1
|
Zhu Y, Zou KL, Qi DX, He J, Peng R, Wang M. Tailoring Valley Polarization of Interlayer Excitons in van der Waals Heterostructure toward Optical Communication. NANO LETTERS 2025. [PMID: 40365932 DOI: 10.1021/acs.nanolett.5c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Controlling the valley polarization of interlayer excitons in van der Waals heterostructures is essential for developing valleytronic devices. Here, we demonstrate the manipulation of valley polarization of interlayer excitons in a monolayer WSe2/WS2 heterostructure using a dual-handedness metasurface. This metasurface, composed of left- and right-handed gold nanoantenna arrays, exhibits distinct chiral optical responses. Introducing the metasurface into heterostructures significantly enhances the degree of interlayer exciton valley polarization, which quantitatively corresponds to the circular dichroism (CD) of interlayer excitons, via chiral Purcell effects. A negative CD of -16% is yielded via the left-handed metasurface, and a positive CD of +25% is harvested via the right-handed metasurface under σ+ excitation of 532 nm at 77 K. Moreover, the CD is tunable with excitation wavelength, reaching a maximum of 38% at 620 nm under σ- excitation, the highest value from interlayer excitons reported so far without applying external fields. Further, we demonstrate that this platform enables direct and byte-invert arithmetic operations for information transmission. This capability highlights its potential for error detection in valleytronics-based optical communication systems.
Collapse
Affiliation(s)
- Yi Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Kong-Liang Zou
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Dong-Xiang Qi
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Jie He
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Ruwen Peng
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Mu Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
She Y, Jiang Y, Yang J, Zhao Y, Liu P, Wu M, Dai X, Wang Z, Cheng X, Cai H, Pan N, Wang X. Magneto-Polarization Controlled by Intervalley Scattering of Interlayer Excitons and Carriers in WS 2/WSe 2 Heterostructure. NANO LETTERS 2025; 25:6708-6715. [PMID: 40214209 DOI: 10.1021/acs.nanolett.5c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The photoluminescence polarization of interlayer excitons (IXs) offers a powerful tool for exploring moiré physics of transition metal dichalcogenide (TMD) heterostructures. However, in WS2/WSe2 heterostructures, this polarization is often weak and the underlying mechanism of intervalley scattering remains unclear. Notably, the closeness of IX lifetime and carrier valley lifetime complicates the investigation of the scattering process. Here, we demonstrate that magnetic fields can sensitively tune the polarization and valley dynamics of both IX and carriers in WS2/WSe2 heterostructures. We find that small magnetic fields can suppress IX intervalley scattering, significantly enhancing valley polarization, whereas at higher magnetic fields, IX emission is largely controlled by the intervalley scattering of electrons, leading to excitation-dependent polarization and saturation effects. Our results highlight the interplay between carrier dynamics and exciton valley behaviors in tailoring IX photoluminescence and offering potential pathways for the design of valleytronic devices leveraging TMD heterostructures.
Collapse
Affiliation(s)
- Yongzhi She
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yufei Jiang
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jinlong Yang
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yilong Zhao
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Peiwu Liu
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Min Wu
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaotian Dai
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zengkai Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinke Cheng
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hongbing Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Nan Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoping Wang
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Kim J, Suh J, Lee SH, Watanabe K, Taniguchi T, Ahmed F, Sun Z, Jo MH, Min H, Choi H. Ultrafast Control over Stiffening and Softening of Coherent Interlayer Coupling in WSe 2/WS 2 Heterobilayers. NANO LETTERS 2024; 24:16391-16399. [PMID: 39663813 DOI: 10.1021/acs.nanolett.4c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Twisted van der Waals heterostructures have led to emerging layer-dependent correlated physics in moiré potentials. While optoelectronic controls over interlayer electronic coupling have been reported, the concomitant interlayer vibration has not yet been controlled. Here, we report experimental evidence of ultrafast optical control over the amplitude and oscillation period of interlayer breathing phonons in WSe2/WS2 heterobilayers. Femtosecond optical excitation above the Mott density in gate-tuned devices shows as large as 10% changes of stiffening and softening amplitude of coherent phonons. A theoretical model, incorporating both Buckingham and Hartree energies, is presented to elucidate the impact of charge-separated carriers generated by photoexcitation on phonon dynamics. This work, therefore, provides insights for extending optoelectronic engineering into the coherent phonons in moiré systems.
Collapse
Affiliation(s)
- Jinjae Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Jeonghyeon Suh
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Suk-Ho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Faisal Ahmed
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Tietotie 3, FI-02150, Espoo, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Tietotie 3, FI-02150, Espoo, Finland
| | - Moon-Ho Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Hongki Min
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea
| | - Hyunyong Choi
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Brotons-Gisbert M, Gerardot BD, Holleitner AW, Wurstbauer U. Interlayer and Moiré excitons in atomically thin double layers: From individual quantum emitters to degenerate ensembles. MRS BULLETIN 2024; 49:914-931. [PMID: 39247683 PMCID: PMC11379794 DOI: 10.1557/s43577-024-00772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
Abstract Interlayer excitons (IXs), composed of electron and hole states localized in different layers, excel in bilayers composed of atomically thin van der Waals materials such as semiconducting transition-metal dichalcogenides (TMDs) due to drastically enlarged exciton binding energies, exciting spin-valley properties, elongated lifetimes, and large permanent dipoles. The latter allows modification by electric fields and the study of thermalized bosonic quasiparticles, from the single particle level to interacting degenerate dense ensembles. Additionally, the freedom to combine bilayers of different van der Waals materials without lattice or relative twist-angle constraints leads to layer-hybridized and Moiré excitons, which can be widely engineered. This article covers fundamental aspects of IXs, including correlation phenomena as well as the consequence of Moiré superlattices with a strong focus on TMD homo- and heterobilayers. Graphical abstract
Collapse
Affiliation(s)
- Mauro Brotons-Gisbert
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Brian D Gerardot
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Alexander W Holleitner
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
5
|
Dai D, Fu B, Yang J, Yang L, Yan S, Chen X, Li H, Zuo Z, Wang C, Jin K, Gong Q, Xu X. Twist angle-dependent valley polarization switching in heterostructures. SCIENCE ADVANCES 2024; 10:eado1281. [PMID: 38748802 PMCID: PMC11095485 DOI: 10.1126/sciadv.ado1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
The twist engineering of moiré superlattice in van der Waals heterostructures of transition metal dichalcogenides can manipulate valley physics of interlayer excitons (IXs), paving the way for next-generation valleytronic devices. However, the twist angle-dependent control of excitonic potential on valley polarization is not investigated so far in electrically controlled heterostructures and the physical mechanism underneath needs to be explored. Here, we demonstrate the dependence of both polarization switching and degree of valley polarization on the moiré period. We also find the mechanisms to reveal the modulation of twist angle on the exciton potential and the electron-hole exchange interaction, which elucidate the experimentally observed twist angle-dependent valley polarization of IXs. Furthermore, we realize the valley-addressable devices based on polarization switch. Our work demonstrates the manipulation of the valley polarization of IXs by tunning twist angle in electrically controlled heterostructures, which opens an avenue for electrically controlling the valley degrees of freedom in twistronic devices.
