1
|
Berdiyorov GR. Influence of pyridinic nitrogen on tautomeric shifts and charge transport in single molecule keto enol equilibria. Sci Rep 2025; 15:3018. [PMID: 39848973 PMCID: PMC11758020 DOI: 10.1038/s41598-024-81220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025] Open
Abstract
Keto-enol tautomerism in organic molecules presents a potential for modulating the charge transport at the nanoscale. The reduction of the isomerization barrier and favoring the highly conductive enol form are the main challenges towards practical implementation of this phenomenon. Using density functional theory calculations, we have demonstrated that pyridinic nitrogen in biphenyl molecules with keto-enol tautomerism can successfully make the conductive enol form energetically more favorable. This enhanced stability originates from the hydrogen bonding between the pyridinic nitrogen and the hydroxyl group in the enol state. The presence of the pyridinic unit further enhances the conductance of the enol form while reducing that of the keto form compared to the pristine molecule. The novelty of our findings lies in the use of pyridinic nitrogen to control isomerization through hydrogen bonding, offering a new approach to tuning electronic properties for molecular devices. These findings can be valuable in the development of functional molecular devices based on the keto-enol isomerization phenomenon.
Collapse
Affiliation(s)
- G R Berdiyorov
- Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
2
|
Tan M, Sun F, Zhao X, Zhao Z, Zhang S, Xu X, Adijiang A, Zhang W, Wang H, Wang C, Li Z, Scheer E, Xiang D. Conductance Evolution of Photoisomeric Single-Molecule Junctions under Ultraviolet Irradiation and Mechanical Stretching. J Am Chem Soc 2024; 146:6856-6865. [PMID: 38413090 DOI: 10.1021/jacs.3c13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A comprehensive understanding of carrier transport in photoisomeric molecular junctions is crucial for the rational design and delicate fabrication of single-molecule functional devices. It has been widely recognized that the conductance of azobenzene (a class of photoisomeric molecules) based molecular junctions is mainly determined by photoinduced conformational changes. In this study, it is demonstrated that the most probable conductance of amine-anchored azobenzene-based molecular junctions increases continuously upon UV irradiation. In contrast, the conductance of pyridyl-anchored molecular junctions with an identical azobenzene core exhibits a contrasting trend, highlighting the pivotal role that anchoring groups play, potentially overriding (even reversing) the effects of photoinduced conformational changes. It is further demonstrated that the molecule with cis-conformation cannot be fully mechanically stretched into the trans-conformation, clarifying that it is a great challenge to realize a reversible molecular switch by purely mechanical operation. Additionally, it is revealed that the coupling strength of pyridyl-anchored molecules is dramatically weakened when the UV irradiation time is prolonged, whereas it is not observed for amine-anchored molecules. The mechanisms for these observations are elucidated with the assistance of density functional theory calculations and UV-Vis spectra combined with flicker noise measurements which confirm the photoinduced conformational changes, providing insight into understanding the charge transport in photoisomeric molecular junctions and offering a routine for logical designing synchro opto-mechanical molecular switches.
Collapse
Affiliation(s)
- Min Tan
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Feng Sun
- Key Laboratory of Medical Physics and Image Processing of Shandong Province, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China
| | - Xueyan Zhao
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Zhibin Zhao
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Surong Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xiaona Xu
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Adila Adijiang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Wei Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Haoyu Wang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Chuankui Wang
- Key Laboratory of Medical Physics and Image Processing of Shandong Province, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China
| | - Zongliang Li
- Key Laboratory of Medical Physics and Image Processing of Shandong Province, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China
| | - Elke Scheer
- Department of Physics, University of Konstanz, Konstanz 78457, Germany
| | - Dong Xiang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Xu X, Feng J, Li WY, Wang G, Feng W, Yu H. Azobenzene-containing polymer for solar thermal energy storage and release: Advances, challenges, and opportunities. Prog Polym Sci 2024; 149:101782. [DOI: 10.1016/j.progpolymsci.2023.101782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Gibalova A, Kortekaas L, Simke J, Ravoo BJ. Multi-responsive Electropolymer Surface Coatings Based on Azo Molecular Switches and Carbazoles: Light, pH, and Electrochemical Control of Z→E Isomerization in Thin Films. Chemistry 2023; 29:e202302215. [PMID: 37565655 DOI: 10.1002/chem.202302215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Light-responsive surfaces are attracting increasing interest, not least because their physicochemical properties can be selectively and temporally controlled by a non-invasive stimulus. Most existing immobilization strategies involve the chemical attachment of light-responsive moieties to the surface, although this approach often suffers from a low surface concentration of active species or a high inhomogeneity of applied coatings. Herein, electropolymerization of carbazoles as a facile and rapid approach for preparing light-responsive azo-based surface coatings is presented. The electrochemical oxidative polymerization of bis-carbazole containing azo-monomers yields stable films, in which the photochemical properties and specific pH sensitivity of azo molecular switches are retained. Moreover, the molecular design enables electrocatalytic control over Z→E azo double bond isomerization facilitated by the conductive polycarbazole backbone. Ultimately, the high degree of control over macromolecular properties yields conductive surface coatings responsive to a range of stimuli, showing great promise as a strategy for versatile application in organic electronics.
