biological systems are specific and timely interactions operated by biomolecules. In many instances, biomolecular agents are spatially confined to flexible lipid membranes where, among other functions, they control cell adhesion, motility and tissue formation. Besides being central to several biological processes, multivalent interactions mediated by reactive linkers confined to deformable substrates underpin the design of synthetic-biological platforms and advanced biomimetic materials. Here we review recent advances on the experimental study and theoretical modelling of a heterogeneous class of biomimetic systems in which synthetic linkers mediate multivalent interactions between fluid and deformable colloidal units, including lipid vesicles and emulsion droplets. Linkers are often prepared from synthetic DNA nanostructures, enabling full programmability of the thermodynamic and kinetic properties of their mutual interactions. The coupling of the statistical effects of multivalent interactions with substrate fluidity and deformability gives rise to a rich emerging phenomenology that, in the context of self-assembled soft materials, has been shown to produce exotic phase behaviour, stimuli-responsiveness, and kinetic programmability of the self-assembly process. Applications to (synthetic) biology will also be reviewed.
Collapse
Affiliation(s)
- Bortolo Matteo Mognetti
- Université libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Campus Plaine, CP 231, Blvd. du Triomphe, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
39
|
Martin N, Tian L, Spencer D, Coutable-Pennarun A, Anderson JLR, Mann S. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets. Angew Chem Int Ed Engl 2019; 58:14594-14598. [PMID: 31408263 DOI: 10.1002/anie.201909228] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Coacervate microdroplets produced by liquid-liquid phase separation have been used as synthetic protocells that mimic the dynamical organization of membrane-free organelles in living systems. Achieving spatiotemporal control over droplet condensation and disassembly remains challenging. Herein, we describe the formation and photoswitchable behavior of light-responsive coacervate droplets prepared from mixtures of double-stranded DNA and an azobenzene cation. The droplets disassemble and reassemble under UV and blue light, respectively, due to azobenzene trans/cis photoisomerisation. Sequestration and release of captured oligonucleotides follow the dynamics of phase separation such that light-activated transfer, mixing, hybridization, and trafficking of the oligonucleotides can be controlled in binary populations of the droplets. Our results open perspectives for the spatiotemporal control of DNA coacervates and provide a step towards the dynamic regulation of synthetic protocells.
Collapse
Affiliation(s)
- Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 Avenue du Dr. Albert Schweitzer, 33600, Pessac, France.,Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Dan Spencer
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Angélique Coutable-Pennarun
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.,School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - J L Ross Anderson
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.,School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
40
|
Martin N, Tian L, Spencer D, Coutable‐Pennarun A, Anderson JLR, Mann S. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicolas Martin
- Univ. Bordeaux CNRS Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr. Albert Schweitzer 33600 Pessac France
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building University of Bristol Tyndall Avenue Bristol BS8 1TQ UK
| | - Dan Spencer
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Angélique Coutable‐Pennarun
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building University of Bristol Tyndall Avenue Bristol BS8 1TQ UK
- School of Biochemistry University of Bristol University Walk Bristol BS8 1TD UK
| | - J. L. Ross Anderson
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building University of Bristol Tyndall Avenue Bristol BS8 1TQ UK
- School of Biochemistry University of Bristol University Walk Bristol BS8 1TD UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building University of Bristol Tyndall Avenue Bristol BS8 1TQ UK
| |
Collapse
|
41
|
Sikkema HR, Gaastra BF, Pols T, Poolman B. Cell Fuelling and Metabolic Energy Conservation in Synthetic Cells. Chembiochem 2019; 20:2581-2592. [PMID: 31381223 DOI: 10.1002/cbic.201900398] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 12/14/2022]
Abstract
We are aiming for a blue print for synthesizing (moderately complex) subcellular systems from molecular components and ultimately for constructing life. However, without comprehensive instructions and design principles, we rely on simple reaction routes to operate the essential functions of life. The first forms of synthetic life will not make every building block for polymers de novo according to complex pathways, rather they will be fed with amino acids, fatty acids and nucleotides. Controlled energy supply is crucial for any synthetic cell, no matter how complex. Herein, we describe the simplest pathways for the efficient generation of ATP and electrochemical ion gradients. We have estimated the demand for ATP by polymer synthesis and maintenance processes in small cell-like systems, and we describe circuits to control the need for ATP. We also present fluorescence-based sensors for pH, ionic strength, excluded volume, ATP/ADP, and viscosity, which allow the major physicochemical conditions inside cells to be monitored and tuned.
Collapse
Affiliation(s)
- Hendrik R Sikkema
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tjeerd Pols
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
42
|
Omidvar R, Römer W. Glycan-decorated protocells: novel features for rebuilding cellular processes. Interface Focus 2019; 9:20180084. [PMID: 30842879 PMCID: PMC6388021 DOI: 10.1098/rsfs.2018.0084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
In synthetic biology approaches, lipid vesicles are widely used as protocell models. While many compounds have been encapsulated in vesicles (e.g. DNA, cytoskeleton and enzymes), the incorporation of glycocalyx components in the lipid bilayer has attracted much less attention so far. In recent years, glycoconjugates have been integrated in the membrane of giant unilamellar vesicles (GUVs). These minimal membrane systems have largely contributed to shed light on the molecular mechanisms of cellular processes. In this review, we first introduce several preparation and biophysical characterization methods of GUVs. Then, we highlight specific applications of protocells investigating glycolipid-mediated endocytosis of toxins, viruses and bacteria. In addition, we delineate how prototissues have been assembled from glycan-decorated protocells by using lectin-mediated cross-linking of opposed glycoreceptors (e.g. glycolipids and glycopeptides). In future applications, glycan-decorated protocells might be useful for investigating cell-cell interactions (e.g. adhesion and communication). We also speculate about the implication of lectin-glycoreceptor interactions in membrane fusion processes.
Collapse
Affiliation(s)
- Ramin Omidvar
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
43
|
Optically inducible membrane recruitment and signaling systems. Curr Opin Struct Biol 2019; 57:84-92. [PMID: 30884362 DOI: 10.1016/j.sbi.2019.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/12/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.
Collapse
|
44
|
Rideau E, Wurm FR, Landfester K. Self‐Assembly of Giant Unilamellar Vesicles by Film Hydration Methodologies. ACTA ACUST UNITED AC 2019; 3:e1800324. [DOI: 10.1002/adbi.201800324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
45
|
Bartelt SM, Chervyachkova E, Ricken J, Wegner SV. Mimicking Adhesion in Minimal Synthetic Cells. ACTA ACUST UNITED AC 2019; 3:e1800333. [DOI: 10.1002/adbi.201800333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Solveig M. Bartelt
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Julia Ricken
- Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
| | - Seraphine V. Wegner
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
46
|
Chakraborty T, Bartelt SM, Steinkühler J, Dimova R, Wegner SV. Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells. Chem Commun (Camb) 2019; 55:9448-9451. [DOI: 10.1039/c9cc04768a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Light controlled adhesions between sender and receiver GUVs, used as minimal synthetic cells, photoregulates their spatial proximity and chemical communication.
Collapse
Affiliation(s)
| | - S. M. Bartelt
- Max Planck Institute for Polymer Research
- Mainz
- Germany
| | - J. Steinkühler
- Department of Theory and Biosystems
- Max Planck Institute of Colloids and Interfaces
- Potsdam
- Germany
| | - R. Dimova
- Department of Theory and Biosystems
- Max Planck Institute of Colloids and Interfaces
- Potsdam
- Germany
| | - S. V. Wegner
- Max Planck Institute for Polymer Research
- Mainz
- Germany
| |
Collapse
|