1
|
Tang Y, Harutyunyan H. Optical properties of plasmonic tunneling junctions. J Chem Phys 2023; 158:060901. [PMID: 36792491 DOI: 10.1063/5.0128822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Over the last century, quantum theories have revolutionized our understanding of material properties. One of the most striking quantum phenomena occurring in heterogeneous media is the quantum tunneling effect, where carriers can tunnel through potential barriers even if the barrier height exceeds the carrier energy. Interestingly, the tunneling process can be accompanied by the absorption or emission of light. In most tunneling junctions made of noble metal electrodes, these optical phenomena are governed by plasmonic modes, i.e., light-driven collective oscillations of surface electrons. In the emission process, plasmon excitation via inelastic tunneling electrons can improve the efficiency of photon generation, resulting in bright nanoscale optical sources. On the other hand, the incident light can affect the tunneling behavior of plasmonic junctions as well, leading to phenomena such as optical rectification and induced photocurrent. Thus, plasmonic tunneling junctions provide a rich platform for investigating light-matter interactions, paving the way for various applications, including nanoscale light sources, sensors, and chemical reactors. In this paper, we will introduce recent research progress and promising applications based on plasmonic tunneling junctions.
Collapse
Affiliation(s)
- Yuankai Tang
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Hayk Harutyunyan
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
2
|
Zhang L, Wang X, Chen H, Liu C, Deng S. A planar plasmonic nano-gap and its array for enhancing light-matter interactions at the nanoscale. NANOSCALE 2022; 14:12257-12264. [PMID: 35968906 DOI: 10.1039/d2nr01282k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gap surface plasmon (GSP) modes, the localized electromagnetic modes existing between two metal structures separated by a nano-gap, are able to support subwavelength confinement and enhancement of a light field upon resonance excitation. Such features can greatly facilitate various light-matter interactions at the nanoscale. Here, we demonstrate a planar nano-gap architecture existing between a pair of tip-shaped gold pads. The nano-gap gives rise to plasmon resonances with strong light confinement close to the tip surfaces in the visible to near-infrared spectral region. Accordingly, we showed that the plasmonic gold nano-gap can exhibit strong intrinsic second-harmonic generation (SHG) and significantly enhance the Raman scattering signal from small molecules. Furthermore, by arranging the nano-gap into arrays, a stronger SHG signal can be obtained. In addition, the surface enhanced Raman scattering (SERS) activity is also improved by two orders of magnitude compared to that of a single nano-gap. Overall, the findings in our study have demonstrated the potential applications of a plasmonic nano-gap and its arrays for signal generation and sensitive chemical sensing at the nanoscale.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ximiao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Kim S, Jeong TI, Park J, Ciappina MF, Kim S. Recent advances in ultrafast plasmonics: from strong field physics to ultraprecision spectroscopy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2393-2431. [PMID: 39635686 PMCID: PMC11502069 DOI: 10.1515/nanoph-2021-0694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/24/2022] [Indexed: 12/07/2024]
Abstract
Surface plasmons, the collective oscillation of electrons, enable the manipulation of optical fields with unprecedented spatial and time resolutions. They are the workhorse of a large set of applications, such as chemical/biological sensors or Raman scattering spectroscopy, to name only a few. In particular, the ultrafast optical response configures one of the most fundamental characteristics of surface plasmons. Thus, the rich physics about photon-electron interactions could be retrieved and studied in detail. The associated plasmon-enhanced electric fields, generated by focusing the surface plasmons far beyond the diffraction limit, allow reaching the strong field regime with relatively low input laser intensities. This is in clear contrast to conventional optical methods, where their intrinsic limitations demand the use of large and costly laser amplifiers, to attain high electric fields, able to manipulate the electron dynamics in the non-linear regime. Moreover, the coherent plasmonic field excited by the optical field inherits an ultrahigh precision that could be properly exploited in, for instance, ultraprecision spectroscopy. In this review, we summarize the research achievements and developments in ultrafast plasmonics over the last decade. We particularly emphasize the strong-field physics aspects and the ultraprecision spectroscopy using optical frequency combs.