Collapse
Affiliation(s)
- Danjie Dai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Fu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jingnan Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Longlong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Sai Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiqing Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Hancong Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zhanchun Zuo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Xiulai Xu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
6
|
Durmuş M, Sarpkaya I. Quantum Beats between Spin-Singlet and Spin-Triplet Interlayer Exciton Transitions in WSe 2-MoSe 2 Heterobilayers. NANO LETTERS 2024; 24:5767-5773. [PMID: 38639575 PMCID: PMC11100286 DOI: 10.1021/acs.nanolett.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The long-lived interlayer excitons (IXs) of semiconducting transition metal dichalcogenide heterobilayers are prime candidates for developing various optoelectronic and valleytronic devices. Their photophysical properties, including fine structure, have been the focus of recent studies, and the presence of two spin states, namely, spin-singlet and spin-triplet, has been experimentally confirmed. However, the existence of the interaction between these states and their nature remains unknown to date. Here, we demonstrate the presence of coherent coupling between the spin-singlet and spin-triplet IXs of a WSe2-MoSe2 heterobilayer utilizing quantum beat spectroscopy via a home-built Michelson interferometer. As a clear signature of coherent coupling, the quantum beat signal has been observed for the first time between closely spaced transitions of IXs. The observed strong damping of the quantum beat signals with fast dephasing times of 270-400 fs indicates that fluctuations giving rise to inhomogeneous broadening in the photoluminescence emission of these states are uncorrelated.
Collapse
Affiliation(s)
- Mehmet
Atıf Durmuş
- Bilkent
University UNAM − National Nanotechnology Research Center, Ankara 06800, Turkey
| | - Ibrahim Sarpkaya
- Bilkent
University UNAM − National Nanotechnology Research Center, Ankara 06800, Turkey
| |
Collapse
|
7
|
Chen P, Peng B, Liu Z, Liu J, Li D, Li Z, Xu X, Wang H, Zhou X, Zhai T. Room-Temperature Magnetic-Induced Circularly Polarized Photoluminescence in Two-Dimensional Er 2O 2S. J Am Chem Soc 2024; 146:6053-6060. [PMID: 38404063 DOI: 10.1021/jacs.3c13267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Two-dimensional (2D) materials with spin polarization have great potential for achieving next-generation spintronic applications. However, spin polarization of 2D materials is usually produced at a cryogenic temperature because of thermal fluctuations, which severely hinder their further applications. Here, we report room-temperature intrinsic magnetic-induced circularly polarized photoluminescence (PL) in 2D Er2O2S flakes. The geff factor of 2D Er2O2S stays at around -6.3 from the liquid He temperature limit to room temperature, which is independent of temperature. This anomalous phenomenon in Er2O2S is totally different from previous materials, which all have a decreasing Zeeman splitting with increasing temperature resulting from thermal fluctuations. The anomalous temperature-dependent magnetic-induced circularly polarized PL originates from the weak electron-phonon coupling in 2D Er2O2S, which has been proven by both the temperature-dependent Raman and theoretical calculations. This work sheds light on the understanding and manipulation of 2D materials for practical spintronic applications.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Bo Peng
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Zhen Liu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Jie Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
8
|
Ge A, Ge X, Sun L, Lu X, Ma L, Zhao X, Yao B, Zhang X, Zhang T, Jing W, Zhou X, Shen X, Lu W. Unraveling the strain tuning mechanism of interlayer excitons in WSe 2/MoSe 2heterostructure. NANOTECHNOLOGY 2024; 35:175207. [PMID: 38266306 DOI: 10.1088/1361-6528/ad2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) exhibit rich excitonic physics, due to reduced dielectric screening and strong Coulomb interactions. Especially, some attractive topics in modern condensed matter physics, such as correlated insulator, superconductivity, topological excitons bands, are recently reported in stacking two monolayer (ML) TMDs. Here, we clearly reveal the tuning mechanism of tensile strain on interlayer excitons (IEXs) and intralayer excitons (IAXs) in WSe2/MoSe2heterostructure (HS) at low temperature. We utilize the cryogenic tensile strain platform to stretch the HS, and measure by micro-photoluminescence (μ-PL). The PL peaks redshifts of IEXs and IAXs in WSe2/MoSe2HS under tensile strain are well observed. The first-principles calculations by using density functional theory reveals the PL peaks redshifts of IEXs and IAXs origin from bandgap shrinkage. The calculation results also show the Mo-4d states dominating conduction band minimum shifts of the ML MoSe2plays a dominant role in the redshifts of IEXs. This work provides new insights into understanding the tuning mechanism of tensile strain on IEXs and IAXs in two-dimensional (2D) HS, and paves a way to the development of flexible optoelectronic devices based on 2D materials.
Collapse
Affiliation(s)
- Anping Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xun Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Liaoxin Sun
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xinle Lu
- Key Laboratory of Polar Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Lei Ma
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Xinchao Zhao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bimu Yao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- Department of Physics, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenji Jing
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaohao Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Xuechu Shen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| |
Collapse
|
9
|
Blundo E, Tuzi F, Cianci S, Cuccu M, Olkowska-Pucko K, Kipczak Ł, Contestabile G, Miriametro A, Felici M, Pettinari G, Taniguchi T, Watanabe K, Babiński A, Molas MR, Polimeni A. Localisation-to-delocalisation transition of moiré excitons in WSe 2/MoSe 2 heterostructures. Nat Commun 2024; 15:1057. [PMID: 38316753 PMCID: PMC10844653 DOI: 10.1038/s41467-024-44739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Moiré excitons (MXs) are electron-hole pairs localised by the periodic (moiré) potential forming in two-dimensional heterostructures (HSs). MXs can be exploited, e.g., for creating nanoscale-ordered quantum emitters and achieving or probing strongly correlated electronic phases at relatively high temperatures. Here, we studied the exciton properties of WSe2/MoSe2 HSs from T = 6 K to room temperature using time-resolved and continuous-wave micro-photoluminescence also under a magnetic field. The exciton dynamics and emission lineshape evolution with temperature show clear signatures that MXs de-trap from the moiré potential and turn into free interlayer excitons (IXs) for temperatures above 100 K. The MX-to-IX transition is also apparent from the exciton magnetic moment reversing its sign when the moiré potential is not capable of localising excitons at elevated temperatures. Concomitantly, the exciton formation and decay times reduce drastically. Thus, our findings establish the conditions for a truly confined nature of the exciton states in a moiré superlattice with increasing temperature and photo-generated carrier density.
Collapse
Affiliation(s)
- Elena Blundo
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Federico Tuzi
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Salvatore Cianci
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marzia Cuccu
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Katarzyna Olkowska-Pucko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Łucja Kipczak
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Giorgio Contestabile
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Miriametro
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marco Felici
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgio Pettinari
- Institute for Photonics and Nanotechnologies, National Research Council, 00133, Rome, Italy
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Antonio Polimeni
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
10
|
Xie Y, Gao Y, Chen F, Wang Y, Mao J, Liu Q, Chu S, Yang H, Ye Y, Gong Q, Feng J, Gao Y. Bright and Dark Quadrupolar Excitons in the WSe_{2}/MoSe_{2}/WSe_{2} Heterotrilayer. PHYSICAL REVIEW LETTERS 2023; 131:186901. [PMID: 37977607 DOI: 10.1103/physrevlett.131.186901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Transition metal dichalcogenide heterostructures have been extensively studied as a platform for investigating exciton physics. While heterobilayers such as WSe_{2}/MoSe_{2} have received significant attention, there has been comparatively less research on heterotrilayers, which may offer new excitonic species and phases, as well as unique physical properties. In this Letter, we present theoretical and experimental investigations on the emission properties of quadrupolar excitons (QXs), a newly predicted type of exciton, in a WSe_{2}/MoSe_{2}/WSe_{2} heterotrilayer device. Our findings reveal that the optical brightness or darkness of QXs is determined by horizontal mirror symmetry and valley and spin selection rules. Additionally, the emission intensity and energy of both bright and dark QXs can be adjusted by applying an out-of-plane electric field, due to changes in hole distribution and the Stark effect. These results not only provide experimental evidence for the existence of QXs in heterotrilayers but also uncover their novel properties, which have the potential to drive the development of new exciton-based applications.
