1
|
Zhang Q, Zhang D, Liao Z, Cao YB, Kumar M, Poddar S, Han J, Hu Y, Lv H, Mo X, Srivastava AK, Fan Z. Perovskite Light-Emitting Diodes with Quantum Wires and Nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405418. [PMID: 39183527 DOI: 10.1002/adma.202405418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Indexed: 08/27/2024]
Abstract
Perovskite materials, celebrated for their exceptional optoelectronic properties, have seen extensive application in the field of light-emitting diodes (LEDs), where research is as abundant as the proverbial "carloads of books." In this review, the research of perovskite materials is delved into from a dimensional perspective, with a focus on the exemplary performance of low-dimensional perovskite materials in LEDs. This discussion predominantly revolves around perovskite quantum wires and perovskite nanorods. Perovskite quantum wires are versatile in their growth, compatible with both solution-based and vapor-phase growth, and can be deposited over large areas-even on spherical substrates-to achieve commendable electroluminescence (EL). Perovskite nanorods, on the other hand, boast a suite of superior characteristics, such as polarization properties and tunability of the transition dipole moment, endowing them with the great potential to enhance light extraction efficiency. Furthermore, zero-dimensional (0D) perovskite materials like nanocrystals (NCs) are also the subject of widespread research and application. This review reflects on and synthesizes the unique qualities of the aforementioned materials while exploring their vital roles in the development of high-efficiency perovskite LEDs (PeLEDs).
Collapse
Affiliation(s)
- Qianpeng Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zebing Liao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Bryan Cao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Mallem Kumar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Junchao Han
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Ying Hu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Hualiang Lv
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoliang Mo
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Abhishek Kumar Srivastava
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
He H, Xing Y, Cui Z, Qin S, Wen Z, Yang D, Xie H, Mei S, Zhang W, Guo R. Regulating Phase Distribution of Dion-Jacobson Perovskite Colloidal Multiple Quantum Wells Toward Highly Stable Deep-Blue Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305191. [PMID: 37752759 DOI: 10.1002/smll.202305191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Metal halide perovskite colloidal quantum wells (CQWs) hold great promise for modern photonics and optoelectronics. However, current studies focus on Ruddlesden-Popper (R-P) phase perovskite CQWs that contain bilayers of monovalent long-chain alkylamomoniums between the separated perovskite octahedra layers. The bilayers are packed back-to-back via weak van der Waals interaction, resulting in inferior charge carrier transport and easier decomposition of perovskite. This report first creates a new type of perovskite colloidal multiple QWs (CMQWs) in the form of Dion-Jacobson (D-J) structure by introducing an asymmetric diammonium cation. Furthermore, the phase distribution is optimized by the synergistic effect of valeric acid and zwitterionic lecithin, finally achieving pure deep-blue emission at 435 nm with narrow full width at half maximum. The diammonium layer in D-J perovskite CMQWs features extremely short width of only ≈0.6 nm, thereby contributing to more effective charge carrier transport and higher stability. Through the continuous photoluminescence (PL) measurement and corresponding theoretical calculation, the higher stability of D-J perovskite CMQWs than that of R-P structural CMQWs is confirmed. This work reveals the inherent superior stability of D-J structural CMQWs, which opens a new direction for fabricating stable perovskite optoelectronics.
Collapse
Affiliation(s)
- Haiyang He
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yifeng Xing
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Zhongjie Cui
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Shuaitao Qin
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhuoqi Wen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Dan Yang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Xihu District, Hangzhou City, Zhejiang, 310003, China
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, Zhejiang, 322000, China
- Zhongshan - Fudan Joint Innovation Center, Zhongshan, 528437, China
| |
Collapse
|
3
|
Li X, Nie W, Ma X. Intersubband Transitions in Lead Halide Perovskite-Based Quantum Wells for Mid-Infrared Detectors. J Phys Chem Lett 2023; 14:4766-4774. [PMID: 37184992 DOI: 10.1021/acs.jpclett.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Due to their excellent optical and electrical properties as well as versatile growth and fabrication processes, lead halide perovskites have been widely considered as promising candidates for green energy and applications related to optoelectronics. Here, we investigate their potential applications at infrared wavelengths by modeling the intersubband transitions in perovskite-based quantum well systems. Both single-well and double-well structures are studied, and their energy levels as well as the corresponding wave functions and intersubband transition energies are calculated by solving the one-dimensional Schrödinger equations. Via adjustment of the quantum well and barrier thicknesses, the intersubband transition energies can be tuned to cover a broad infrared wavelength range. We also find that the lead halide perovskite-based quantum wells possess high absorption coefficients. The widely tunable transition energies and high absorption coefficients of the perovskite-based quantum well systems, combined with their unique material and electrical properties, may enable an alternative material system for infrared photodetector applications.