Collapse
Affiliation(s)
- San Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
- Engineering Research Center for Color-modulated Extra-sensory Perception Technology, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
| | - Tae-In Jeong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
| | - Jongkyoon Park
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
| | - Marcelo F. Ciappina
- Physics Program, Guangdong Technion – Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
- Technion –Israel Institute of Technology, Haifa, 32000, Israel
- Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 182 21Prague, Czech Republic
| | - Seungchul Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan46241, South Korea
| |
Collapse
|
4
|
Medeghini F, Pettine J, Meyer SM, Murphy CJ, Nesbitt DJ. Regulating and Directionally Controlling Electron Emission from Gold Nanorods with Silica Coatings. NANO LETTERS 2022; 22:644-651. [PMID: 34989588 DOI: 10.1021/acs.nanolett.1c03569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dielectric coatings offer a versatile means of manipulating hot carrier emission from nanoplasmonic systems for emerging nanocatalysis and photocathode applications, with uniform coatings acting as regulators and nonuniform coatings providing directional photocurrent control. However, the mechanisms for electron emission through dense and mesoporous silica (SiO2) coatings require further examination. Here, we present a systematic investigation of photoemission from single gold nanorods as a function of dense versus mesoporous silica coating thicknesses. Studies with dense coatings on gold nanostructures clarify the short (∼1 nm) attenuation length responsible for severely reduced transmission through the silica conduction band. By contrast, mesoporous silica is much more transmissive, and a simple geometric model quantitatively recapitulates the electron escape probability through nanoscopic porous channels. Finally, photoelectron velocity map imaging (VMI) studies of nanorods with coating defects verify that photoemission occurs preferentially through the thinner regions, illustrating new opportunities for designing photocurrent distributions on the nanoscale.
Collapse
Affiliation(s)
- Fabio Medeghini
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
| | - Jacob Pettine
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| | - Sean M Meyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Nesbitt
- JILA, University of Colorado─Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado─Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado─Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Zhou S, Guo X, Chen K, Cole MT, Wang X, Li Z, Dai J, Li C, Dai Q. Optical-Field-Driven Electron Tunneling in Metal-Insulator-Metal Nanojunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101572. [PMID: 34708551 PMCID: PMC8693043 DOI: 10.1002/advs.202101572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Optical-field driven electron tunneling in nanojunctions has made demonstrable progress toward the development of ultrafast charge transport devices at subfemtosecond time scales, and have evidenced great potential as a springboard technology for the next generation of on-chip "lightwave electronics." Here, the empirical findings on photocurrent the high nonlinearity in metal-insulator-metal (MIM) nanojunctions driven by ultrafast optical pulses in the strong optical-field regime are reported. In the present MIM device, a 14th power-law scaling is identified, never achieved before in any known solid-state device. This work lays important technological foundations for the development of a new generation of ultracompact and ultrafast electronics devices that operate with suboptical-cycle response times.
Collapse
Affiliation(s)
- Shenghan Zhou
- CAS Key Laboratory of Nanophotonic Materials and DevicesCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and DevicesCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ke Chen
- CAS Key Laboratory of Nanophotonic Materials and DevicesCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Matthew Thomas Cole
- Department of Electronic and Electrical EngineeringUniversity of BathBathBA2 7AYUK
| | - Xiaowei Wang
- Department of PhysicsNational University of Defense TechnologyChangsha410073P. R. China
| | - Zhenjun Li
- CAS Key Laboratory of Nanophotonic Materials and DevicesCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- GBA Research Innovation Institute for NanotechnologyGuangzhou510700P. R. China
| | - Jiayu Dai
- Department of PhysicsNational University of Defense TechnologyChangsha410073P. R. China
| | - Chi Li
- CAS Key Laboratory of Nanophotonic Materials and DevicesCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and DevicesCAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
6
|
Zhou S, Chen K, Cole MT, Li Z, Li M, Chen J, Lienau C, Li C, Dai Q. Ultrafast Electron Tunneling Devices-From Electric-Field Driven to Optical-Field Driven. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101449. [PMID: 34240495 DOI: 10.1002/adma.202101449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/05/2021] [Indexed: 06/13/2023]
Abstract
The search for ever higher frequency information processing has become an area of intense research activity within the micro, nano, and optoelectronics communities. Compared to conventional semiconductor-based diffusive transport electron devices, electron tunneling devices provide significantly faster response times due to near-instantaneous tunneling that occurs at sub-femtosecond timescales. As a result, the enhanced performance of electron tunneling devices is demonstrated, time and again, to reimagine a wide variety of traditional electronic devices with a variety of new "lightwave electronics" emerging, each capable of reducing the electron transport channel transit time down to attosecond timescales. In response to unprecedented rapid progress within this field, here the current state-of-the-art in electron tunneling devices is reviewed, current challenges and opportunities are highlighted, and possible future research directions are identified.