Collapse
Affiliation(s)
- Anna Gibalova
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Luuk Kortekaas
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
- Materials Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Julian Simke
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| |
Collapse
|
5
|
Yang Z, Cazade PA, Lin JL, Cao Z, Chen N, Zhang D, Duan L, Nijhuis CA, Thompson D, Li Y. High performance mechano-optoelectronic molecular switch. Nat Commun 2023; 14:5639. [PMID: 37704605 PMCID: PMC10499996 DOI: 10.1038/s41467-023-41433-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Highly-efficient molecular photoswitching occurs ex-situ but not to-date inside electronic devices due to quenching of excited states by background interactions. Here we achieve fully reversible in-situ mechano-optoelectronic switching in self-assembled monolayers (SAMs) of tetraphenylethylene molecules by bending their supporting electrodes to maximize aggregation-induced emission (AIE). We obtain stable, reversible switching across >1600 on/off cycles with large on/off ratio of (3.8 ± 0.1) × 103 and 140 ± 10 ms switching time which is 10-100× faster than other approaches. Multimodal characterization shows mechanically-controlled emission with UV-light enhancing the Coulomb interaction between the electrons and holes resulting in giant enhancement of molecular conductance. The best mechano-optoelectronic switching occurs in the most concave architecture that reduces ambient single-molecule conformational entropy creating artificially-tightened supramolecular assemblies. The performance can be further improved to achieve ultra-high switching ratio on the order of 105 using tetraphenylethylene derivatives with more AIE-active sites. Our results promise new applications from optimized interplay between mechanical force and optics in soft electronics.
Collapse
Affiliation(s)
- Zhenyu Yang
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Pierre-André Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhou Cao
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, P.R. China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, P.R. China
| | - Christian A Nijhuis
- Department of Molecules and Materials MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired NanoSystems Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China.
| |
Collapse
|
6
|
Gröger R, Heiler T, Schimmel T, Walheim S. Tip-Induced Nanopatterning of Ultrathin Polymer Brushes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2204962. [PMID: 37026430 DOI: 10.1002/smll.202204962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/02/2023] [Indexed: 06/19/2023]
Abstract
Patterned, ultra-thin surface layers can serve as templates for positioning nanoparticlesor targeted self-assembly of molecular structures, for example, block-copolymers. This work investigates the high-resolution, atomic force microscopebased patterning of 2 nm thick vinyl-terminated polystyrene brush layers and evaluates the line broadening due to tip degradation. This work compares the patterning properties with those of a silane-based fluorinated self-assembled monolayer (SAM), using molecular heteropatterns generated by modified polymer blend lithography (brush/SAM-PBL). Stable line widths of 20 nm (FWHM) over lengths of over 20000 µm indicate greatly reduced tip wear, compared to expectations on uncoated SiOx surfaces. The polymer brush acts as a molecularly thin lubricating layer, thus enabling a 5000 fold increase in tip lifetime, and the brush is bonded weakly enough that it can be removed with surgical accuracy. On traditionally used SAMs, either the tip wear is very high or the molecules are not completely removed. Polymer Phase Amplified Brush Editing is presented, which uses directed self-assembly to amplify the aspect ratio of the molecular structures by a factor of 4. The structures thus amplified allow transfer into silicon/metal heterostructures, fabricating 30 nm deep, all-silicon diffraction gratings that could withstand focused high-power 405 nm laser irradiation.