Collapse
Affiliation(s)
- Xinxin Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wanyi Nie
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Carwithen BP, Hopper TR, Ge Z, Mondal N, Wang T, Mazlumian R, Zheng X, Krieg F, Montanarella F, Nedelcu G, Kroll M, Siguan MA, Frost JM, Leo K, Vaynzof Y, Bodnarchuk MI, Kovalenko MV, Bakulin AA. Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials. ACS NANO 2023; 17:6638-6648. [PMID: 36939330 PMCID: PMC10100565 DOI: 10.1021/acsnano.2c12373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The relaxation of the above-gap ("hot") carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier-carrier and carrier-phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump-push-probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier-carrier, carrier-phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier-phonon and carrier-carrier interactions in LHP optoelectronic materials.
Collapse
Affiliation(s)
- Ben P. Carwithen
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Thomas R. Hopper
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Ziyuan Ge
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Navendu Mondal
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Tong Wang
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Rozana Mazlumian
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Xijia Zheng
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Franziska Krieg
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Federico Montanarella
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Georgian Nedelcu
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Martin Kroll
- Center
for
Advancing Electronics Dresden, Technische
Universität Dresden, 01069 Dresden, Germany
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Miguel Albaladejo Siguan
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jarvist M. Frost
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Karl Leo
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Yana Vaynzof
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Maryna I. Bodnarchuk
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Artem A. Bakulin
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| |
Collapse
|
5
|
Maity P, Merdad NA, El-Demellawi JK, Gutiérrez-Arzaluz L, Liu Z, Naphade R, Alshareef HN, Bakr OM, Mohammed OF. Quantum Tunneling Effect in CsPbBr 3 Multiple Quantum Wells. NANO LETTERS 2022; 22:7936-7943. [PMID: 36136410 DOI: 10.1021/acs.nanolett.2c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) lead halide perovskites (LHPs) have garnered incredible attention thanks to their exciting optoelectronic properties and intrinsic strong quantum confinement effect. Herein, we carefully investigate and decipher the charge carrier dynamics at the interface between CsPbBr3 multiple quantum wells (MQWs) as the photoactive layer and TiO2 and Spiro-OMeTAD as electron and hole transporting materials, respectively. The fabricated MQWs comprise three monolayers of CsPbBr3 separated by 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as barriers. By varying the BCP thickness, we show that charge carrier extraction from MQWs to the corresponding extracting layer occurs through a quantum tunneling effect, as elaborated by steady-state and time-resolved photoluminescence measurements and further verified by femtosecond transient absorption experiments. Ultimately, we have investigated the impact of the barrier-thickness-dependent quantum tunneling effect on the photoelectric behavior of the synthesized QW photodetector devices. Our findings shed light on one of the most promising approaches for efficient carrier extraction in quantum-confined systems.
Collapse
Affiliation(s)
- Partha Maity
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Noor A Merdad
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Physics, University of Jeddah, Jeddah 23218, Kingdom of Saudi Arabia
| | - Jehad K El-Demellawi
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhixiong Liu
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rounak Naphade
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Antrack T, Kroll M, Sudzius M, Cho C, Imbrasas P, Albaladejo‐Siguan M, Benduhn J, Merten L, Hinderhofer A, Schreiber F, Reineke S, Vaynzof Y, Leo K. Optical Properties of Perovskite-Organic Multiple Quantum Wells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200379. [PMID: 35780500 PMCID: PMC9403629 DOI: 10.1002/advs.202200379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive study of the optical properties of CsPbBr3 perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers. Amplified spontaneous emission (ASE) measurements show very low thresholds down to 7.3 µJ cm-2 for a perovskite thickness of 8.7 nm, significantly lower than previously observed for CsPbBr3 thin-films. With their increased photoluminescence efficiency and low ASE thresholds, MQW structures with CsPbBr3 are excellent candidates for high-efficiency perovskite-based LEDs and lasers.