Collapse
Affiliation(s)
- Yongzhi Xie
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yuchen Gao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Fengyu Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Yunkun Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jun Mao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Qinyun Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Saisai Chu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Ji Feng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Hefei National Laboratory, Hefei 230088, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
11
|
Fang H, Lin Q, Zhang Y, Thompson J, Xiao S, Sun Z, Malic E, Dash SP, Wieczorek W. Localization and interaction of interlayer excitons in MoSe 2/WSe 2 heterobilayers. Nat Commun 2023; 14:6910. [PMID: 37903787 PMCID: PMC10616232 DOI: 10.1038/s41467-023-42710-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Transition metal dichalcogenide (TMD) heterobilayers provide a versatile platform to explore unique excitonic physics via the properties of the constituent TMDs and external stimuli. Interlayer excitons (IXs) can form in TMD heterobilayers as delocalized or localized states. However, the localization of IX in different types of potential traps, the emergence of biexcitons in the high-excitation regime, and the impact of potential traps on biexciton formation have remained elusive. In our work, we observe two types of potential traps in a MoSe2/WSe2 heterobilayer, which result in significantly different emission behavior of IXs at different temperatures. We identify the origin of these traps as localized defect states and the moiré potential of the TMD heterobilayer. Furthermore, with strong excitation intensity, a superlinear emission behavior indicates the emergence of interlayer biexcitons, whose formation peaks at a specific temperature. Our work elucidates the different excitation and temperature regimes required for the formation of both localized and delocalized IX and biexcitons and, thus, contributes to a better understanding and application of the rich exciton physics in TMD heterostructures.
Collapse
Affiliation(s)
- Hanlin Fang
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, 41296, Gothenburg, Sweden.
| | - Qiaoling Lin
- Department of Electrical and Photonics Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Yi Zhang
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Aalto University, Espoo, 02150, Finland
| | - Joshua Thompson
- Department of Physics, Philipps-Universität Marburg, 35037, Marburg, Germany
| | - Sanshui Xiao
- Department of Electrical and Photonics Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Aalto University, Espoo, 02150, Finland
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, 35037, Marburg, Germany
| | - Saroj P Dash
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Witlef Wieczorek
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, 41296, Gothenburg, Sweden.
| |
Collapse
|
12
|
Jiao C, Pei S, Wu S, Wang Z, Xia J. Tuning and exploiting interlayer coupling in two-dimensional van der Waals heterostructures. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:114503. [PMID: 37774692 DOI: 10.1088/1361-6633/acfe89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
Two-dimensional (2D) layered materials can stack into new material systems, with van der Waals (vdW) interaction between the adjacent constituent layers. This stacking process of 2D atomic layers creates a new degree of freedom-interlayer interface between two adjacent layers-that can be independently studied and tuned from the intralayer degree of freedom. In such heterostructures (HSs), the physical properties are largely determined by the vdW interaction between the individual layers,i.e.interlayer coupling, which can be effectively tuned by a number of means. In this review, we summarize and discuss a number of such approaches, including stacking order, electric field, intercalation, and pressure, with both their experimental demonstrations and theoretical predictions. A comprehensive overview of the modulation on structural, optical, electrical, and magnetic properties by these four approaches are also presented. We conclude this review by discussing several prospective research directions in 2D HSs field, including fundamental physics study, property tuning techniques, and future applications.
Collapse
Affiliation(s)
- Chenyin Jiao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Shenghai Pei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Song Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Zenghui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Juan Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| |
Collapse
|
13
|
Yu L, Pistunova K, Hu J, Watanabe K, Taniguchi T, Heinz TF. Observation of quadrupolar and dipolar excitons in a semiconductor heterotrilayer. NATURE MATERIALS 2023:10.1038/s41563-023-01678-y. [PMID: 37857888 DOI: 10.1038/s41563-023-01678-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Van der Waals (vdW) materials have opened up many avenues for discovery through layer assembly, as epitomized by interlayer dipolar excitons that exhibit electrically tunable luminescence, lasing and exciton condensation. Extending interlayer excitons to more vdW layers, however, raises fundamental questions concerning coherence within excitons and coupling between moiré superlattices at multiple interfaces. Here, by assembling angle-aligned WSe2/WS2/WSe2 heterotrilayers, we demonstrate the emergence of quadrupolar excitons. We confirm the exciton's quadrupolar nature by the decrease in its energy of 12 meV from coherent hole tunnelling between the two outer layers, its tunable static dipole moment under an external electric field and the reduced exciton-exciton interactions. At high exciton density, we also see signatures of a phase of oppositely aligned dipolar excitons, consistent with a staggered dipolar phase predicted to be driven by attractive dipolar interactions. Our demonstration paves the way for discovering emergent exciton orderings for three vdW layers and beyond.
Collapse
Affiliation(s)
- Leo Yu
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA.
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - Kateryna Pistunova
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jenny Hu
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Tony F Heinz
- E. L. Ginzton Laboratory, Stanford University, Stanford, CA, USA.
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
14
|
Baek JH, Kim HG, Lim SY, Hong SC, Chang Y, Ryu H, Jung Y, Jang H, Kim J, Zhang Y, Watanabe K, Taniguchi T, Huang PY, Cheong H, Kim M, Lee GH. Thermally induced atomic reconstruction into fully commensurate structures of transition metal dichalcogenide layers. NATURE MATERIALS 2023:10.1038/s41563-023-01690-2. [PMID: 37828101 DOI: 10.1038/s41563-023-01690-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Twist angle between two-dimensional layers is a critical parameter that determines their interfacial properties, such as moiré excitons and interfacial ferro-electricity. To achieve better control over these properties for fundamental studies and various applications, considerable efforts have been made to manipulate twist angle. However, due to mechanical limitations and the inevitable formation of incommensurate regions, there remains a challenge in attaining perfect alignment of crystalline orientation. Here we report a thermally induced atomic reconstruction of randomly stacked transition metal dichalcogenide multilayers into fully commensurate heterostructures with zero twist angle by encapsulation annealing, regardless of twist angles of as-stacked samples and lattice mismatches. We also demonstrate the selective formation of R- and H-type fully commensurate phases with a seamless lateral junction using chemical vapour-deposited transition metal dichalcogenides. The resulting fully commensurate phases exhibit strong photoluminescence enhancement of the interlayer excitons, even at room temperature, due to their commensurate structure with aligned momentum coordinates. Our work not only demonstrates a way to fabricate zero-twisted, two-dimensional bilayers with R- and H-type configurations, but also provides a platform for studying their unexplored properties.
Collapse
Affiliation(s)
- Ji-Hwan Baek
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Hyoung Gyun Kim
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Soo Yeon Lim
- Department of Physics, Sogang University, Seoul, Korea
| | - Seong Chul Hong
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Yunyeong Chang
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Huije Ryu
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Yeonjoon Jung
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Hajung Jang
- Department of Physics, Sogang University, Seoul, Korea
| | - Jungcheol Kim
- Department of Physics, Sogang University, Seoul, Korea
| | - Yichao Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Pinshane Y Huang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | | | - Miyoung Kim
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea
| | - Gwan-Hyoung Lee
- Department of Material Science and Engineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
15
|
Cai H, Rasmita A, Tan Q, Lai JM, He R, Cai X, Zhao Y, Chen D, Wang N, Mu Z, Huang Z, Zhang Z, Eng JJH, Liu Y, She Y, Pan N, Miao Y, Wang X, Liu X, Zhang J, Gao W. Interlayer donor-acceptor pair excitons in MoSe 2/WSe 2 moiré heterobilayer. Nat Commun 2023; 14:5766. [PMID: 37723156 PMCID: PMC10507070 DOI: 10.1038/s41467-023-41330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Localized interlayer excitons (LIXs) in two-dimensional moiré superlattices exhibit sharp and dense emission peaks, making them promising as highly tunable single-photon sources. However, the fundamental nature of these LIXs is still elusive. Here, we show the donor-acceptor pair (DAP) mechanism as one of the origins of these excitonic peaks. Numerical simulation results of the DAP model agree with the experimental photoluminescence spectra of LIX in the moiré MoSe2/WSe2 heterobilayer. In particular, we find that the emission energy-lifetime correlation and the nonmonotonic power dependence of the lifetime agree well with the DAP IX model. Our results provide insight into the physical mechanism of LIX formation in moiré heterostructures and pave new directions for engineering interlayer exciton properties in moiré superlattices.