Collapse
Affiliation(s)
- Shenghan Zhou
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Matthew Thomas Cole
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Zhenjun Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mo Li
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Christoph Lienau
- Institut für Physik, Center of Interface Science, Carl von Ossietzky Universität, 26129, Oldenburg, Germany
| | - Chi Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Nardi A, Turchetti M, Britton WA, Chen Y, Yang Y, Dal Negro L, Berggren KK, Keathley PD. Nanoscale refractory doped titanium nitride field emitters. NANOTECHNOLOGY 2021; 32:315208. [PMID: 33862600 DOI: 10.1088/1361-6528/abf8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Refractory materials exhibit high damage tolerance, which is attractive for the creation of nanoscale field-emission electronics and optoelectronics applications that require operation at high peak current densities and optical intensities. Recent results have demonstrated that the optical properties of titanium nitride, a refractory and CMOS-compatible plasmonic material, can be tuned by adding silicon and oxygen dopants. However, to fully leverage the potential of titanium (silicon oxy)nitride, a reliable and scalable fabrication process with few-nm precision is needed. In this work, we developed a fabrication process for producing engineered nanostructures with gaps between 10 and 15 nm, aspect ratios larger than 5 with almost 90° steep sidewalls. Using this process, we fabricated large-scale arrays of electrically-connected bow-tie nanoantennas with few-nm free-space gaps. We measured a typical variation of 4 nm in the average gap size. Using applied DC voltages and optical illumination, we tested the electronic and optoelectronic response of the devices, demonstrating sub-10 V tunneling operation across the free-space gaps, and quantum efficiency of up to 1 × 10-3at 1.2μm, which is comparable to a bulk silicon photodiode at the same wavelength and three orders of magnitude higher than with nearly identical gold devices. Tests demonstrated that the titanium silicon oxynitride nanostructures did not significantly degrade, exhibiting less than 5 nm of shrinking of the average gap dimensions over few-μm2areas after 10 h of operation. Our results will be useful for developing the next generation of robust and CMOS-compatible nanoscale devices for high-speed and low-power field-emission electronics and optoelectronics applications.
Collapse
Affiliation(s)
- A Nardi
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA 02139, United States of America
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, I-10129, Italy
| | - M Turchetti
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA 02139, United States of America
| | - W A Britton
- Division of Material Science & Engineering, Boston University, 15 Saint Mary's Street, Brookline, MA 02446, United States of America
| | - Y Chen
- Division of Material Science & Engineering, Boston University, 15 Saint Mary's Street, Brookline, MA 02446, United States of America
| | - Y Yang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA 02139, United States of America
| | - L Dal Negro
- Division of Material Science & Engineering, Boston University, 15 Saint Mary's Street, Brookline, MA 02446, United States of America
- Department of Electrical & Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States of America
| | - K K Berggren
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA 02139, United States of America
| | - P D Keathley
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA 02139, United States of America
| |
Collapse
|
8
|
Ma Z, Li J, Zhang Y, Zhao H, Li Q, Ma C, Yao J. Enhanced detectivity of PbS quantum dots infrared photodetector by introducing the tunneling effect of PMMA. NANOTECHNOLOGY 2021; 32:195502. [PMID: 33212428 DOI: 10.1088/1361-6528/abcc20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With extremely high optical absorption coefficient in infrared regime, lead sulfide (PbS) quantum dots (QDs)-based photodetectors are promising for diverse applications. In recent years, synthesis of materials has made great progress, but the problem of low sensitivity of quantum dots photodetector still unresolved. In this work, the introduction of a tunneling organic layer effectively address this problem. The dark current is decreased by the appropriate thickness of polymethyl methacrylate (PMMA) barrier layer by suppressing the spontaneous migration of ions, and the photogenerated carriers are little effected, thereby the responsivity of the device is improved. As a result, the device exhibits a high responsivity of 3.73 × 105 mA W-1 and a giant specific detectivity of 4.01 × 1013 Jones at a low voltage of -1 V under 1064 nm illumination. In the self-powered mode, the responsivity reaches a value of 157.6 mA W-1, and the detectivity up to 5.9 × 1011 Jones. The performance of the photodetectors is obviously better than most of the reported QDs photodetectors. The design of this device structure provides a new solution to the problem of low sensitivity and high leakage current of quantum dots based infrared photodetectors.
Collapse
Affiliation(s)
- Zhenzhen Ma
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiahui Li
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yating Zhang
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongliang Zhao
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Qingyan Li
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chengqi Ma
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianquan Yao
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
9
|
Yang Y, Turchetti M, Vasireddy P, Putnam WP, Karnbach O, Nardi A, Kärtner FX, Berggren KK, Keathley PD. Light phase detection with on-chip petahertz electronic networks. Nat Commun 2020; 11:3407. [PMID: 32641698 PMCID: PMC7343884 DOI: 10.1038/s41467-020-17250-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/19/2020] [Indexed: 11/28/2022] Open
Abstract
Ultrafast, high-intensity light-matter interactions lead to optical-field-driven photocurrents with an attosecond-level temporal response. These photocurrents can be used to detect the carrier-envelope-phase (CEP) of short optical pulses, and enable optical-frequency, petahertz (PHz) electronics for high-speed information processing. Despite recent reports on optical-field-driven photocurrents in various nanoscale solid-state materials, little has been done in examining the large-scale electronic integration of these devices to improve their functionality and compactness. In this work, we demonstrate enhanced, on-chip CEP detection via optical-field-driven photocurrents in a monolithic array of electrically-connected plasmonic bow-tie nanoantennas that are contained within an area of hundreds of square microns. The technique is scalable and could potentially be used for shot-to-shot CEP tagging applications requiring orders-of-magnitude less pulse energy compared to alternative ionization-based techniques. Our results open avenues for compact time-domain, on-chip CEP detection, and inform the development of integrated circuits for PHz electronics as well as integrated platforms for attosecond and strong-field science.