Collapse
Affiliation(s)
- Tobias Antrack
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Martin Kroll
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Markas Sudzius
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Changsoon Cho
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Paulius Imbrasas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Miguel Albaladejo‐Siguan
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Lena Merten
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Alexander Hinderhofer
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Frank Schreiber
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Yana Vaynzof
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| |
Collapse
|
7
|
Perez CM, Ghosh D, Prezhdo O, Nie W, Tretiak S, Neukirch A. Point Defects in Two-Dimensional Ruddlesden-Popper Perovskites Explored with Ab Initio Calculations. J Phys Chem Lett 2022; 13:5213-5219. [PMID: 35670577 DOI: 10.1021/acs.jpclett.2c00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional Ruddlesden-Popper (RP) halide perovskites stand out as excellent layered materials with favorable optoelectronic properties for efficient light-emitting, spintronic, and other spin-related applications. However, properties often determined by defects are not well understood in these perovskite systems. This work investigates the ground state electronic structure of commonly formed defects in a typical RP perovskite structure by density functional theory. Our study reveals that these 2D perovskites generally retain their defect tolerance with limited perturbation of the electronic structure in the case of neutral-type point defects. In contrast, donor/acceptor defects induce deep midgap states, potentially causing harm to the material's electronic performance. To retain positive intrinsic properties, the halide vacancies and interstitial defects should be avoided. The observed strong electron localization results in trap states and consequently leads to reduced device performance. This understanding can guide experimental efforts that aim for improved 2D halide perovskite-based device performance.
Collapse
Affiliation(s)
- Carlos Mora Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Dibyajyoti Ghosh
- Department of Material Science and Engineering and Department of Chemistry, Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | | | | |
Collapse
|
8
|
Lee KJ, Merdad NA, Maity P, El-Demellawi JK, Lui Z, Sinatra L, Zhumekenov AA, Hedhili MN, Min JW, Min JH, Gutiérrez-Arzaluz L, Anjum DH, Wei N, Ooi BS, Alshareef HN, Mohammed OF, Bakr OM. Engineering Band-Type Alignment in CsPbBr 3 Perovskite-Based Artificial Multiple Quantum Wells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005166. [PMID: 33759267 DOI: 10.1002/adma.202005166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Semiconductor heterostructures of multiple quantum wells (MQWs) have major applications in optoelectronics. However, for halide perovskites-the leading class of emerging semiconductors-building a variety of bandgap alignments (i.e., band-types) in MQWs is not yet realized owing to the limitations of the current set of used barrier materials. Here, artificial perovskite-based MQWs using 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), tris-(8-hydroxyquinoline)aluminum, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline as quantum barrier materials are introduced. The structures of three different five-stacked perovskite-based MQWs each exhibiting a different band offset with CsPbBr3 in the conduction and valence bands, resulting in a variety of MQW band alignments, i.e., type-I or type-II structures, are shown. Transient absorption spectroscopy reveals the disparity in charge carrier dynamics between type-I and type-II MQWs. Photodiodes of each type of perovskite artificial MQWs show entirely different carrier behaviors and photoresponse characteristics. Compared with bulk perovskite devices, type-II MQW photodiodes demonstrate a more than tenfold increase in the rectification ratio. The findings open new opportunities for producing halide-perovskite-based quantum devices by bandgap engineering using simple quantum barrier considerations.