Collapse
Affiliation(s)
- Hongbing Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore
| | - Abdullah Rasmita
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Qinghai Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jia-Min Lai
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruihua He
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiangbin Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yan Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Disheng Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore
| | - Naizhou Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhao Mu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zumeng Huang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhaowei Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - John J H Eng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuanda Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yongzhi She
- Department of Physics, University of Science and Technology of China, Hefei Anhui, 230026, China
| | - Nan Pan
- Department of Physics, University of Science and Technology of China, Hefei Anhui, 230026, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiaoping Wang
- Department of Physics, University of Science and Technology of China, Hefei Anhui, 230026, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jun Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore.
- Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Lian Z, Chen D, Ma L, Meng Y, Su Y, Yan L, Huang X, Wu Q, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Zhang C, Cui YT, Shi SF. Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice. Nat Commun 2023; 14:4604. [PMID: 37528094 PMCID: PMC10393975 DOI: 10.1038/s41467-023-40288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Transition metal dichalcogenide (TMDC) moiré superlattices, owing to the moiré flatbands and strong correlation, can host periodic electron crystals and fascinating correlated physics. The TMDC heterojunctions in the type-II alignment also enable long-lived interlayer excitons that are promising for correlated bosonic states, while the interaction is dictated by the asymmetry of the heterojunction. Here we demonstrate a new excitonic state, quadrupolar exciton, in a symmetric WSe2-WS2-WSe2 trilayer moiré superlattice. The quadrupolar excitons exhibit a quadratic dependence on the electric field, distinctively different from the linear Stark shift of the dipolar excitons in heterobilayers. This quadrupolar exciton stems from the hybridization of WSe2 valence moiré flatbands. The same mechanism also gives rise to an interlayer Mott insulator state, in which the two WSe2 layers share one hole laterally confined in one moiré unit cell. In contrast, the hole occupation probability in each layer can be continuously tuned via an out-of-plane electric field, reaching 100% in the top or bottom WSe2 under a large electric field, accompanying the transition from quadrupolar excitons to dipolar excitons. Our work demonstrates a trilayer moiré system as a new exciting playground for realizing novel correlated states and engineering quantum phase transitions.
Collapse
Affiliation(s)
- Zhen Lian
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Dongxue Chen
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Lei Ma
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yuze Meng
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ying Su
- Department of Physics, University of Texas at Dallas, Dallas, TX, 75083, USA
| | - Li Yan
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xiong Huang
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
- Department of Materials Science and Engineering, University of California, Riverside, CA, 92521, USA
| | - Qiran Wu
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
| | - Xinyue Chen
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mark Blei
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Chuanwei Zhang
- Department of Physics, University of Texas at Dallas, Dallas, TX, 75083, USA
| | - Yong-Tao Cui
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA.
| | - Su-Fei Shi
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Department of Electrical, Computer & Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
17
|
Li Z, Tabataba-Vakili F, Zhao S, Rupp A, Bilgin I, Herdegen Z, März B, Watanabe K, Taniguchi T, Schleder GR, Baimuratov AS, Kaxiras E, Müller-Caspary K, Högele A. Lattice Reconstruction in MoSe 2-WSe 2 Heterobilayers Synthesized by Chemical Vapor Deposition. NANO LETTERS 2023; 23:4160-4166. [PMID: 37141148 DOI: 10.1021/acs.nanolett.2c05094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Vertical van der Waals heterostructures of semiconducting transition metal dichalcogenides realize moiré systems with rich correlated electron phases and moiré exciton phenomena. For material combinations with small lattice mismatch and twist angles as in MoSe2-WSe2, however, lattice reconstruction eliminates the canonical moiré pattern and instead gives rise to arrays of periodically reconstructed nanoscale domains and mesoscopically extended areas of one atomic registry. Here, we elucidate the role of atomic reconstruction in MoSe2-WSe2 heterostructures synthesized by chemical vapor deposition. With complementary imaging down to the atomic scale, simulations, and optical spectroscopy methods, we identify the coexistence of moiré-type cores and extended moiré-free regions in heterostacks with parallel and antiparallel alignment. Our work highlights the potential of chemical vapor deposition for applications requiring laterally extended heterosystems of one atomic registry or exciton-confining heterostack arrays.
Collapse
Affiliation(s)
- Zhijie Li
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Farsane Tabataba-Vakili
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingtraße 4, 80799 München, Germany
| | - Shen Zhao
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Anna Rupp
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ismail Bilgin
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ziria Herdegen
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377 München, Germany
| | - Benjamin März
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377 München, Germany
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Gabriel Ravanhani Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anvar S Baimuratov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Efthimios Kaxiras
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Knut Müller-Caspary
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, 81377 München, Germany
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingtraße 4, 80799 München, Germany
| |
Collapse
|
18
|
Rong R, Liu Y, Nie X, Zhang W, Zhang Z, Liu Y, Guo W. The Interaction of 2D Materials With Circularly Polarized Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206191. [PMID: 36698292 PMCID: PMC10074140 DOI: 10.1002/advs.202206191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
2D materials (2DMs), due to spin-valley locking degree of freedom, exhibit strongly bound exciton and chiral optical selection rules and become promising material candidates for optoelectronic and spin/valleytronic devices. Over the last decade, the manifesting of 2D materials by circularly polarized lights expedites tremendous fascinating phenomena, such as valley/exciton Hall effect, Moiré exciton, optical Stark effect, circular dichroism, circularly polarized photoluminescence, and spintronic property. In this review, recent advance in the interaction of circularly polarized light with 2D materials covering from graphene, black phosphorous, transition metal dichalcogenides, van der Waals heterostructures as well as small proportion of quasi-2D perovskites and topological materials, is overviewed. The confronted challenges and theoretical and experimental opportunities are also discussed, attempting to accelerate the prosperity of chiral light-2DMs interactions.
Collapse
Affiliation(s)
- Rong Rong
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Ying Liu
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Xuchen Nie
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Wei Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Yanpeng Liu
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| |
Collapse
|
19
|
Faria Junior PE, Fabian J. Signatures of Electric Field and Layer Separation Effects on the Spin-Valley Physics of MoSe 2/WSe 2 Heterobilayers: From Energy Bands to Dipolar Excitons. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1187. [PMID: 37049281 PMCID: PMC10096971 DOI: 10.3390/nano13071187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Multilayered van der Waals heterostructures based on transition metal dichalcogenides are suitable platforms on which to study interlayer (dipolar) excitons, in which electrons and holes are localized in different layers. Interestingly, these excitonic complexes exhibit pronounced valley Zeeman signatures, but how their spin-valley physics can be further altered due to external parameters-such as electric field and interlayer separation-remains largely unexplored. Here, we perform a systematic analysis of the spin-valley physics in MoSe2/WSe2 heterobilayers under the influence of an external electric field and changes of the interlayer separation. In particular, we analyze the spin (Sz) and orbital (Lz) degrees of freedom, and the symmetry properties of the relevant band edges (at K, Q, and Γ points) of high-symmetry stackings at 0° (R-type) and 60° (H-type) angles-the important building blocks present in moiré or atomically reconstructed structures. We reveal distinct hybridization signatures on the spin and the orbital degrees of freedom of low-energy bands, due to the wave function mixing between the layers, which are stacking-dependent, and can be further modified by electric field and interlayer distance variation. We find that H-type stackings favor large changes in the g-factors as a function of the electric field, e.g., from -5 to 3 in the valence bands of the Hhh stacking, because of the opposite orientation of Sz and Lz of the individual monolayers. For the low-energy dipolar excitons (direct and indirect in k-space), we quantify the electric dipole moments and polarizabilities, reflecting the layer delocalization of the constituent bands. Furthermore, our results show that direct dipolar excitons carry a robust valley Zeeman effect nearly independent of the electric field, but tunable by the interlayer distance, which can be rendered experimentally accessible via applied external pressure. For the momentum-indirect dipolar excitons, our symmetry analysis indicates that phonon-mediated optical processes can easily take place. In particular, for the indirect excitons with conduction bands at the Q point for H-type stackings, we find marked variations of the valley Zeeman (∼4) as a function of the electric field, which notably stands out from the other dipolar exciton species. Our analysis suggests that stronger signatures of the coupled spin-valley physics are favored in H-type stackings, which can be experimentally investigated in samples with twist angle close to 60°. In summary, our study provides fundamental microscopic insights into the spin-valley physics of van der Waals heterostructures, which are relevant to understanding the valley Zeeman splitting of dipolar excitonic complexes, and also intralayer excitons.