Collapse
Affiliation(s)
- Yujia Yang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marco Turchetti
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Praful Vasireddy
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William P Putnam
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA, USA
- Department of Physics and Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
| | - Oliver Karnbach
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alberto Nardi
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Franz X Kärtner
- Department of Physics and Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
- Center for Free-Electron Laser Science and Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Karl K Berggren
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Phillip D Keathley
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Pettine J, Choo P, Medeghini F, Odom TW, Nesbitt DJ. Plasmonic nanostar photocathodes for optically-controlled directional currents. Nat Commun 2020; 11:1367. [PMID: 32170067 PMCID: PMC7069989 DOI: 10.1038/s41467-020-15115-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
Plasmonic nanocathodes offer unique opportunities for optically driving, switching, and steering femtosecond photocurrents in nanoelectronic devices and pulsed electron sources. However, angular photocurrent distributions in nanoplasmonic systems remain poorly understood and are therefore difficult to anticipate and control. Here, we provide a direct momentum-space characterization of multiphoton photoemission from plasmonic gold nanostars and demonstrate all-optical control over these currents. Versatile angular control is achieved by selectively exciting different tips on single nanostars via laser frequency or linear polarization, thereby rotating the tip-aligned directional photoemission as observed with angle-resolved 2D velocity mapping and 3D reconstruction. Classical plasmonic field simulations combined with quantum photoemission theory elucidate the role of surface-mediated nonlinear excitation for plasmonic field enhancements highly concentrated at the sharp tips (Rtip = 3.4 nm). We thus establish a simple mechanism for femtosecond spatiotemporal current control in designer nanosystems.
Collapse
Affiliation(s)
- Jacob Pettine
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, 80309, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Fabio Medeghini
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, 80309, USA
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO, 80309, USA.
- Department of Physics, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
11
|
Kaur N, Mahajan A, Bhullar V, Singh DP, Saxena V, Debnath AK, Aswal DK, Devi D, Singh F, Chopra S. Fabrication of plasmonic dye-sensitized solar cells using ion-implanted photoanodes. RSC Adv 2019; 9:20375-20384. [PMID: 35514719 PMCID: PMC9065801 DOI: 10.1039/c9ra02657f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 12/04/2022] Open
Abstract
Plasmonic dye-sensitized solar cells containing metal nanoparticles suffer from stability issues due to their miscibility with liquid iodine-based electrolytes. To resolve the stability issue, herein, an ion implantation technique was explored to implant metal nanoparticles inside TiO2, which protected these nanoparticles with a thin coverage of TiO2 melt and maintained the localized surface plasmon resonance oscillations of the metal nanoparticles to efficiently enhance their light absorption and make them corrosion resistant. Herein, Au nanoparticles were implanted into the TiO2 matrix up to the penetration depth of 22 nm, and their influence on the structural and optical properties of TiO2 was studied. Moreover, plasmonic dye-sensitized solar cells were fabricated using N719 dye-loaded Au-implanted TiO2 photoanodes, and their power conversion efficiency was found to be 44.7% higher than that of the unimplanted TiO2-based dye-sensitized solar cells due to the enhanced light absorption of the dye molecules in the vicinity of the localized surface plasmon resonance of Au as well as the efficient electron charge transport at the TiO2@Au@N719/electrolyte interface.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Physics, Guru Nanak Dev University Amritsar - 143 005 India
| | - Aman Mahajan
- Department of Physics, Guru Nanak Dev University Amritsar - 143 005 India
| | - Viplove Bhullar
- Department of Physics, Guru Nanak Dev University Amritsar - 143 005 India
| | | | - Vibha Saxena
- Thin Film Devices Section, Technical Physics Division, Bhabha Atomic Research Centre Mumbai - 400 085 India
| | - A K Debnath
- Thin Film Devices Section, Technical Physics Division, Bhabha Atomic Research Centre Mumbai - 400 085 India
| | - D K Aswal
- National Physical Laboratory New Delhi - 110012 India
| | - Devarani Devi
- Inter University Accelerator Centre New Delhi - 110 0067 India
| | - Fouran Singh
- Inter University Accelerator Centre New Delhi - 110 0067 India
| | - Sundeep Chopra
- Inter University Accelerator Centre New Delhi - 110 0067 India
| |
Collapse
|