Collapse
Affiliation(s)
- Kwang Jae Lee
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Noor A Merdad
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Physics, University of Jeddah, Jeddah, 23218, Kingdom of Saudi Arabia
| | - Partha Maity
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jehad K El-Demellawi
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zhixiong Lui
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lutfan Sinatra
- Quantum Solutions LLC, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ayan A Zhumekenov
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed N Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jung-Wook Min
- Photonics Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jung-Hong Min
- Photonics Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Dalaver H Anjum
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nini Wei
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Boon S Ooi
- Photonics Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Kim YS, Kang S, So JP, Kim JC, Kim K, Yang S, Jung Y, Shin Y, Lee S, Lee D, Park JW, Cheong H, Jeong HY, Park HG, Lee GH, Lee CH. Atomic-layer-confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides. SCIENCE ADVANCES 2021; 7:eabd7921. [PMID: 33771864 PMCID: PMC7997527 DOI: 10.1126/sciadv.abd7921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Quantum wells (QWs), enabling effective exciton confinement and strong light-matter interaction, form an essential building block for quantum optoelectronics. For two-dimensional (2D) semiconductors, however, constructing the QWs is still challenging because suitable materials and fabrication techniques are lacking for bandgap engineering and indirect bandgap transitions occur at the multilayer. Here, we demonstrate an unexplored approach to fabricate atomic-layer-confined multiple QWs (MQWs) via monolithic bandgap engineering of transition metal dichalcogenides and van der Waals stacking. The WOX/WSe2 hetero-bilayer formed by monolithic oxidation of the WSe2 bilayer exhibited the type I band alignment, facilitating as a building block for MQWs. A superlinear enhancement of photoluminescence with increasing the number of QWs was achieved. Furthermore, quantum-confined radiative recombination in MQWs was verified by a large exciton binding energy of 193 meV and a short exciton lifetime of 170 ps. This work paves the way toward monolithic integration of band-engineered heterostructures for 2D quantum optoelectronics.
Collapse
Affiliation(s)
- Yoon Seok Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sojung Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Jong Chan Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kangwon Kim
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Seunghoon Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonjoon Jung
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongjoon Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongwon Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Donghun Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeonsik Cheong
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hong-Gyu Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Chul-Ho Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Gan Z, Cheng Y, Chen W, Loh KP, Jia B, Wen X. Photophysics of 2D Organic-Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001843. [PMID: 33747717 PMCID: PMC7967069 DOI: 10.1002/advs.202001843] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/01/2020] [Indexed: 05/17/2023]
Abstract
2D organic-inorganic hybrid Ruddlesden-Popper perovskites (RPPs) have recently attracted increasing attention due to their excellent environmental stability, high degree of electronic tunability, and natural multiquantum-well structures. Although there is a rapid development of photoelectronic applications in solar cells, photodetectors, light emitting diodes (LEDs), and lasers based on 2D RPPs, the state-of-the-art performance is far inferior to that of the existing devices because of the limited understanding on fundamental physics, especially special photophysics in carrier dynamics, excitonic fine structures, excitonic quasiparticles, and spin-related effect. Thus, there is still plenty of room to improve the performances of photoelectronic devices based on 2D RPPs by enhancing knowledge on fundamental photophysics. This review highlights the special photophysics of 2D RPPs that is fundamentally different from the conventional 3D congeners. It also provides the most recent progress, debates, challenges, prospects, and in-depth understanding of photophysics in 2D perovskites, which is significant for not only boosting performance of solar cells, LEDs, photodetectors, but also future development of applications in lasers, spintronics, quantum information, and integrated photonic chips.