Collapse
Affiliation(s)
- Roland Gröger
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
- Center for Single-Atom Technologies (C.SAT), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
| | - Tobias Heiler
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
| | - Thomas Schimmel
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
- Center for Single-Atom Technologies (C.SAT), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Materials Research Center for Energy Systems (MZE), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
| | - Stefan Walheim
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
- Center for Single-Atom Technologies (C.SAT), Karlsruhe Institute of Technology, Strasse am Forum 7, D-76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Herrmann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Jin X, Zhang C, Lin J, Cai C, Chen J, Gao L. Fusion Growth of Two-Dimensional Disklike Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Zhu Y, Li P, Liu C, Jia M, Luo Y, He D, Liao C, Zhang S. Azobenzene quaternary ammonium salt for photo-controlled and reusable disinfection without drug resistance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Xu X, Wang G. Molecular Solar Thermal Systems towards Phase Change and Visible Light Photon Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107473. [PMID: 35132792 DOI: 10.1002/smll.202107473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Molecular solar thermal (MOST) systems have attracted tremendous attention for solar energy conversion and storage, which can generate high-energy metastable isomers upon capturing photon energy, and release the stored energy as heat on demand during back conversion. However, the pristine molecular photoswitches are limited by low storage energy density and UV light photon energy storage. Recently, numerous pioneering works have been focused on the development of MOST systems towards phase change (PC) and visible light photon energy storage to increase their properties. On the one hand, the strategy of simultaneously capturing isomerization enthalpy and PC energy between solid and liquid can not only offer high latent heat, but also promote the development of sustainable energy systems. On the other hand, the efficient photon energy storage in the visible light range opens a tremendously fascinating avenue to fabricate MOST systems powered under natural sunlight. Here, the recent advances of MOST systems towards PC and visible light photon energy storage are systematically summarized, the most promising advantages and current challenges are analyzed, and emerging strategies and future research directions are proposed.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
10
|
Pujol-Vila F, Escudero P, Güell-Grau P, Pascual-Izarra C, Villa R, Alvarez M. Direct Color Observation of Light-Driven Molecular Conformation-Induced Stress. SMALL METHODS 2022; 6:e2101283. [PMID: 35174993 DOI: 10.1002/smtd.202101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Although usually complex to handle, nanomechanical sensors are exceptional, label-free tools for monitoring molecular conformational changes, which makes them of paramount importance in understanding biomolecular interactions. Herein, a simple and inexpensive mechanical imaging approach based on low-stiffness cantilevers with structural coloration (mechanochromic cantilevers (MMC)) is demonstrated, able to monitor and quantify molecular conformational changes with similar sensitivity to the classical optical beam detection method of cantilever-based sensors (≈4.6 × 10-3 N m-1 ). This high sensitivity is achieved by using a white light and an RGB camera working in the reflection configuration. The sensor performance is demonstrated by monitoring the UV-light induced reversible conformational changes of azobenzene molecules coating. The trans-cis isomerization of the azobenzene molecules induces a deflection of the cantilevers modifying their diffracted color, which returns to the initial state by cis-trans relaxation. Interestingly, the mechanical imaging enables a simultaneous 2D mapping of the response thus enhancing the spatial resolution of the measurements. A tight correlation is found between the color output and the cantilever's deflection and curvature angle (sensitivities of 5 × 10-3 Hue µm-1 and 1.5 × 10-1 Hue (°)-1 ). These findings highlight the suitability of low-stiffness MMC as an enabling technology for monitoring molecular changes with unprecedented simplicity, high-throughput capability, and functionalities.
Collapse
Affiliation(s)
- Ferran Pujol-Vila
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Pedro Escudero
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Facultad de Ingeniería y Tecnologías de la Información y la Comunicación, Universidad Tecnológica Indoamérica, Ambato, 180103, Ecuador
| | - Pau Güell-Grau
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | | | - Rosa Villa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018, Madrid, Spain
| | - Mar Alvarez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018, Madrid, Spain
| |
Collapse
|
11
|
Liu H, Zhang L, Huang J, Mao J, Chen Z, Mao Q, Ge M, Lai Y. Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications. Adv Colloid Interface Sci 2022; 300:102584. [PMID: 34973464 DOI: 10.1016/j.cis.2021.102584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
As a growing hot research topic, manufacturing smart switchable surfaces has attracted much attention in the past a few years. The state-of-the-art study on reversibly switchable wettability of smart surfaces has been presented in this systematic review. External stimuli are brought about to render the alteration in chemical conformation and surface morphology to drive the wettability switch. Here, starting from the fundamental theories related to the surfaces wetting principles, highlights on different triggers for switchable wettability, such as pH, light, ions, temperature, electric field, gas, mechanical force, and multi-stimuli are discussed. Different applications that have various wettability requirement are targeted, including oil-water separation, droplets manipulation, patterning, liquid transport, and so on. This review aims to provide a deep insight into responsive interfacial science and offer guidance for smart surface engineering. It ends with a summary of current challenges, future opportunities, and potential solutions on smart switch of wettability on superwetting surfaces.
