1
|
Miao J, Liu Y, Xiao Y, Yuan C, Xu Q, Chen P, Jin Y, Zhang L, He H, Du S. Water-stable perovskite/metallic nanocomposites-based SERS aptasensor for detection of neuron-specific enolase. Biosens Bioelectron 2025; 280:117462. [PMID: 40215697 DOI: 10.1016/j.bios.2025.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Perovskite/metallic heterojunction-based surface enhanced Raman scattering (SERS) substrates have been proven to be capable of providing Raman enhancement. However, the inherent water instability and poor dispersibility of perovskite/metallic nanocomposites-based SERS substrates pose significant challenges to their application in aqueous environments. Herein, polydopamine (PDA)-encapsulated cesium lead bromide (CsPbBr3) adsorbing gold nanoparticles (AuNPs), termed as CsPbBr3@PDA@AuNPs, is prepared as SERS substrate, which exhibits excellent water stability and SERS activity. Dopamine as organic ligand not only passivates surface defects during the growth of perovskite nanocrystals, but also forms porous PDA protective layer, effectively preventing degradation of perovskite in aqueous medium. Meanwhile, PDA with abundant functional groups and conjugated π structure will adsorb AuNPs and promote electron flow between CsPbBr3 and AuNPs, resulting in strong SERS activity. Based on the results, a SERS aptasensor has been fabricated by conjugation between CsPbBr3@PDA@AuNPs and double-stranded DNA (dsDNA), which is composed of neuron-specific enolase (NSE) aptamer and partial complementary signal-stranded DNA (ssDNA). The working strategy of as-fabricated SERS aptasensor is based on the conformational change (of ssDNA)-triggered Raman response for the detection of NSE. Upon the addition of NSE, the specific binding of NSE aptamers to NSE can convert rigid dsDNA into a flexible ssDNA, and the Cy5 signal molecule modified at the end of ssDNA will close to CsPbBr3@PDA@AuNPs SERS substrate, generating significant Raman signals with the lower limit of detection (1.02 pg/mL) of NSE. The SERS aptasensor has broad application prospect in the field of life/medicine science fields (e.g. early diagnosis and screening of disease).
Collapse
Affiliation(s)
- Jiayi Miao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yifan Liu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yi Xiao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Congzheng Yuan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qian Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Panpan Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Liying Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Hongliang He
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Shuhu Du
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
2
|
Chen B, Gao J, Sun H, Chen Z, Qiu X. Wearable SERS devices in health management: Challenges and prospects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125957. [PMID: 40024086 DOI: 10.1016/j.saa.2025.125957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Surface-Enhanced Raman Scattering (SERS) is an advanced analytical technique renowned for its heightened sensitivity in detecting molecular vibrations. Its integration into wearable technologies facilitates the monitoring of biofluids, such as sweat and tears, enabling continuous, non-invasive, real-time analysis of human chemical and biomolecular processes. This capability underscores its significant potential for early disease detection and the advancement of personalized medicine. SERS has attracted considerable research attention in the fields of wearable flexible sensing and point-of-care testing (POCT) within medical diagnostics. Nonetheless, the integration of SERS with wearable technology presents several challenges, including device miniaturization, reliable biofluid sampling, user comfort, biocompatibility, and data interpretation. The ongoing advancements in nanotechnology and artificial intelligence are instrumental in addressing these challenges. This review provides a comprehensive analysis of design strategies for wearable SERS sensors and explores their applications within this domain. Finally, it addresses the current challenges in this area and the future prospects of combining SERS wearable sensors with other portable health monitoring systems for POCT medical diagnostics. Wearable SERS is a promising innovation in future healthcare, potentially enhancing individual health outcomes and reducing healthcare costs by fostering preventive health management approaches.
Collapse
Affiliation(s)
- Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jiayin Gao
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Haizhu Sun
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Zhi Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xiaohong Qiu
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| |
Collapse
|
3
|
Shen C, Niu X, Chen J, Xu F, Liu M, Duan Y, Du H, Shang Q, Zhang X, Zhang Y, Weng L, Luo Z, Wang L. Quantum-Sized Sb@Au Schottky Heterostructure for Sensitized Radioimmunotherapy. NANO LETTERS 2025. [PMID: 40380951 DOI: 10.1021/acs.nanolett.5c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
Radiodynamic therapy (RDT) holds great potential for overcoming radioresistance and enhancing tumor immunogenicity. However, its efficacy is hindered by limited reactive oxygen species (ROS) generation due to insufficient carrier generation and transfer, which often results in tumor metastasis. Here, we report quantum-sized and narrow-bandgap Sb@Au Schottky heterostructures, namely, Sb@Au nanodots (Sb@Au NDs), to improve ROS generation for sensitizing RDT and inhibiting tumor metastasis. Experimental results and density functional theory calculations show that Sb@Au NDs give narrow bandgap and high Schottky potential barrier for promoting carrier generation and separation under X-ray irradiation, and present rich active sites for improving catalytic performance, leading to abundant ROS generation and significantly amplifying intracellular oxidative stress to enhance RDT. Sb@Au ND-sensitized RDT greatly induces immunogenic cell death and thus promotes CD8+ T cell-mediated systemic immunity, ultimately suppressing tumor metastasis. Our finding highlights the potential of narrow-bandgap Sb@Au NDs as an effective sensitizer for radioimmunotherapy.
Collapse
Affiliation(s)
- Chuang Shen
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xianghong Niu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jianwei Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fei Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ming Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yefan Duan
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hongfang Du
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qianshi Shang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiuyun Zhang
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Ying Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhimin Luo
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
4
|
Shen C, Niu X, Zhang J, Wang S, Chen J, Xu F, Duan Y, Zhang Y, Weng L, Luo Z, Wang L. Ultrasmall Bi@Au Schottky Heterojunction with a High Potential Barrier for Amplifying Radioimmunotherapy. ACS NANO 2025; 19:12382-12398. [PMID: 40113590 DOI: 10.1021/acsnano.5c02753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Radiotherapy (RT) often has poor clinical sensitivity and tumor metastasis inhibition due to weak X-ray absorption, low energy deposition, inefficient reactive oxygen species (ROS) generation, and induction of antitumor immune response. Here, we report an ultrasmall Bi@Au Schottky heterojunction, namely, Bi@Au nanodots (Bi@Au NDs), to enhance the sensitivity of RT and activate systemic immunity for effective tumor treatment and metastasis inhibition. Bi@Au NDs exhibit a high efficiency of ROS generation and glutathione (GSH) depletion. Density functional theory calculations reveal that Bi@Au NDs with a high Schottky potential barrier can efficiently facilitate carrier separation and prevent carrier backflow, which results in abundant electrons for catalytically decomposing H2O2 to •OH under X-ray irradiation. Experimental results in vitro and in vivo show that Bi@Au NDs can significantly sensitize RT by enhancing ROS generation and GSH depletion. Bi@Au ND-sensitized RT greatly induces immunogenic cell death and thus promotes a CD8+ T cell-mediated systemic immune response, ultimately inhibiting tumor metastasis. Bi@Au NDs as a kind of Schottky heterojunctions can be an effective amplifier for radioimmunotherapy.