Collapse
Affiliation(s)
- Paulo E. Faria Junior
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
20
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
21
|
Shinokita K, Watanabe K, Taniguchi T, Matsuda K. Valley Relaxation of the Moiré Excitons in a WSe 2/MoSe 2 Heterobilayer. ACS NANO 2022; 16:16862-16868. [PMID: 36169188 DOI: 10.1021/acsnano.2c06813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The moiré superlattice consisting of lattice- or angular-mismatched van der Waals heterostructures drastically changes the physical properties of constituent atomically thin materials by confinement of the exciton by the moiré potential, which is promising for next-generation quantum optics. The moiré superlattice also affects the valley degrees of freedom of the monolayer transition-metal dichalcogenides (TMDs) and the valley-dependent optical selection rule, which results in the characteristic circular polarized light emission of the moiré exciton. However, the valley relaxation process of excitons in the moiré superlattice remains to be understood. Here, we studied valley relaxation of moiré excitons in a twisted WSe2/MoSe2 heterobilayer by circularly polarized photoluminescence and photoluminescence excitation (PLE) spectroscopy. The experimentally observed circularly polarized emission strongly depends on the excitation power density, which contrasts with the case of two-dimensional monolayer TMDs. The excitation power-dependent circularly polarized emission suggests the characteristic valley relaxation of the moiré exciton with a small density of states in zero-dimensional systems. In addition, the resonant PLE measurement reveals the intravalley relaxation process from the triplet to singlet state of the moiré exciton via Γ5 phonon emission. Our findings clarified the valley relaxation of the moiré excitons, which would lead to the application of the circularly polarized quantum light emitter in twisted semiconducting heterobilayers.
Collapse
Affiliation(s)
- Keisuke Shinokita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
22
|
Blundo E, Junior PEF, Surrente A, Pettinari G, Prosnikov MA, Olkowska-Pucko K, Zollner K, Woźniak T, Chaves A, Kazimierczuk T, Felici M, Babiński A, Molas MR, Christianen PCM, Fabian J, Polimeni A. Strain-Induced Exciton Hybridization in WS_{2} Monolayers Unveiled by Zeeman-Splitting Measurements. PHYSICAL REVIEW LETTERS 2022; 129:067402. [PMID: 36018658 DOI: 10.1103/physrevlett.129.067402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Mechanical deformations and ensuing strain are routinely exploited to tune the band gap energy and to enhance the functionalities of two-dimensional crystals. In this Letter, we show that strain leads also to a strong modification of the exciton magnetic moment in WS_{2} monolayers. Zeeman-splitting measurements under magnetic fields up to 28.5 T were performed on single, one-layer-thick WS_{2} microbubbles. The strain of the bubbles causes a hybridization of k-space direct and indirect excitons resulting in a sizable decrease in the modulus of the g factor of the ground-state exciton. These findings indicate that strain may have major effects on the way the valley number of excitons can be used to process binary information in two-dimensional crystals.
Collapse
Affiliation(s)
- Elena Blundo
- Physics Department, Sapienza University of Rome, 00185 Rome, Italy
| | - Paulo E Faria Junior
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Alessandro Surrente
- Physics Department, Sapienza University of Rome, 00185 Rome, Italy
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
| | - Giorgio Pettinari
- Institute for Photonics and Nanotechnologies, National Research Council, 00156 Rome, Italy
| | - Mikhail A Prosnikov
- High Field Magnet Laboratory, HFML-EMFL, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Katarzyna Olkowska-Pucko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Klaus Zollner
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Tomasz Woźniak
- Department of Semiconductor Materials Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Andrey Chaves
- Departamento de Fisica, Universidade Federal do Ceará, 60455-900 Fortaleza, Ceará, Brazil
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Tomasz Kazimierczuk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Marco Felici
- Physics Department, Sapienza University of Rome, 00185 Rome, Italy
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Peter C M Christianen
- High Field Magnet Laboratory, HFML-EMFL, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Jaroslav Fabian
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Antonio Polimeni
- Physics Department, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
23
|
Jang YJ, Kim JH. Two-dimensional transition metal dichalcogenides as an emerging platform for singlet fission solar cells. Chem Asian J 2022; 17:e202200265. [PMID: 35644937 DOI: 10.1002/asia.202200265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Indexed: 11/06/2022]
Abstract
Singlet fission, a rapid exciton doubling process via inverse Auger recombination, is recognized as one of the most practical and feasible means for overcoming the Shockley-Queisser limit. Singlet fission solar cells are generally developed by integrating photon downconversion organic semiconductors into conventional photovoltaic devices to break the maximum photovoltaic response of the host semiconductors by virtue of extra triplet excitons. In this regard, proper matching of two different semiconductors and heterointerface engineering are both crucial for highly efficient singlet fission solar cells. Therefore, the aim of this study is to review the prerequisite conditions for efficient triplet transfer at the heterointerfaces and thus highlight the robust spin and valley degrees of freedom of transition metal dichalcogenides with the ultimate goal of stimulating research into next-generation singlet fission solar cells.
Collapse
Affiliation(s)
- Yu Jin Jang
- Sungkyunkwan University, Convergence Research Center for Energy and Environmental Sciences, KOREA, REPUBLIC OF
| | - Ji-Hee Kim
- Sungkyunkwan University, Department of Energy Science, 2066 Seoburo, Jangangu, Suwon, KOREA, REPUBLIC OF
| |
Collapse
|
24
|
Bieniek M, Sadecka K, Szulakowska L, Hawrylak P. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1582. [PMID: 35564291 PMCID: PMC9104105 DOI: 10.3390/nano12091582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
Atomically thin semiconductors from the transition metal dichalcogenide family are materials in which the optical response is dominated by strongly bound excitonic complexes. Here, we present a theory of excitons in two-dimensional semiconductors using a tight-binding model of the electronic structure. In the first part, we review extensive literature on 2D van der Waals materials, with particular focus on their optical response from both experimental and theoretical points of view. In the second part, we discuss our ab initio calculations of the electronic structure of MoS2, representative of a wide class of materials, and review our minimal tight-binding model, which reproduces low-energy physics around the Fermi level and, at the same time, allows for the understanding of their electronic structure. Next, we describe how electron-hole pair excitations from the mean-field-level ground state are constructed. The electron-electron interactions mix the electron-hole pair excitations, resulting in excitonic wave functions and energies obtained by solving the Bethe-Salpeter equation. This is enabled by the efficient computation of the Coulomb matrix elements optimized for two-dimensional crystals. Next, we discuss non-local screening in various geometries usually used in experiments. We conclude with a discussion of the fine structure and excited excitonic spectra. In particular, we discuss the effect of band nesting on the exciton fine structure; Coulomb interactions; and the topology of the wave functions, screening and dielectric environment. Finally, we follow by adding another layer and discuss excitons in heterostructures built from two-dimensional semiconductors.