Collapse
Affiliation(s)
- Zhixing Gan
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
- College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Weijian Chen
- Centre for Translational AtomaterialsFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyJohn StreetHawthornVIC3122Australia
- Australian Centre for Advanced PhotovoltaicsSchool of Photovoltaic and Renewable Energy EngineeringUNSW SydneyKensingtonNSW2052Australia
| | - Kian Ping Loh
- Department of Chemistryand Centre for Advanced 2D Materials and Graphene Research CentreNational University of SingaporeSingapore117543Singapore
| | - Baohua Jia
- Centre for Translational AtomaterialsFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyJohn StreetHawthornVIC3122Australia
| | - Xiaoming Wen
- Centre for Translational AtomaterialsFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyJohn StreetHawthornVIC3122Australia
| |
Collapse
|
11
|
Li X, Hoffman JM, Kanatzidis MG. The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chem Rev 2021; 121:2230-2291. [PMID: 33476131 DOI: 10.1021/acs.chemrev.0c01006] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two-dimensional (2D) halide perovskites have emerged as outstanding semiconducting materials thanks to their superior stability and structural diversity. However, the ever-growing field of optoelectronic device research using 2D perovskites requires systematic understanding of the effects of the spacer on the structure, properties, and device performance. So far, many studies are based on trial-and-error tests of random spacers with limited ability to predict the resulting structure of these synthetic experiments, hindering the discovery of novel 2D materials to be incorporated into high-performance devices. In this review, we provide guidelines on successfully choosing spacers and incorporating them into crystalline materials and optoelectronic devices. We first provide a summary of various synthetic methods to act as a tutorial for groups interested in pursuing synthesis of novel 2D perovskites. Second, we provide our insights on what kind of spacer cations can stabilize 2D perovskites followed by an extensive review of the spacer cations, which have been shown to stabilize 2D perovskites with an emphasis on the effects of the spacer on the structure and optical properties. Next, we provide a similar explanation for the methods used to fabricate films and their desired properties. Like the synthesis section, we will then focus on various spacers that have been used in devices and how they influence the film structure and device performance. With a comprehensive understanding of these effects, a rational selection of novel spacers can be made, accelerating this already exciting field.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Blancon JC, Even J, Stoumpos CC, Kanatzidis MG, Mohite AD. Semiconductor physics of organic-inorganic 2D halide perovskites. NATURE NANOTECHNOLOGY 2020; 15:969-985. [PMID: 33277622 DOI: 10.1038/s41565-020-00811-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/30/2020] [Indexed: 05/02/2023]
Abstract
Achieving technologically relevant performance and stability for optoelectronics, energy conversion, photonics, spintronics and quantum devices requires creating atomically precise materials with tailored homo- and hetero-interfaces, which can form functional hierarchical assemblies. Nature employs tunable sequence chemistry to create complex architectures, which efficiently transform matter and energy, however, in contrast, the design of synthetic materials and their integration remains a long-standing challenge. Organic-inorganic two-dimensional halide perovskites (2DPKs) are organic and inorganic two-dimensional layers, which self-assemble in solution to form highly ordered periodic stacks. They exhibit a large compositional and structural phase space, which has led to novel and exciting physical properties. In this Review, we discuss the current understanding in the structure and physical properties of 2DPKs from the monolayers to assemblies, and present a comprehensive comparison with conventional semiconductors, thereby providing a broad understanding of low-dimensional semiconductors that feature complex organic-inorganic hetero-interfaces.
Collapse
Affiliation(s)
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes, France
| | - Costas C Stoumpos
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece
| | - Mercouri G Kanatzidis
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
13
|
Movilla JL, Planelles J, Climente JI. Dielectric Confinement Enables Molecular Coupling in Stacked Colloidal Nanoplatelets. J Phys Chem Lett 2020; 11:3294-3300. [PMID: 32272016 DOI: 10.1021/acs.jpclett.0c00855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We show theoretically that carriers confined in semiconductor colloidal nanoplatelets (NPLs) sense the presence of neighbor, cofacially stacked NPLs in their energy spectrum. When approaching identical NPLs, the otherwise degenerate energy levels red-shift and split, forming (for large stacks) minibands that are several millielectronvolts in width. Unlike in epitaxial structures, the molecular behavior does not result from quantum tunneling but from changes in the dielectric confinement. The associated excitonic absorption spectrum shows a rich structure of bright and dark states, whose optical activity and multiplicity can be understood from reflection symmetry and Coulomb tunneling. We predict spectroscopic signatures that should confirm the formation of molecular states, whose practical realization would pave the way for the development of nanocrystal chemistry based on NPLs.