Collapse
Affiliation(s)
- Chuang Shen
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xianghong Niu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaxu Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shengheng Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jianwei Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fei Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yefan Duan
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ying Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhimin Luo
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
5
|
Fu S, Ding J, Lv H, Zheng Y, Liu S, Zhao K, Bai Z, Shi Y, He D, Wang R, Zhao J, Wu X, Tang D, Qiu X, Wang Y, Zhang X. Resonantly Enhanced Hybrid Wannier-Mott-Frenkel Excitons in Organic-Inorganic Van Der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411972. [PMID: 39828605 DOI: 10.1002/adma.202411972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Hybrid excitons formed via resonant hybridization in 2D material heterostructures feature both large optical and electrical dipoles, providing a promising platform for many-body exciton physics and correlated electronic states. However, hybrid excitons at organic-inorganic interface combining the advantages of both Wannier-Mott and Frenkel excitons remain elusive. Here, hybrid excitons are reported in the copper phthalocyanine/molybdenum diselenide (CuPc/MoSe2) heterostructure (HS) featuring strong molecular orientation dependence by low-temperature photoluminescence and absorption spectroscopy. The hybrid Wannier-Mott-Frenkel excitons exhibit a large oscillator strength and display signatures of the Frenkel excitons in CuPc and the Wannier-Mott excitons in MoSe2 simultaneously through the delocalized electrons. The density functional theory (DFT) calculations further confirm the strong hybridization between the lowest unoccupied molecular orbital (LUMO) of CuPc and the conduction band minimum (CBM) of MoSe2. The out-of-plane molecular orientation is further employed to tune the hybridization strength and tailor the hybrid exciton states. The results reveal the hybrid excitons at the CuPc/MoSe2 interface with tunability by molecular orientation, suggesting that the organic-inorganic HS constitutes a promising platform for many-body exciton physics such as exciton condensation and optoelectrical applications.
Collapse
Affiliation(s)
- Shaohua Fu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Jianwei Ding
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, School of Chemistry and Materials Sciences, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Zheng
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Shuangyan Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Kun Zhao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhiying Bai
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yumeng Shi
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Rui Wang
- Beijing Information Technology College, Beijing, 100015, China
| | - Jimin Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, School of Chemistry and Materials Sciences, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dongsheng Tang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
6
|
Chen W, Gui J, Weng X, Tan J, Huang J, Lin Z, Zhao B, Wang LH, Zeng XA, Teng C, Zhao S, Ding B, Liu B, Cheng HM. Mechanochemical activation of 2D MnPS 3 for sub-attomolar sensing. Nat Commun 2024; 15:10195. [PMID: 39587109 PMCID: PMC11589131 DOI: 10.1038/s41467-024-54608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
Molecular detection is important in biosensing, food safety, and environmental surveillance. The high biocompatibility, superior mechanical stability, and low cost make plasmon-free surface-enhanced Raman scattering (SERS) a promising sensing technique, the ultrahigh sensitivity of which is urgently pursued for realistic applications. As a proof of concept, we report a mechanochemical strategy, which combines the wrinkling and chemical functionalization, to fabricate a plasmon-free SERS platform based on 2D MnPS3 with a sub-attomolar detection limit. In detail, the formation of wrinkles in 2D MnPS3 enables a SERS substrate of the material to detect trace methylene blue molecules. The mechanism is experimentally revealed that the wrinkled structures contribute to the improvement of light-matter coupling. On this basis, decorating a wrinkled MnPS3 which has absorbed methylene blue with histamine dihydrochloride further lowers the detection limit to 10-19 M. Because the amino groups in histamine dihydrochloride molecules are crosslinkers that create more pathways to promote charge transfer between these substances. This work provides a guidance for the design of SERS sensors with single-molecule-level sensitivity.
Collapse
Affiliation(s)
- Wenjun Chen
- School of Electronic Information Engineering, Foshan University, Foshan, China.
| | - Jiabao Gui
- School of Electronic Information Engineering, Foshan University, Foshan, China
| | - Xiangchao Weng
- School of Electronic Information Engineering, Foshan University, Foshan, China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Junhua Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Zhiqiang Lin
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Benli Zhao
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, China
| | - Lang-Hong Wang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
| | - Xin-An Zeng
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
| | - Changjiu Teng
- School of Electronic Information Engineering, Foshan University, Foshan, China.
| | - Shilong Zhao
- School of Electronic Information Engineering, Foshan University, Foshan, China.
| | - Baofu Ding
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen, China.
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.
| |
Collapse
|
7
|
Chen L, Liu H, Gao J, Wang J, Jin Z, Lv M, Yan S. Development and Biomedical Application of Non-Noble Metal Nanomaterials in SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1654. [PMID: 39452990 PMCID: PMC11510763 DOI: 10.3390/nano14201654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is vital in many fields because of its high sensitivity, fast response, and fingerprint effect. The surface-enhanced Raman mechanisms are generally electromagnetic enhancement (EM), which is mainly based on noble metals (Au, Ag, etc.), and chemical enhancement (CM). With more and more studies on CM mechanism in recent years, non-noble metal nanomaterial SERS substrates gradually became widely researched and applied due to their superior economy, stability, selectivity, and biocompatibility compared to noble metal. In addition, non-noble metal substrates also provide an ideal new platform for SERS technology to probe the mechanism of biomolecules. In this paper, we review the applications of non-noble metal nanomaterials in SERS detection for biomedical engineering in recent years. Firstly, we introduce the development of some more common non-noble metal SERS substrates and discuss their properties and enhancement mechanisms. Subsequently, we focus on the progress of the application of SERS detection of non-noble metal nanomaterials, such as analysis of biomarkers and the detection of some contaminants. Finally, we look forward to the future research process of non-noble metal substrate nanomaterials for biomedicine, which may draw more attention to the biosensor applications of non-noble metal nanomaterial-based SERS substrates.