Collapse
Affiliation(s)
- Maciej Bieniek
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany
| | - Katarzyna Sadecka
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ludmiła Szulakowska
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| | - Paweł Hawrylak
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| |
Collapse
|
25
|
Barré E, Karni O, Liu E, O'Beirne AL, Chen X, Ribeiro HB, Yu L, Kim B, Watanabe K, Taniguchi T, Barmak K, Lui CH, Refaely-Abramson S, da Jornada FH, Heinz TF. Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures. Science 2022; 376:406-410. [PMID: 35446643 DOI: 10.1126/science.abm8511] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Interlayer excitons, electron-hole pairs bound across two monolayer van der Waals semiconductors, offer promising electrical tunability and localizability. Because such excitons display weak electron-hole overlap, most studies have examined only the lowest-energy excitons through photoluminescence. We directly measured the dielectric response of interlayer excitons, which we accessed using their static electric dipole moment. We thereby determined an intrinsic radiative lifetime of 0.40 nanoseconds for the lowest direct-gap interlayer exciton in a tungsten diselenide/molybdenum diselenide heterostructure. We found that differences in electric field and twist angle induced trends in exciton transition strengths and energies, which could be related to wave function overlap, moiré confinement, and atomic reconstruction. Through comparison with photoluminescence spectra, this study identifies a momentum-indirect emission mechanism. Characterization of the absorption is key for applications relying on light-matter interactions.
Collapse
Affiliation(s)
- Elyse Barré
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ouri Karni
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Erfu Liu
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| | - Aidan L O'Beirne
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Xueqi Chen
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | | | - Leo Yu
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Bumho Kim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katayun Barmak
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Chun Hung Lui
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| | - Sivan Refaely-Abramson
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Felipe H da Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tony F Heinz
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Pang R, Wang S. Dipole moment and pressure dependent interlayer excitons in MoSSe/WSSe heterostructures. NANOSCALE 2022; 14:3416-3424. [PMID: 35113117 DOI: 10.1039/d1nr06204b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The broken mirror symmetry of two-dimensional (2D) Janus materials brings novel quantum properties and various application prospects. Particularly, when stacking into heterostructures, their intrinsic dipole moments and large band offsets are very favorable to the photoexcited properties concerning electron-hole pairs, i.e., excitons. However, the effect of the intrinsic dipole moments on the interlayer excitons in the heterostructures composed of 2D Janus materials is still unclear. Here we use the GW/BSE methods to explore the effect of the intrinsic dipole moments on the interlayer excitons via varying the stacking configuration of MoSSe/WSSe heterostructures. Surprisingly, our results reveal that the parallel-arranged intrinsic dipole moments enhance the interlayer coupling in the heterostructures, and hence make the lowest interlayer exciton have an intensity comparable to the bright excitons while accompanied by a large binding energy and a radiative lifetime as long as 10-7 s at 300 K, though it is almost a spin-forbidden process, and with the out-of-plane light polarization, long lifetime interlayer excitons are observed under the effect of selection rules. More intriguingly, we found that the photoexcited properties of the interlayer excitons considering the momentum in the stacking configuration with parallel-arranged intrinsic dipole moments are greatly tunable through hydrostatic pressure. These explorations provide a basic perspective for optoelectronic applications by means of engineering the intrinsic dipole moments in Janus heterostructures.
Collapse
Affiliation(s)
- Rongtian Pang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| | - Shudong Wang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
27
|
Dang J, Yang M, Xie X, Yang Z, Dai D, Zuo Z, Wang C, Jin K, Xu X. Enhanced Valley Polarization in WS 2 /LaMnO 3 Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106029. [PMID: 35266315 DOI: 10.1002/smll.202106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Monolayer transition metal dichalcogenides have attracted great attention for potential applications in valleytronics. However, the valley polarization degree is usually not high because of the intervalley scattering. Here, a largely enhanced valley polarization up to 80% in monolayer WS2 under nonresonant excitation at 4.2 K is demonstrated using WS2 /LaMnO3 thin film heterostructure, which is much higher than that for monolayer WS2 on SiO2 /Si substrate with a valley polarization of 15%. Furthermore, the greatly enhanced valley polarization can be maintained to a high temperature of about 160 K with a valley polarization of 53%. The temperature dependence of valley polarization is strongly correlated with the thermomagnetic curve of LaMnO3 , indicating an exciton-magnon coupling between WS2 and LaMnO3 . A simple model is introduced to illustrate the underlying mechanisms. The coupling of WS2 and LaMnO3 is further confirmed with an observation of two interlayer excitons with opposite valley polarizations in the heterostructure, resulting from the spin-orbit coupling induced splitting of the conduction bands in monolayer transition metal dichalcogenides. The results provide a pathway to control the valleytronic properties of transition metal dichalcogenides by means of ferromagnetic van der Waals engineering, paving a way to practical valleytronic applications.
Collapse
Affiliation(s)
- Jianchen Dang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingwei Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danjie Dai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanchun Zuo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Xiulai Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
28
|
Huang D, Choi J, Shih CK, Li X. Excitons in semiconductor moiré superlattices. NATURE NANOTECHNOLOGY 2022; 17:227-238. [PMID: 35288673 DOI: 10.1038/s41565-021-01068-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Semiconductor moiré superlattices represent a rapidly developing area of engineered photonic materials and a new platform to explore correlated electron states and quantum simulation. In this Review, we briefly introduce early experiments that identified new exciton resonances in transition metal dichalcogenide heterobilayers and discuss several topics including two types of transition metal dichalcogenide moiré superlattice, new optical selection rules, early evidence of moiré excitons, and how the resonant energy, dynamics and diffusion properties of moiré excitons can be controlled via the twist angle. To interpret optical spectra, it is important to measure the energy modulation within a moiré supercell. In this context, we describe a few scanning tunnelling microscopy experiments that measure the moiré potential landscape directly. Finally, we review a few recent experiments that applied excitonic optical spectroscopy to probe correlated electron phenomena in transition metal dichalcogenide moiré superlattices.
Collapse
Affiliation(s)
- Di Huang
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
| | - Junho Choi
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Chih-Kang Shih
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Xiaoqin Li
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA.
| |
Collapse
|
29
|
Wang X, Zhu J, Seyler KL, Rivera P, Zheng H, Wang Y, He M, Taniguchi T, Watanabe K, Yan J, Mandrus DG, Gamelin DR, Yao W, Xu X. Moiré trions in MoSe 2/WSe 2 heterobilayers. NATURE NANOTECHNOLOGY 2021; 16:1208-1213. [PMID: 34531556 DOI: 10.1038/s41565-021-00969-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/26/2021] [Indexed: 05/25/2023]
Abstract
Transition metal dichalcogenide moiré bilayers with spatially periodic potentials have emerged as a highly tunable platform for studying both electronic1-6 and excitonic4,7-13 phenomena. The power of these systems lies in the combination of strong Coulomb interactions with the capability of controlling the charge number in a moiré potential trap. Electronically, exotic charge orders at both integer and fractional fillings have been discovered2,5. However, the impact of charging effects on excitons trapped in moiré potentials is poorly understood. Here, we report the observation of moiré trions and their doping-dependent photoluminescence polarization in H-stacked MoSe2/WSe2 heterobilayers. We find that as moiré traps are filled with either electrons or holes, new sets of interlayer exciton photoluminescence peaks with narrow linewidths emerge about 7 meV below the energy of the neutral moiré excitons. Circularly polarized photoluminescence reveals switching from co-circular to cross-circular polarizations as moiré excitons go from being negatively charged and neutral to positively charged. This switching results from the competition between valley-flip and spin-flip energy relaxation pathways of photo-excited electrons during interlayer trion formation. Our results offer a starting point for engineering both bosonic and fermionic many-body effects based on moiré excitons14.
Collapse
Affiliation(s)
- Xi Wang
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jiayi Zhu
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Kyle L Seyler
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Pasqual Rivera
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Huiyuan Zheng
- Department of Physics, University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Yingqi Wang
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Minhao He
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Jiaqiang Yan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA
| | - David G Mandrus
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Wang Yao
- Department of Physics, University of Hong Kong, Hong Kong, China.