Collapse
Affiliation(s)
- José L Movilla
- Departament d'Educació i Didàctiques Específiques, Universitat Jaume I, 12080 Castelló, Spain
| | - Josep Planelles
- Departament de Química Física i Analítica, Universitat Jaume I, E-12080 Castelló de la Plana, Spain
| | - Juan I Climente
- Departament de Química Física i Analítica, Universitat Jaume I, E-12080 Castelló de la Plana, Spain
| |
Collapse
|
14
|
Mondal N, Naphade R, Zhou X, Zheng Y, Lee K, Gereige I, Al-Saggaf A, Bakr OM, Mohammed OF, Gartstein YN, Malko AV. Dynamical Interconversion between Excitons and Geminate Charge Pairs in Two-Dimensional Perovskite Layers Described by the Onsager-Braun Model. J Phys Chem Lett 2020; 11:1112-1119. [PMID: 31958009 DOI: 10.1021/acs.jpclett.9b03709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Time-resolved photoluminescence (PL) and femtosecond transient absorption (TA) spectroscopy are employed to study the photoexcitation dynamics in a highly emissive two-dimensional perovskite compound (en)4Pb2Br9·3Br with the ethylene diammonium (en) spacer. We find that while the PL kinetics is substantially T-dependent over the whole range of studied temperatures T ∼ 77-350 K, the PL quantum yield remains remarkably nearly T-independent up to T ∼ 280-290 K, appreciably decreasing only at higher temperatures. Considerable differences are also revealed between the TA spectra and the responses to the excitation power at low and at room temperatures. Numerical solutions of Onsager-Braun-type kinetic-diffusion equations illustrate that the salient features of the experimental observations are consistent with the picture of a T-dependent dynamic interplay between tightly bound emissive excitons and larger-size, loosely bound, nonemissive geminate charge pairs arising already at earlier relaxation times. The geminate pairs play the role of "reservoir" states providing a delayed feeding into the emitting excitons, thus giving rise to the longer-time PL decay components and accounting for a stable PL output at lower temperatures. At higher temperatures, the propensity for thermal dissociation of excitons and bound pairs increases, leading subsequently to the precipitous decrease of the PL.
Collapse
Affiliation(s)
- Navendu Mondal
- Department of Physics , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Rounak Naphade
- Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Xiaohe Zhou
- Department of Physics , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Yangzi Zheng
- Department of Physics , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Kwangjae Lee
- Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Issam Gereige
- Saudi Aramco Research & Development Center , Dhahran 31311 , Kingdom of Saudi Arabia
| | - Ahmed Al-Saggaf
- Saudi Aramco Research & Development Center , Dhahran 31311 , Kingdom of Saudi Arabia
| | - Osman M Bakr
- Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Yuri N Gartstein
- Department of Physics , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Anton V Malko
- Department of Physics , The University of Texas at Dallas , Richardson , Texas 75080 , United States
| |
Collapse
|
15
|
Liu X, Cao L, Guo Z, Li Y, Gao W, Zhou L. A Review of Perovskite Photovoltaic Materials' Synthesis and Applications via Chemical Vapor Deposition Method. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3304. [PMID: 31614476 PMCID: PMC6829303 DOI: 10.3390/ma12203304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022]
Abstract
Perovskite photovoltaic materials (PPMs) have emerged as one of superstar object for applications in photovoltaics due to their excellent properties-such as band-gap tunability, high carrier mobility, high optical gain, astrong nonlinear response-as well as simplicity of their integration with other types of optical and electronic structures. Meanwhile, PPMS and their constructed devices still present many challenges, such as stability, repeatability, and large area fabrication methods and so on. The key issue is: how can PPMs be prepared using an effective way which most of the readers care about. Chemical vapor deposition (CVD) technology with high efficiency, controllability, and repeatability has been regarded as a cost-effective road for fabricating high quality perovskites. This paper provides an overview of the recent progress in the synthesis and application of various PPMs via the CVD method. We mainly summarize the influence of different CVD technologies and important experimental parameters (temperature, pressure, growth environment, etc.) on the stabilization, structural design, and performance optimization of PPMS and devices. Furthermore, current challenges in the synthesis and application of PPMS using the CVD method are highlighted with suggested areas for future research.
Collapse
Affiliation(s)
- Xia Liu
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, Shandong, China.
- Chinese Academy of Sciences Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
- Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University, Singapore 637371, Singapore.
| | - Lianzhen Cao
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, Shandong, China.
- Chinese Academy of Sciences Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
- Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University, Singapore 637371, Singapore.
| | - Zhen Guo
- Chinese Academy of Sciences Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
- Shandong Guo Ke Medical Technology Development Co., Ltd., Jinan 250001, Shandong, China.
- Zhongke Mass Spectrometry (Tianjin) Medical Technology Co., Ltd., Tianjin 300399, China.
| | - Yingde Li
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, Shandong, China.
| | - Weibo Gao
- Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University, Singapore 637371, Singapore.
| | - Lianqun Zhou
- Chinese Academy of Sciences Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
| |
Collapse
|