Collapse
Affiliation(s)
- Liping Chen
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Hao Liu
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Jiacheng Gao
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Jiaxuan Wang
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Zhihan Jin
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Ming Lv
- Department of Medical Engineering, Medical Supplies Center of PLA General Hospital, Beijing 100039, China;
| | - Shancheng Yan
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| |
Collapse
|
8
|
Tang X, Hao Q, Hou X, Lan L, Li M, Yao L, Zhao X, Ni Z, Fan X, Qiu T. Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312348. [PMID: 38302855 DOI: 10.1002/adma.202312348] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive surface analysis technique that is widely used in chemical sensing, bioanalysis, and environmental monitoring. The design of the SERS substrates is crucial for obtaining high-quality SERS signals. Recently, 2D transition metal dichalcogenides (2D TMDs) have emerged as high-performance SERS substrates due to their superior stability, ease of fabrication, biocompatibility, controllable doping, and tunable bandgaps and excitons. In this review, a systematic overview of the latest advancements in 2D TMDs SERS substrates is provided. This review comprehensively summarizes the candidate 2D TMDs SERS materials, elucidates their working principles for SERS, explores the strategies to optimize their SERS performance, and highlights their practical applications. Particularly delved into are the material engineering strategies, including defect engineering, alloy engineering, thickness engineering, and heterojunction engineering. Additionally, the challenges and future prospects associated with the development of 2D TMDs SERS substrates are discussed, outlining potential directions that may lead to significant breakthroughs in practical applications.
Collapse
Affiliation(s)
- Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xiangyu Hou
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- Department of Chemistry, National University of Singapore, Singapore, 117542, Singapore
| | - Leilei Lan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan, 232001, China
| | - Mingze Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Lei Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Zhenhua Ni
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| |
Collapse
|
9
|
Ge Y, Yang Y, Zhu Y, Yuan M, Sun L, Jiang D, Liu X, Zhang Q, Zhang J, Wang Y. 2D TiS 2-Nanosheet-Coated Concave Gold Arrays with Triple-Coupled Resonances as Sensitive SERS Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302410. [PMID: 37635113 DOI: 10.1002/smll.202302410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Herein, a hybrid substrate for surface-enhanced Raman scattering (SERS) is fabricated, which couples localized surface plasmon resonance (LSPR), charge transfer (CT) resonance, and molecular resonance. Exfoliated 2D TiS2 nanosheets with semimetallic properties accelerate the CT with the tested analytes, inducing a remarkable chemical mechanism enhancement. In addition, the LSPR effect is coupled with a concave gold array located underneath the thin TiS2 nanosheet, providing a strong electromagnetic enhancement. The concave gold array is prepared by etching silicone nanospheres assembled on larger polystyrene nanospheres, followed by depositing a gold layer. The LSPR intensity near the gold layer can be adjusted by changing the layer thickness to couple the molecular and CT resonances, in order to maximize the SERS enhancement. The best SERS performance is recorded on TiS2-nanosheet-coated plasmonic substrates, with a detectable methylene blue concentration down to 10-13 m and an enhancement factor of 2.1 × 109 and this concentration is several orders of magnitude lower than that of the TiS2 nanosheet (10-11 m) and plasmonic substrates (10-9 m). The present hybrid substrate with triple-coupled resonance further shows significant advantages in the label-free monitoring of curcumin (a widely applied drug for treating multiple cancers and inflammations) in serum and urine.
Collapse
Affiliation(s)
- Yuancai Ge
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Ying Yang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Yajie Zhu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Meiling Yuan
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Liangbin Sun
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Danfeng Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Qingwen Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| | - Jinyi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| |
Collapse
|
10
|
Kim G, Jeong DW, Lee G, Lee S, Ma KY, Hwang H, Jang S, Hong J, Pak S, Cha S, Cho D, Kim S, Lim J, Lee YW, Shin HS, Jang AR, Lee JO. Unusual Raman Enhancement Effect of Ultrathin Copper Sulfide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306819. [PMID: 38152985 DOI: 10.1002/smll.202306819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/26/2023] [Indexed: 12/29/2023]
Abstract
In surface-enhanced Raman spectroscopy (SERS), 2D materials are explored as substrates owing to their chemical stability and reproducibility. However, they exhibit lower enhancement factors (EFs) compared to noble metal-based SERS substrates. This study demonstrates the application of ultrathin covellite copper sulfide (CuS) as a cost-effective SERS substrate with a high EF value of 7.2 × 104 . The CuS substrate is readily synthesized by sulfurizing a Cu thin film at room temperature, exhibiting a Raman signal enhancement comparable to that of an Au noble metal substrate of similar thickness. Furthermore, computational simulations using the density functional theory are employed and time-resolved photoluminescence measurements are performed to investigate the enhancement mechanisms. The results indicate that polar covalent bonds (Cu─S) and strong interlayer interactions in the ultrathin CuS substrate increase the probability of charge transfer between the analyte molecules and the CuS surface, thereby producing enhanced SERS signals. The CuS SERS substrate demonstrates the selective detection of various dye molecules, including rhodamine 6G, methylene blue, and safranine O. Furthermore, the simplicity of CuS synthesis facilitates large-scale production of SERS substrates with high spatial uniformity, exhibiting a signal variation of less than 5% on a 4-inch wafer.
Collapse
Affiliation(s)
- Gwangwoo Kim
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Engineering Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea
| | - Du Won Jeong
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon, 34114, Republic of Korea
- Department of Physics, Sungkyungkwan University (SKKU), Seobu-Ro 2066, Suwon, 16419, Republic of Korea
| | - Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon, 34114, Republic of Korea
| | - Suok Lee
- Department of Energy Systems, Soonchunhyang University, Soonchunhyang-ro 2, Asan, 31538, Republic of Korea
| | - Kyung Yeol Ma
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyuntae Hwang
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Seunghun Jang
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon, 34114, Republic of Korea
| | - John Hong
- School of Materials Science and Engineering, Kookmin University, Jeongneung-ro 77, Seoul, 02707, Republic of Korea
| | - Sangyeon Pak
- School of Electronic and Electrical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - SeungNam Cha
- Department of Physics, Sungkyungkwan University (SKKU), Seobu-Ro 2066, Suwon, 16419, Republic of Korea
| | - Donghwi Cho
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon, 34114, Republic of Korea
| | - Sunkyu Kim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongchul Lim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Young-Woo Lee
- Department of Energy Systems, Soonchunhyang University, Soonchunhyang-ro 2, Asan, 31538, Republic of Korea
| | - Hyeon Suk Shin
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - A-Rang Jang
- Division of Electrical, Electronic and Control Engineering, Kongju National University, Cheonan-daero 1223-24, Cheonan, 31080, Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon, 34114, Republic of Korea
| |
Collapse
|
11
|
Shen J, Zhang J, Fu Z, Pan Y, Li X, Wu S, Shan Y, Liu L. Dynamic repulsive interaction enables an asymmetric electron-phonon coupling for improving Raman scattering. Phys Chem Chem Phys 2024; 26:7343-7350. [PMID: 38369913 DOI: 10.1039/d3cp05835b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Two-dimensional (2D) materials are an excellent platform for surface-enhanced Raman spectroscopy (SERS). For ReS2, the Raman enhancement effect can be highly improved through the dipole-dipole interactions and synergistic resonance effects in the phase-engineering ReS2 films. However, the performance of the substrate can be improved further through regulating the electronic interaction between the ReS2 and probe molecules. Herein, a dynamic coulomb repulsion strategy is proposed to trigger an electronic state redistribution by asymmetric electrostatic interactions. With the phase-engineering ReS2/graphene heterostructure as a prototype, under laser excitation, the generated hot electrons in graphene and ReS2 can repel each other due to Coulomb interaction, which breaks the symmetrical distribution of hot electrons in ReS2, and increases the electronic concentration at the interface between ReS2 and the probe molecule. With R6G as the probe molecule, the asymmetric electron distribution and synergistic resonance effects on their interface improve the limit of detection to 10-12 M with an EF of 2.15 × 108. Meanwhile, the heterostructure also shows good uniformity, stability as well as unique anisotropy. This strategy can be generalized to other 2D heterostructures to obtain the ultrasensitive SERS substrates.