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China.
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Ge Z, Slizovskiy S, Joucken F, Quezada EA, Taniguchi T, Watanabe K, Fal'ko VI, Velasco J. Control of Giant Topological Magnetic Moment and Valley Splitting in Trilayer Graphene. PHYSICAL REVIEW LETTERS 2021; 127:136402. [PMID: 34623864 DOI: 10.1103/physrevlett.127.136402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Bloch states of electrons in honeycomb two-dimensional crystals with multivalley band structure and broken inversion symmetry have orbital magnetic moments of a topological nature. In crystals with two degenerate valleys, a perpendicular magnetic field lifts the valley degeneracy via a Zeeman effect due to these magnetic moments, leading to magnetoelectric effects which can be leveraged for creating valleytronic devices. In this work, we demonstrate that trilayer graphene with Bernal stacking (ABA TLG), hosts topological magnetic moments with a large and widely tunable valley g factor (g_{ν}), reaching a value g_{ν}∼1050 at the extreme of the studied parametric range. The reported experiment consists in sublattice-resolved scanning tunneling spectroscopy under perpendicular electric and magnetic fields that control the TLG bands. The tunneling spectra agree very well with the results of theoretical modeling that includes the full details of the TLG tight-binding model and accounts for a quantum-dot-like potential profile formed electrostatically under the scanning tunneling microscope tip.
Collapse
Affiliation(s)
- Zhehao Ge
- Department of Physics, University of California, Santa Cruz, California 95064, USA
| | - Sergey Slizovskiy
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- National Graphene Institute, University of Manchester, Booth Street East, Manchester M13 9PL, United Kingdom
| | - Frédéric Joucken
- Department of Physics, University of California, Santa Cruz, California 95064, USA
| | - Eberth A Quezada
- Department of Physics, University of California, Santa Cruz, California 95064, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectronics National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Vladimir I Fal'ko
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- National Graphene Institute, University of Manchester, Booth Street East, Manchester M13 9PL, United Kingdom
- Henry Royce Institute for Advanced Materials, Manchester M13 9PL, United Kingdom
| | - Jairo Velasco
- Department of Physics, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
31
|
Yao Q, Bie YQ, Chen J, Li J, Li F, Cao Z. Anapole enhanced on-chip routing of spin-valley photons in 2D materials for silicon integrated optical communication. OPTICS LETTERS 2021; 46:4080-4083. [PMID: 34469944 DOI: 10.1364/ol.433457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here, we report a design for enhancing valley emission and manipulating valley photon propagation based on degenerate non-radiating anapole states. By placing circularly polarized dipoles on top of a C4 symmetric cross-slotted silicon disk, the rotating anapole state is excited with a Purcell factor up to two orders. In addition, the photon coupled to the preferred direction of the waveguide are about 2 times larger than that to the opposite direction. Our design could pave the way for realizing on-chip valley-dependent optical communication.
Collapse
|
32
|
Miao S, Wang T, Huang X, Chen D, Lian Z, Wang C, Blei M, Taniguchi T, Watanabe K, Tongay S, Wang Z, Xiao D, Cui YT, Shi SF. Strong interaction between interlayer excitons and correlated electrons in WSe 2/WS 2 moiré superlattice. Nat Commun 2021; 12:3608. [PMID: 34127668 PMCID: PMC8203657 DOI: 10.1038/s41467-021-23732-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Heterobilayers of transition metal dichalcogenides (TMDCs) can form a moiré superlattice with flat minibands, which enables strong electron interaction and leads to various fascinating correlated states. These heterobilayers also host interlayer excitons in a type-II band alignment, in which optically excited electrons and holes reside on different layers but remain bound by the Coulomb interaction. Here we explore the unique setting of interlayer excitons interacting with strongly correlated electrons, and we show that the photoluminescence (PL) of interlayer excitons sensitively signals the onset of various correlated insulating states as the band filling is varied. When the system is in one of such states, the PL of interlayer excitons is relatively amplified at increased optical excitation power due to reduced mobility, and the valley polarization of interlayer excitons is enhanced. The moiré superlattice of the TMDC heterobilayer presents an exciting platform to engineer interlayer excitons through the periodic correlated electron states.
Collapse
Affiliation(s)
- Shengnan Miao
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Tianmeng Wang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Xiong Huang
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
- Department of Materials Science and Engineering, University of California, Riverside, CA, USA
| | - Dongxue Chen
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhen Lian
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Chong Wang
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mark Blei
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Takashi Taniguchi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Zenghui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Di Xiao
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yong-Tao Cui
- Department of Physics and Astronomy, University of California, Riverside, CA, USA.
| | - Su-Fei Shi
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
33
|
Liu E, Barré E, van Baren J, Wilson M, Taniguchi T, Watanabe K, Cui YT, Gabor NM, Heinz TF, Chang YC, Lui CH. Signatures of moiré trions in WSe 2/MoSe 2 heterobilayers. Nature 2021; 594:46-50. [PMID: 34079140 DOI: 10.1038/s41586-021-03541-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/12/2021] [Indexed: 02/05/2023]
Abstract
Moiré superlattices formed by van der Waals materials can support a wide range of electronic phases, including Mott insulators1-4, superconductors5-10 and generalized Wigner crystals2. When excitons are confined by a moiré superlattice, a new class of exciton emerges, which holds promise for realizing artificial excitonic crystals and quantum optical effects11-16. When such moiré excitons are coupled to charge carriers, correlated states may arise. However, no experimental evidence exists for charge-coupled moiré exciton states, nor have their properties been predicted by theory. Here we report the optical signatures of trions coupled to the moiré potential in tungsten diselenide/molybdenum diselenide heterobilayers. The moiré trions show multiple sharp emission lines with a complex charge-density dependence, in stark contrast to the behaviour of conventional trions. We infer distinct contributions to the trion emission from radiative decay in which the remaining carrier resides in different moiré minibands. Variation of the trion features is observed in different devices and sample areas, indicating high sensitivity to sample inhomogeneity and variability. The observation of these trion features motivates further theoretical and experimental studies of higher-order electron correlation effects in moiré superlattices.
Collapse
Affiliation(s)
- Erfu Liu
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Elyse Barré
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.,SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jeremiah van Baren
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Matthew Wilson
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Kenji Watanabe
- National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Yong-Tao Cui
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Nathaniel M Gabor
- Department of Physics and Astronomy, University of California, Riverside, CA, USA.,Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Tony F Heinz
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Yia-Chung Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan.
| | - Chun Hung Lui
- Department of Physics and Astronomy, University of California, Riverside, CA, USA.
| |
Collapse
|
34
|
Jiang Y, Chen S, Zheng W, Zheng B, Pan A. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. LIGHT, SCIENCE & APPLICATIONS 2021; 10:72. [PMID: 33811214 PMCID: PMC8018964 DOI: 10.1038/s41377-021-00500-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 05/06/2023]
Abstract
Van der Waals (vdW) heterostructures based on transition metal dichalcogenides (TMDs) generally possess a type-II band alignment that facilitates the formation of interlayer excitons between constituent monolayers. Manipulation of the interlayer excitons in TMD vdW heterostructures holds great promise for the development of excitonic integrated circuits that serve as the counterpart of electronic integrated circuits, which allows the photons and excitons to transform into each other and thus bridges optical communication and signal processing at the integrated circuit. As a consequence, numerous studies have been carried out to obtain deep insight into the physical properties of interlayer excitons, including revealing their ultrafast formation, long population recombination lifetimes, and intriguing spin-valley dynamics. These outstanding properties ensure interlayer excitons with good transport characteristics, and may pave the way for their potential applications in efficient excitonic devices based on TMD vdW heterostructures. At present, a systematic and comprehensive overview of interlayer exciton formation, relaxation, transport, and potential applications is still lacking. In this review, we give a comprehensive description and discussion of these frontier topics for interlayer excitons in TMD vdW heterostructures to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, Changsha, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Weihao Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Biyuan Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, Changsha, China.