Collapse
Affiliation(s)
- Hui Liu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China
| | - Li Zhang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China
| | - Jianying Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou 350116, PR China
| | - Jiajun Mao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, PR China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Qinghui Mao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China.
| | - Mingzheng Ge
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile & Clothing, Nantong University, Nantong 226019, PR China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271000, PR China.
| | - Yuekun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou 350116, PR China.
| |
Collapse
|
12
|
Zhang L, Yue C, Zhang L, Zhang P, Wang L, Lei M, Pu M. A DFT study on the isomerization mechanism of azobenzene derivatives on silicon substrates. NEW J CHEM 2022. [DOI: 10.1039/d2nj04631h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cis–trans isomerization mechanism of azobenzenesulfonamide derivatives on silicon substrates was investigated using DFT. The most favorable cooperative mode of the N2 inversion of the L followed by the N1 inversion of the R was proposed.
Collapse
Affiliation(s)
- Lulu Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Caiwei Yue
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Peihuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Luocong Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
13
|
Xue D, Ma L, Tian Y, Zeng Q, Tu B, Luo W, Wen S, Luo J. Light-Controlled Friction by Carboxylic Azobenzene Molecular Self-Assembly Layers. Front Chem 2021; 9:707232. [PMID: 34422766 PMCID: PMC8374315 DOI: 10.3389/fchem.2021.707232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Nowadays, reversible friction regulation has become the focus of scientists in terms of the flexible regulatory structure of photosensitive materials and theories since this facilitates rapid development in this field. Meanwhile, as an external stimulus, light possesses great potential and advantages in spatiotemporal control and remote triggering. In this work, we demonstrated two photo-isomerized organic molecular layers, tetra-carboxylic azobenzene (NN4A) and dicarboxylic azobenzene (NN2A), which were selected to construct template networks on the surface of the highly oriented pyrolytic graphite (HOPG) to study the friction properties, corresponding to the arrangement structure of self-assembled layers under light regulation. First of all, the morphology of the self-assembled layers were characterized by a scanning tunneling microscope (STM), then the nanotribological properties of the template networks were measured by atomic force microscope (AFM). Their friction coefficients are respectively changed by about 0.6 and 2.3 times under light control. The density functional theory (DFT) method was used to calculate the relationship between the force intensity and the friction characteristics of the self-assembled systems under light regulation. Herein, the use of external light stimulus plays a significant role in regulating the friction properties of the interface of the nanometer, hopefully serving as a fundamental basis for further light-controlling research for the future fabrication of advanced on-surface devices.
Collapse
Affiliation(s)
- Dandan Xue
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Liran Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China.,Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Tu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Wendi Luo
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Shizhu Wen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Nam SH, Choi YJ, Kim YW, Jun K, Jeong NH, Oh SG, Kang HC. Syntheses and characterization of new photoresponsive surfactants, N-(azobenzene-4-oxy-2-hydroxypropyl)-N-(alkyloxy-2-hydroxypropyl) aminopropyl sulfonic acid sodium salt. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Xie Z, Duan S, Wang CK, Luo Y. Finding the true pathway for reversible isomerization of a single azobenzene molecule tumbling on Au(111) surface. NANOSCALE 2020; 12:10474-10479. [PMID: 32373867 DOI: 10.1039/d0nr01629b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Switchable trans-cis isomerization of azobenzene (AB) and its derivatives on metallic surfaces have offered rich possibilities to functionalize molecular devices. However, the lack of a good understanding of the isomerization pathway has severely limited our ability for rational design. One of the long-debated issues is the cis configuration of the parental AB on the Au(111) surface, for which the experimentally inferred structure differs from the theoretically predicted global minimum. Here, we theoretically identify a new in situ metastable configuration for cis-AB on Au(111) that can reproduce all the observations reported in the scanning tunneling microscopy experiments. It reveals that the bistability of AB on the Au(111) surface is attributed to the significantly increased kinetic stability of the newly discovered cis-AB isomer. A fascinating tumbling pathway that overcomes two energy barriers stimulated by tunneling electrons for the trans-cis AB isomerization on Au(111) has been verified, suggesting a new type of molecular motion based on the AB systems.
Collapse
Affiliation(s)
- Zhen Xie
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Interfacial nanoarchitectonics for molecular manipulation and molecular machine operation. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Gibson RSL, Calbo J, Fuchter MJ. Chemical
Z
−
E
Isomer Switching of Arylazopyrazoles Using Acid. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900065] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rosina S. L. Gibson
- Department of Chemistry Imperial College LondonMolecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| | - Joaquín Calbo
- Department of MaterialsImperial College London Royal School of Mines Exhibition Road London SW7 2AZ UK
| | - Matthew J. Fuchter
- Department of Chemistry Imperial College LondonMolecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| |
Collapse
|