Collapse
Affiliation(s)
- Jiawei Shen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Jiaxin Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Zirui Fu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Yan Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Xiaowan Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Shuyi Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Yun Shan
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, People's Republic of China.
| | - Lizhe Liu
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.
| |
Collapse
|
12
|
Weng S, Chu W, Zhu H, Li J, Dong R, Niu R, Yang J, Zhang C, Li Z, Yang L. Near-Neighbor Electron Orbital Coupling Effect of Single-Atomic-Layer Au Cluster Intercalated Bilayer 2H-TaS 2 for Surface Enhanced Raman Scattering Sensing. J Phys Chem Lett 2023; 14:8477-8484. [PMID: 37721451 DOI: 10.1021/acs.jpclett.3c02225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
It is difficult to perfectly analyze the enhancement mechanism of two-dimensional (2D) materials and their combination with precious metals as surface enhanced Raman scattering (SERS) substrates using chemical enhancement mechanisms. Here, we propose a new mentality based on the coupling effect of neighboring electron orbitals to elucidate the electromagnetic field enhancement mechanism of single-atom-layer Au clusters embedded in double-layer 2H-TaS2 for SRES sensing. The insertion of Au atoms into the 2H-TaS2 interlayer was verified by XRD, AFM, and HRTEM, and a SERS signal enhancement of 2 orders of magnitude was obtained compared to the pure 2H-TaS2. XPS and micro-UV/vis-NIR spectra indicate that the outer electrons of neighboring Au and 2H-TaS2 overlap and migrate from Au to 2H-TaS2. First-principles calculations suggest strong electronic coupling between Au and 2H-TaS2. This study offers insights into SERS enhancement in nonprecious metal compounds and guides the development of new SERS substrates.
Collapse
Affiliation(s)
- Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenjun Chu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Huaze Zhu
- Department of Materials Science and Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Junxiang Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Rui Niu
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Yang
- Department of Materials Science and Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
13
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
14
|
He L, Luo J, Zhu P, Hou H, Ji X, Hu J. Molecular-Enhanced Raman Spectroscopy Driven by Phosphoester Electron-Transfer Bridge. J Phys Chem Lett 2023; 14:7045-7052. [PMID: 37526196 DOI: 10.1021/acs.jpclett.3c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Although both electromagnetic and charge transfer (CT) mechanisms play a role in surface-enhanced Raman scattering (SERS), the contribution of the latter is limited by poor CT efficiency. Herein, we propose molecular-enhanced Raman spectroscopy (MERS) for the first time and develop a simple strategy to induce strong CT-enhanced Raman signals using a phosphoester (POE) electron-transfer bridge. Consequently, an excellent POE-enhanced Raman effect was found when various mono-, bis-, and trisaminobenzene compounds were used as probe analytes. Quantification analysis of this MERS effect revealed that the enhancement ratio and factor of the POE molecules can be up to 87% and ∼109, respectively. Spectroscopic analysis and density functional theory calculation confirmed that this effect was because of the formation of intermolecular hydrogen bonds, which promotes CT via electronic reorganization and enhances the Raman signals of target analytes. These results demonstrate the feasibility of MERS for highly CT-enhanced Raman signals.
Collapse
Affiliation(s)
- Lili He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jia Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Pengfei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| |
Collapse
|
15
|
Tang X, Fan X, Zhou J, Wang S, Li M, Hou X, Jiang K, Ni Z, Zhao B, Hao Q, Qiu T. Alloy Engineering Allows On-Demand Design of Ultrasensitive Monolayer Semiconductor SERS Substrates. NANO LETTERS 2023; 23:7037-7045. [PMID: 37463459 DOI: 10.1021/acs.nanolett.3c01810] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The chemical mechanism (CM) of surface-enhanced Raman scattering (SERS) has been recognized as a decent approach to mildly amplify Raman scattering. However, the insufficient charge transfer (CT) between the SERS substrate and molecules always results in unsatisfying Raman enhancement, exerting a substantial restriction for CM-based SERS. In principle, CT is dominated by the coupling between the energy levels of a semiconductor-molecule system and the laser wavelength, whereas precise tuning of the energy levels is intrinsically difficult. Herein, two-dimensional transition-metal dichalcogenide alloys, whose energy levels can be precisely and continuously tuned over a wide range by simply adjusting their compositions, are investigated. The alloys enable on-demand construction of the CT resonance channels to cater to the requirements of a specific target molecule in SERS. The SERS signals are highly reproducible, and a clear view of the SERS dependences on the energy levels is revealed for different CT resonance terms.
Collapse
Affiliation(s)
- Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jun Zhou
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Shuo Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Mingze Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiangyu Hou
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Kewei Jiang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhenhua Ni
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Bei Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
16
|
Ying Y, Tang Z, Liu Y. Material design, development, and trend for surface-enhanced Raman scattering substrates. NANOSCALE 2023. [PMID: 37335252 DOI: 10.1039/d3nr01456h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful and non-invasive spectroscopic technique that can provide rich and specific chemical fingerprint information for various target molecules through effective SERS substrates. In view of the strong dependence of the SERS signals on the properties of the SERS substrates, design, exploration, and construction of novel SERS-active nanomaterials with low cost and excellent performance as the SERS substrates have always been the foundation and the top priority for the development and application of the SERS technology. This review specifically focuses on the extensive progress made in the SERS-active nanomaterials and their enhancement mechanism since the first discovery of SERS on the nanostructured plasmonic metal substrates. The design principles, unique functions, and influencing factors on the SERS signals of different types of SERS-active nanomaterials are highlighted, and insight into their future challenge and development trends is also suggested. It is highly expected that this review could benefit a complete understanding of the research status of the SERS-active nanomaterials and arouse the research enthusiasm for them, leading to further development and wider application of the SERS technology.