| |
Collapse
|
35
|
Moiré excitons in MoSe 2-WSe 2 heterobilayers and heterotrilayers. Nat Commun 2021; 12:1656. [PMID: 33712577 PMCID: PMC7955063 DOI: 10.1038/s41467-021-21822-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Abstract
Layered two-dimensional materials exhibit rich transport and optical phenomena in twisted or lattice-incommensurate heterostructures with spatial variations of interlayer hybridization arising from moiré interference effects. Here, we report experimental and theoretical studies of excitons in twisted heterobilayers and heterotrilayers of transition metal dichalcogenides. Using MoSe2-WSe2 stacks as representative realizations of twisted van der Waals bilayer and trilayer heterostructures, we observe contrasting optical signatures and interpret them in the theoretical framework of interlayer moiré excitons in different spin and valley configurations. We conclude that the photoluminescence of MoSe2-WSe2 heterobilayer is consistent with joint contributions from radiatively decaying valley-direct interlayer excitons and phonon-assisted emission from momentum-indirect reservoirs that reside in spatially distinct regions of moiré supercells, whereas the heterotrilayer emission is entirely due to momentum-dark interlayer excitons of hybrid-layer valleys. Our results highlight the profound role of interlayer hybridization for transition metal dichalcogenide heterostacks and other realizations of multi-layered semiconductor van der Waals heterostructures.
Collapse
|
36
|
Li W, Lu X, Wu J, Srivastava A. Optical control of the valley Zeeman effect through many-exciton interactions. NATURE NANOTECHNOLOGY 2021; 16:148-152. [PMID: 33257895 DOI: 10.1038/s41565-020-00804-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Charge carriers in two-dimensional transition metal dichalcogenides (TMDs), such as WSe2, have their spin and valley-pseudospin locked into an optically addressable index that is proposed as a basis for future information processing1,2. The manipulation of this spin-valley index, which carries a magnetic moment3, requires tuning its energy. This is typically achieved through an external magnetic field (B), which is practically cumbersome. However, the valley-contrasting optical Stark effect achieves valley control without B, but requires large incident powers4,5. Thus, other efficient routes to control the spin-valley index are desirable. Here we show that many-body interactions among interlayer excitons (IXs) in a WSe2/MoSe2 heterobilayer (HBL) induce a steady-state valley Zeeman splitting that corresponds to B ≈ 6 T. This anomalous splitting, present at incident powers as low as microwatts, increases with power and is able to enhance, suppress or even flip the sign of a B-induced splitting. Moreover, the g-factor of valley Zeeman splitting can be tuned by ~30% with incident power. In addition to valleytronics, our results could prove helpful to achieve optical non-reciprocity using two-dimensional materials.
Collapse
Affiliation(s)
- Weijie Li
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Xin Lu
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Jiatian Wu
- Department of Physics, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
37
|
Li Z, Lu X, Cordovilla Leon DF, Lyu Z, Xie H, Hou J, Lu Y, Guo X, Kaczmarek A, Taniguchi T, Watanabe K, Zhao L, Yang L, Deotare PB. Interlayer Exciton Transport in MoSe 2/WSe 2 Heterostructures. ACS NANO 2021; 15:1539-1547. [PMID: 33417424 DOI: 10.1021/acsnano.0c08981] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A moiré superlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we experimentally quantify the diffusion barrier experienced by interlayer excitons in hexagonal boron nitride-encapsulated molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterostructures with different twist angles. We observe the localization of interlayer excitons at low temperature and the temperature-activated diffusivity as a function of twist angle and hence attribute it to the deep periodic potentials arising from the moiré superlattice. We further support the observations with theoretical calculations, Monte Carlo simulations, and a three-level model that represents the exciton dynamics at various temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | | | | | | |
Collapse
|
38
|
Wang J, Li H, Ma Y, Zhao M, Liu W, Wang B, Wu S, Liu X, Shi L, Jiang T, Zi J. Routing valley exciton emission of a WS 2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. LIGHT, SCIENCE & APPLICATIONS 2020; 9:148. [PMID: 32884677 PMCID: PMC7442784 DOI: 10.1038/s41377-020-00387-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 05/05/2023]
Abstract
The valleys of two-dimensional transition metal dichalcogenides (TMDCs) offer a new degree of freedom for information processing. To take advantage of this valley degree of freedom, on the one hand, it is feasible to control valleys by utilizing different external stimuli, such as optical and electric fields. On the other hand, nanostructures are also used to separate the valleys by near-field coupling. However, for both of the above methods, either the required low-temperature environment or low degree of coherence properties limit their further applications. Here, we demonstrate that all-dielectric photonic crystal (PhC) slabs without in-plane inversion symmetry (C2 symmetry) can separate and route valley exciton emission of a WS2 monolayer at room temperature. Coupling with circularly polarized photonic Bloch modes of such PhC slabs, valley photons emitted by a WS2 monolayer are routed directionally and are efficiently separated in the far field. In addition, far-field emissions are directionally enhanced and have long-distance spatial coherence properties.
Collapse
Affiliation(s)
- Jiajun Wang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonics Structures (Ministry of Education) and Department of Physics, Fudan University, 200433 Shanghai, China
| | - Han Li
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073 Changsha, China
| | - Yating Ma
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073 Changsha, China
| | - Maoxiong Zhao
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonics Structures (Ministry of Education) and Department of Physics, Fudan University, 200433 Shanghai, China
| | - Wenzhe Liu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonics Structures (Ministry of Education) and Department of Physics, Fudan University, 200433 Shanghai, China
| | - Bo Wang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonics Structures (Ministry of Education) and Department of Physics, Fudan University, 200433 Shanghai, China
| | - Shiwei Wu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonics Structures (Ministry of Education) and Department of Physics, Fudan University, 200433 Shanghai, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Xiaohan Liu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonics Structures (Ministry of Education) and Department of Physics, Fudan University, 200433 Shanghai, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Lei Shi
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonics Structures (Ministry of Education) and Department of Physics, Fudan University, 200433 Shanghai, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Tian Jiang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073 Changsha, China
| | - Jian Zi
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonics Structures (Ministry of Education) and Department of Physics, Fudan University, 200433 Shanghai, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
39
|
Wang H, Liu W, He X, Zhang P, Zhang X, Xie Y. An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis. J Am Chem Soc 2020; 142:14007-14022. [DOI: 10.1021/jacs.0c06966] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Wenxiu Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xin He
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Peng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaodong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
40
|
Ji J, Delehey CM, Houpt DN, Heighway MK, Lee T, Choi JH. Selective Chemical Modulation of Interlayer Excitons in Atomically Thin Heterostructures. NANO LETTERS 2020; 20:2500-2506. [PMID: 32186880 DOI: 10.1021/acs.nanolett.9b05254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Strongly bound interlayer excitons (XIs) in atomically thin transition metal dichalcogenide (TMDC) heterostructures such as MoS2/WSe2 show promising optoelectronic properties for spin-valleytronics and excitonic devices. The ability to probe and control XIs is critical for the development of such applications. This Letter introduces a versatile chemical method for selectively tailoring interlayer excitons in TMDC heterostructures. We show that two organic layers form uniform layers on a WSe2/MoS2 heterostructure and that the XI photoluminescence may be either preserved or quenched. The interlayer emission can also be modulated differently by the formation of the organic layer on either side of the TMDC/TMDC heterostructure. We find that the resulting interlayer emission is dominated by selective photoinduced charge transfer over dark-state p-doping effects. These results shed critical insights on interlayer excitons at the TMDC/TMDC heterointerfaces and provide a versatile approach for selectively tailoring them for optoelectronic applications.
Collapse
Affiliation(s)
- Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Charles M Delehey
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Duncan N Houpt
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mathew K Heighway
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tonghun Lee
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|