Collapse
Affiliation(s)
- Yue Ying
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaling Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Su R, Yang S, Han D, Hu M, Liu Y, Yang J, Gao M. Ni and O co-modified MoS 2 as universal SERS substrate for the detection of different kinds of substances. J Colloid Interface Sci 2023; 635:1-11. [PMID: 36577350 DOI: 10.1016/j.jcis.2022.12.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has attracted extensive attention as an ultrasensitive detection method. However, the poor biocompatibility and expensive synthesis cost of noble metal SERS substrates have become non-negligible factors that limit the development of SERS technology. Metal chalcogenide semiconductors as an alternative to noble metal SERS substrates can avoid these disadvantages, but the enhancement effect is lower than that of noble metal substrates. Here, we report a method to co-modify MoS2 by Ni and O, which improves the carrier concentration and mobility of MoS2. The SERS effect of the modified MoS2 is comparable to that of noble metals. We found that the improved SERS performance of MoS2 can be attributed to the following two factors: strong interfacial dipole-dipole interaction and efficient charge transfer effect. During the doping process, the incorporation of Ni and O enhances the polarity and carrier concentration of MoS2, enhances the interfacial interaction of MoS2, and provides a basis for charge transfer. During the annealing process, the introduction of O atoms into the S defects reduces the internal defects of doped MoS2, improves the carrier mobility, and promotes the efficient charge transfer effect of MoS2. The final modified MoS2 as a SERS substrate realizes low-concentration detection of bilirubin, cytochrome C, and trichlorfon. This provides promising guidance for the practical inspection of metal chalcogenide semiconductor substrates.
Collapse
Affiliation(s)
- Rui Su
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, PR China
| | - Donglai Han
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Mingyue Hu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310012, PR China
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
18
|
Li M, Wei Y, Fan X, Li G, Tang X, Xia W, Hao Q, Qiu T. VSe 2-x O x @Pd Sensor for Operando Self-Monitoring of Palladium-Catalyzed Reactions. JACS AU 2023; 3:468-475. [PMID: 36873688 PMCID: PMC9975834 DOI: 10.1021/jacsau.2c00596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Operando monitoring of catalytic reaction kinetics plays a key role in investigating the reaction pathways and revealing the reaction mechanisms. Surface-enhanced Raman scattering (SERS) has been demonstrated as an innovative tool in tracking molecular dynamics in heterogeneous reactions. However, the SERS performance of most catalytic metals is inadequate. In this work, we propose hybridized VSe2-x O x @Pd sensors to track the molecular dynamics in Pd-catalyzed reactions. Benefiting from metal-support interactions (MSI), the VSe2-x O x @Pd realizes strong charge transfer and enriched density of states near the Fermi level, thereby strongly intensifying the photoinduced charge transfer (PICT) to the adsorbed molecules and consequently enhancing the SERS signals. The excellent SERS performance of the VSe2-x O x @Pd offers the possibility for self-monitoring the Pd-catalyzed reaction. Taking the Suzuki-Miyaura coupling reaction as an example, operando investigations of Pd-catalyzed reactions were demonstrated on the VSe2-x O x @Pd, and the contributions from PICT resonance were illustrated by wavelength-dependent studies. Our work demonstrates the feasibility of improved SERS performance of catalytic metals by modulating the MSI and offers a valid means to investigate the mechanisms of Pd-catalyzed reactions based on VSe2-x O x @Pd sensors.
Collapse
Affiliation(s)
| | | | - Xingce Fan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Guoqun Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xiao Tang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Weiqiao Xia
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qi Hao
- School of Physics, Southeast University, Nanjing 211189, China
| | - Teng Qiu
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
19
|
Pan W, Wu S, Ma C, Shan Y, Liu L. Significantly increased Raman enhancement enabled by hot-electron-injection-induced synergistic resonances on anisotropic ReS 2 films. Phys Chem Chem Phys 2023; 25:6537-6544. [PMID: 36786679 DOI: 10.1039/d2cp04703a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Two-dimensional (2D) materials are an excellent platform for surface-enhanced Raman spectroscopy (SERS). However, a poor detection sensitivity hinders their practical application. Exciton resonance (μex) can improve SERS significantly by lending intensity to nearby charge-transfer resonance. Coincidentally, for ReS2, the enhanced μex can be achieved through the injection of excited-state electrons which can adjust the energy band to the SERS detection range. Moreover, ReS2 has strong anisotropic properties, which adds an additional dimension for SERS. Therefore, ReS2 is an ideal candidate to realize highly sensitive anisotropic SERS. In this paper, the metallic T phase of ReS2 is introduced to the semiconducting Td phase by phase engineering. The photoinduced electron tunneling from the T phase to the Td phase can tune exciton emissions to the visible region, which effectively facilitates the photoinduced charge transfer processes. With RhB as the probe molecule, the synergistic resonance effects improve the limit of detection to 10-9 M with the enhancement factor up to about 108. Meanwhile, the obtained ultrasensitive SERS substrates also show good uniformity, stability as well as unique anisotropy. Our results open a new perspective in the improvement of the SERS performance.
Collapse
Affiliation(s)
- Wen Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Shuyi Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yun Shan
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Lizhe Liu
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
20
|
Yang Y, Ao S, Wang J, Fu W, Liu X, Wang W. Recognition of dipole-induced electric field in 2D materials for surface-enhanced Raman scattering. Front Chem 2023; 11:1183381. [PMID: 37090249 PMCID: PMC10119391 DOI: 10.3389/fchem.2023.1183381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
The application of two-dimensional (2D) materials, including metallic graphene, semiconducting transition metal dichalcogenides, and insulating hexagonal boron nitride (h-BN) for surface-enhancement Raman spectroscopy has attracted extensive research interest. This article provides a critical overview of the recent developments in surface-enhanced Raman spectroscopy using 2D materials. By re-examining the relationship between the lattice structure and Raman enhancement characteristics, including vibration selectivity and thickness dependence, we highlight the important role of dipoles in the chemical enhancement of 2D materials.
Collapse
Affiliation(s)
- Yuxue Yang
- High-Tech Institute of Xi’an, Xi’an, Shaanxi, China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Shen Ao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Wangyang Fu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | | | - Weipeng Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
- *Correspondence: Weipeng Wang,
| |
Collapse
|
21
|
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the single-molecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
Collapse
Affiliation(s)
| | | | - Hai-Yao Yang
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| |
Collapse
|
22
|
Ge K, Wu Q, Li Y, Gu Y. High and stable surface-enhanced Raman spectroscopy activity of h-BN nanosheet/Au 1Ag 3 nanoalloy hybrid membrane for melamine determination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120952. [PMID: 35123190 DOI: 10.1016/j.saa.2022.120952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In this work, a hexagonal boron nitride (h-BN)/AuAg nanoalloy hybrids (NAHs) was synthesized to fabricate h-BN/Au1Ag3 membrane as a solid surface-enhanced Raman spectroscopy (SERS) substrate for sensitive SERS detection of melamine. The AuAg nanoalloys were in situ grown on h-BN by chemical reduction method, and the Au/Ag molar ratio was tuned to achieve optimal SERS performance. After the SERS performance of h-BN/AuAg NAHs with different Au/Ag ratios was analyzed, h-BN/Au1Ag3 NAHs were chosen for SERS analysis. The h-BN/Au1Ag3 membrane can be obtained through simple filtration of h-BN/Au1Ag3 NAHs on chromatographic paper. As expected, the solid SERS substrates of h-BN/Au1Ag3 membrane were uniform and demonstrated good selectivity, repeatability and reproducibility for SERS detection of melamine. The results demonstrate that h-BN/Au1Ag3 membrane exhibited high SERS activity for 4-mercaptobenzoic acid (4-MBA) with limit of detection (LOD) at 1.0 ng L-1, and its analytical enhancement factor (AEF) reached 3.6 × 108. The possible enhancement mechanism, including electromagnetic mechanisms (EM) and chemical mechanisms (CM) were illustrated by finite-difference time-domain (FDTD) and density functional theory (DFT) simulations in detail, respectively. The concentration of melamine in the 0.05-5.0 mg L-1 range showed good linear relationship (R2 = 0.9940) with SERS intensity with LOD of 0.01 mg L-1. Finally, the recoveries of melamine in liquid milk samples are 87.7-105.7% with relative standard deviations (RSDs) in range of 0.6-2.6%, providing precise safety evaluation of melamine in milk samples.
Collapse
Affiliation(s)
- Kun Ge
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiyue Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yonghui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
23
|
Wang X, Zhang E, Shi H, Tao Y, Ren X. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement. Analyst 2022; 147:1257-1272. [PMID: 35253817 DOI: 10.1039/d1an02165f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surface enhanced Raman scattering (SERS) is a powerful spectral analysis technique and has exhibited remarkable application prospects in various fields. The design and fabrication of high-performance SERS substrates is key to promoting the development of SERS technology. Apart from noble metal substrates, non-metal substrates based on semiconductor materials have received increasing attention in recent years owing to their unique physical, chemical, and optical properties. However, compared with noble metal substrates, most semiconductor substrates show weak Raman enhancement ability. Therefore, exploring effective strategies to improve the SERS sensitivity is an urgent task. Numerous reviews have outlined the research progress of semiconductor SERS substrates, which mainly focused on summarizing the material category of semiconductor substrates. However, reviews that systematically summarize the strategies for improving the SERS performance of semiconductor substrates are lacking. In this review, we comprehensively discuss the research on semiconductor SERS from the aspects of mechanism, materials, and modification. Firstly, the Raman enhancement mechanism of semiconductor substrates and the SERS-active materials are discussed. Then, we summarize several effective approaches to boost the SERS performance of semiconductor substrates. In conclusion, we propose some prospects for this field.
Collapse
Affiliation(s)
- Xuejiao Wang
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Erjin Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huimin Shi
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yufeng Tao
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Xudong Ren
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
24
|
Yang L, Feng J, Wang JN, Gao Z, Xu J, Mei Y, Song YY. Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Peng Y, Lin C, Li Y, Gao Y, Wang J, He J, Huang Z, Liu J, Luo X, Yang Y. Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS 2 SERS biosensors with capillary effect. MATTER 2022; 5:694-709. [PMID: 34957388 PMCID: PMC8686209 DOI: 10.1016/j.matt.2021.11.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/22/2021] [Accepted: 11/25/2021] [Indexed: 05/09/2023]
Abstract
The current COVID-19 pandemic urges us to develop ultra-sensitive surface-enhanced Raman scattering (SERS) substrates to identify the infectiousness of SARS-CoV-2 virions in actual environments. Here, a micrometer-sized spherical SnS2 structure with the hierarchical nanostructure of "nano-canyon" morphology was developed as semiconductor-based SERS substrate, and it exhibited an extremely low limit of detection of 10-13 M for methylene blue, which is one of the highest sensitivities among the reported pure semiconductor-based SERS substrates. Such ultra-high SERS sensitivity originated from the synergistic enhancements of the molecular enrichment caused by capillary effect and the charge transfer chemical enhancement boosted by the lattice strain and sulfur vacancies. The novel two-step SERS diagnostic route based on the ultra-sensitive SnS2 substrate was presented to diagnose the infectiousness of SARS-CoV-2 through the identification standard of SERS signals for SARS-CoV-2 S protein and RNA, which could accurately identify non-infectious lysed SARS-CoV-2 virions in actual environments, whereas the current PCR methods cannot.
Collapse
Affiliation(s)
- Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jing Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui 12560, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui 12560, China
| | - Zhengren Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Jianjun Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Xiaoying Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Zhao S, Wang H, Niu L, Xiong W, Chen Y, Zeng M, Yuan S, Fu L. 2D GaN for Highly Reproducible Surface Enhanced Raman Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103442. [PMID: 34569140 DOI: 10.1002/smll.202103442] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) based on 2D semiconductors has been rapidly developed due to their chemical stability and molecule-specific SERS activity. High signal reproducibility is urgently required towards practical SERS applications. 2D gallium nitride (GaN) with highly polar Ga-N bonds enables strong dipole-dipole interactions with the probe molecules, and abundant DOS (density of states) near its Fermi level increases the intermolecular charge transfer probability, making it a suitable SERS substrate. Herein, 2D micrometer-sized GaN crystals are demonstrated to be sensitive SERS platforms with excellent signal reproducibility and stability. Strong dipole-dipole interaction between the dye molecule and 2D GaN enhances the molecular polarizability. Furthermore, 2D GaN benefits its SERS enhancement by the combination of increased DOS and more efficient charge transfer resonances when compared with its bulk counterpart.
Collapse
Affiliation(s)
- Shasha Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Huiliu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lixin Niu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenqi Xiong
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yunxu Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shengjun Yuan
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
27
|
Shao M, Zhang C, Yu J, Jiang S, Zhao X, Li Z, Lu W, Man B, Li Z. Noble metal modified ReS 2 nanocavity for surface-enhanced Raman spectroscopy (SERS) analysis. OPTICS EXPRESS 2021; 29:28664-28679. [PMID: 34614992 DOI: 10.1364/oe.435627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The rhenium disulphide (ReS2) nanocavity-based surface enhanced Raman scattering (SERS) substrates ware fabricated on the gold-modified silicon pyramid (PSi) by thermal evaporation technology and hydrothermal method. In this work, the ReS2 nanocavity was firstly combined with metal nanostructures in order to improve the SERS properties of ReS2 materials, and the SERS response of the composite structure exhibits excellent performance in sensitivity, uniformity and repeatability. Numerical simulation reveals the synergistic effect of the ReS2 nanocavity and the plasmon resonance generated by the metal nanostructures. And the charge transfer between the metal, ReS2 and the analytes was also verified and plays an non-ignorable role. Besides, the plasmon-driven reaction for p-nitrothiophenol (PNTP) to p,p'-dimercaptobenzene (DMAB) conversion was successfully in-situ monitored. Most importantly, it is found for the first time that the SERS properties of ReS2 nanocavity-based substrates are strongly temperature dependent, and the SERS effect achieves the best performance at 45 °C. In addition, the low concentration detection of malachite green (MG) and crystal violet (CV) molecules in lake water shows its development potential in practical application.
Collapse
|
28
|
Wang H, Liu Y, Rao G, Wang Y, Du X, Hu A, Hu Y, Gong C, Wang X, Xiong J. Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices. Analyst 2021; 146:5008-5032. [PMID: 34296232 DOI: 10.1039/d1an00624j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become one of the most sensitive analytical techniques for identifying the chemical components, molecular structures, molecular conformations, and the interactions between molecules. However, great challenges still need to be addressed until it can be widely accepted by the absolute quantification of analytes. Recently, many efforts have been devoted to addressing these issues via various electromagnetic (EM), chemical (CM), and EM-CM hybrid coupling enhancement strategies. In comparison with uncoupled SERS devices, they offer key advantages in terms of sensitivity, reproducibility, uniformity, stability, controllability and reliability. This review provides an in-depth analysis of coupled SERS devices, including coupling enhancement mechanisms, materials and approaches. Finally, we also discuss the remaining bottlenecks and possible strategies for the development of coupling-enhanced SERS devices in the future.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gbadamasi S, Mohiuddin M, Krishnamurthi V, Verma R, Khan MW, Pathak S, Kalantar-Zadeh K, Mahmood N. Interface chemistry of two-dimensional heterostructures - fundamentals to applications. Chem Soc Rev 2021; 50:4684-4729. [PMID: 33621294 DOI: 10.1039/d0cs01070g] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two-dimensional heterostructures (2D HSs) have emerged as a new class of materials where dissimilar 2D materials are combined to synergise their advantages and alleviate shortcomings. Such a combination of dissimilar components into 2D HSs offers fascinating properties and intriguing functionalities attributed to the newly formed heterointerface of constituent components. Understanding the nature of the surface and the complex heterointerface of HSs at the atomic level is crucial for realising the desired properties, designing innovative 2D HSs, and ultimately unlocking their full potential for practical applications. Therefore, this review provides the recent progress in the field of 2D HSs with a focus on the discussion of the fundamentals and the chemistry of heterointerfaces based on van der Waals (vdW) and covalent interactions. It also explains the challenges associated with the scalable synthesis and introduces possible methodologies to produce large quantities with good control over the heterointerface. Subsequently, it highlights the specialised characterisation techniques to reveal the heterointerface formation, chemistry and nature. Afterwards, we give an overview of the role of 2D HSs in various emerging applications, particularly in high-power batteries, bifunctional catalysts, electronics, and sensors. In the end, we present conclusions with the possible solutions to the associated challenges with the heterointerfaces and potential opportunities that can be adopted for innovative applications.
Collapse
|
30
|
Kim M, Seo J, Kim J, Moon JS, Lee J, Kim JH, Kang J, Park H. High-Crystalline Monolayer Transition Metal Dichalcogenides Films for Wafer-Scale Electronics. ACS NANO 2021; 15:3038-3046. [PMID: 33512141 DOI: 10.1021/acsnano.0c09430] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical vapor deposition (CVD) using liquid-phase precursors has emerged as a viable technique for synthesizing uniform large-area transition metal dichalcogenide (TMD) thin films. However, the liquid-phase precursor-assisted growth process typically suffers from small-sized grains and unreacted transition metal precursor remainders, resulting in lower-quality TMDs. Moreover, synthesizing large-area TMD films with a monolayer thickness is also quite challenging. Herein, we successfully synthesized high-quality large-area monolayer molybdenum diselenide (MoSe2) with good uniformity via promoter-assisted liquid-phase CVD process using the transition metal-containing precursor homogeneously modified with an alkali metal halide. The formation of a reactive transition metal oxyhalide and reduction of the energy barrier of chalcogenization by the alkali metal promoted the growth rate of the TMDs along the in-plane direction, enabling the full coverage of the monolayer MoSe2 film with negligible few-layer regions. Note that the fully selenized monolayer MoSe2 with high crystallinity exhibited superior electrical transport characteristics compared with those reported in previous works using liquid-phase precursors. We further synthesized various other monolayer TMD films, including molybdenum disulfide, tungsten disulfide, and tungsten diselenide, to demonstrate the broad applicability of the proposed approach.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihyung Seo
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jong Sung Moon
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Junghyun Lee
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Je-Hyung Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyesung Park
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
31
|
Zheng T, Zhou Y, Feng E, Tian Y. Surface‐enhanced Raman Scattering on
2D
Nanomaterials: Recent Developments and Applications†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yan Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Enduo Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Dongchuan Road 500 Shanghai 200241 China
- State Key Laboratory of Precision Spectroscopy, East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
32
|
Li M, Gao Y, Fan X, Wei Y, Hao Q, Qiu T. Origin of layer-dependent SERS tunability in 2D transition metal dichalcogenides. NANOSCALE HORIZONS 2021; 6:186-191. [PMID: 33448271 DOI: 10.1039/d0nh00625d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) semiconductors are expected to replace noble metals to become the matrix materials of the next generation of commercial surface-enhanced Raman scattering (SERS) chips. Herein, we systematically studied the influence of the interlayer interaction on the SERS activity of 2D semiconductors from a brand-new perspective and comprehensively analyzed the physicochemical process of 2D semiconductor interlayer modulated SERS. Taking transition metal dichalcogenides as examples, we chose PtSe2 with strong interlayer interactions and ReS2 with weak interlayer interactions to analyze the physicochemical process of 2D semiconductor interlayer modulated SERS by first-principles calculations. PtSe2 and ReS2 samples with various thicknesses were prepared respectively, and the results of comparative experiments proved that the layer-dependent SERS tunability of 2D semiconductors is directly related to the interlayer interaction. This work provided a novel method for further improving the SERS detection limit of 2D semiconductors and a possible strategy for the industrial upgrading of commercial SERS chips.
Collapse
Affiliation(s)
- Mingze Li
- School of Physics, Southeast University, Nanjing 211189, P. R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Song G, Gong W, Cong S, Zhao Z. Ultrathin Two‐Dimensional Nanostructures: Surface Defects for Morphology‐Driven Enhanced Semiconductor SERS. Angew Chem Int Ed Engl 2021; 60:5505-5511. [DOI: 10.1002/anie.202015306] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Ge Song
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Wenbin Gong
- School of Physics and Energy Xuzhou University of Technology Xuzhou 221018 China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems Chinese Academy of Sciences (CAS) Suzhou 215123 China
- Division of Nanomaterials Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Nanchang 330200 China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems Chinese Academy of Sciences (CAS) Suzhou 215123 China
- Division of Nanomaterials Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Nanchang 330200 China
| |
Collapse
|
34
|
Ultrathin Two‐Dimensional Nanostructures: Surface Defects for Morphology‐Driven Enhanced Semiconductor SERS. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Li C, Wu C, Zhang K, Chen M, Wang Y, Shi J, Tang Z. The charge transfer effect on SERS in a gold-decorated surface defect anatase nanosheet/methylene blue (MB) system. NEW J CHEM 2021. [DOI: 10.1039/d1nj03941e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increase in the transition route of the CT process enhances the Raman scattering of MB.
Collapse
Affiliation(s)
- Chang Li
- Analytical and Testing Center, School of Chemical Engineering, School of Earth Science and Environmental Engineering, Anhui University of Science and Technology, 232001, Huainan, China
| | - Chuanqiang Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ke Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingqiang Chen
- Analytical and Testing Center, School of Chemical Engineering, School of Earth Science and Environmental Engineering, Anhui University of Science and Technology, 232001, Huainan, China
| | - Yishuang Wang
- Analytical and Testing Center, School of Chemical Engineering, School of Earth Science and Environmental Engineering, Anhui University of Science and Technology, 232001, Huainan, China
| | - Jingjing Shi
- Analytical and Testing Center, School of Chemical Engineering, School of Earth Science and Environmental Engineering, Anhui University of Science and Technology, 232001, Huainan, China
| | - Zhiyuan Tang
- Analytical and Testing Center, School of Chemical Engineering, School of Earth Science and Environmental Engineering, Anhui University of Science and Technology, 232001, Huainan, China
| |
Collapse
|
36
|
Lee J, Heo J, Lim HY, Seo J, Kim Y, Kim J, Kim U, Choi Y, Kim SH, Yoon YJ, Shin TJ, Kang J, Kwak SK, Kim JY, Park H. Defect-Induced in Situ Atomic Doping in Transition Metal Dichalcogenides via Liquid-Phase Synthesis toward Efficient Electrochemical Activity. ACS NANO 2020; 14:17114-17124. [PMID: 33284600 DOI: 10.1021/acsnano.0c06783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition metal dichalcogenides (TMDs), due to their fascinating properties, have emerged as potential next-generation semiconducting nanomaterials across diverse fields of applications. When combined with other material systems, precise control of the intrinsic properties of the TMDs plays a vital role in maximizing their performance. Defect-induced atomic doping through introduction of a chalcogen vacancy into the TMDs lattices is known to be a promising strategy for modulating their characteristic properties. As a result, there is a need to develop tunable and scalable synthesis routes to achieve vacancy-modulated TMDs. Herein, we propose a facile liquid-phase ligand exchange approach for scalable, uniform, and vacancy-tunable synthesis of TMDs films. Varying the relative molar ratio of the chalcogen to transition metal precursors enabled the in situ modulation of the chalcogen vacancy concentrations without necessitating additional post-treatments. When employed as the electrocatalyst in the hydrogen evolution reaction (HER), the vacancy-modulated TMDs, exhibiting a synergetic effect on the energy level matching to the reduction potential of water and optimized free energy differences in the HER pathways, showed a significant enhancement in the hydrogen production via the improved charge transfer kinetics and increased active sites. The proposed approach for synthesizing tunable vacancy-modulated TMDs with wafer-scale synthesis capability is, therefore, promising for better practical applications of TMDs.
Collapse
Affiliation(s)
- Junghyun Lee
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jungwoo Heo
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeong Yong Lim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihyung Seo
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youngwoo Kim
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ungsoo Kim
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yunseong Choi
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Su Hwan Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yung Jin Yoon
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin Young Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyesung Park
- Department of Materials Science and Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
37
|
Cong S, Liu X, Jiang Y, Zhang W, Zhao Z. Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions. Innovation (N Y) 2020; 1:100051. [PMID: 34557716 PMCID: PMC8454671 DOI: 10.1016/j.xinn.2020.100051] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Surface enhanced Raman scattering (SERS) is a fingerprint spectral technique whose performance is highly dependent on the physicochemical properties of the substrate materials. In addition to the traditional plasmonic metal substrates that feature prominent electromagnetic enhancements, boosted SERS activities have been reported recently for various categories of non-metal materials, including graphene, MXenes, transition-metal chalcogens/oxides, and conjugated organic molecules. Although the structural compositions of these semiconducting substrates vary, chemical enhancements induced by interfacial charge transfer are often the major contributors to the overall SERS behavior, which is distinct from that of the traditional SERS based on plasmonic metals. Regarding charge-transfer-induced SERS enhancements, this short review introduces the basic concepts underlying the SERS enhancements, the most recent semiconducting substrates that use novel manipulation strategies, and the extended applications of these versatile substrates.
Collapse
Affiliation(s)
- Shan Cong
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Xiaohong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yuxiao Jiang
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhigang Zhao
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| |
Collapse
|
38
|
2D materials: Excellent substrates for surface-enhanced Raman scattering (SERS) in chemical sensing and biosensing. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115983] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|