1
|
Pan Y, Liu Y, Zhang X, Shi M, Tu Z, Hu X, Wu Y. Design of deep eutectic solvents with multiple-active-sites for HCl separation and storage. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
2
|
Feng L, Li S, Li C, Meng H, Lu Y, Fan H. Rational design of efficient deep eutectic solvents for HCl absorption through their competitive H-bonding interactions. Phys Chem Chem Phys 2022; 24:26466-26476. [DOI: 10.1039/d2cp03418b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The high reversible solubility of HCl in BmimCl-TAA depends on its competitive hydrogen bond interactions and dynamic structural changes.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuyi Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chunxi Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hong Meng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi, 830046, P. R. China
| | - Yingzhou Lu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
3
|
Efficient and reversible absorption of HCl gas by ChCl-based deep eutectic solvents-Insights into the absorption behavior and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Lattice-Boltzmann Simulation and Experimental Validation of a Microfluidic T-Junction for Slug Flow Generation. CHEMENGINEERING 2019. [DOI: 10.3390/chemengineering3020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigate the interaction of two immiscible fluids in a head-on device geometry, where both fluids are streaming opposite to each other. The simulations are based on the two-dimensional (2D) lattice Boltzmann method (LBM) using the Rothman and Keller (RK) model. We validate the LBM code with several benchmarks such as the bubble test, static contact angle, and layered flow. For the first time, we simulate a head-on device by forcing periodicity and a volume force to induce the flow. From low to high flow rates, three main flow patterns are observed in the head-on device, which are dripping-squeezing, jetting-shearing, and threading. In the squeezing regime, the flow is steady and the droplets are equal. The jetting-shearing flow is not as stable as dripping-squeezing. Moreover, the formation of droplets is shifted downstream into the main channel. The last flow form is threading, in which the immiscible fluids flow parallel downstream to the outlet. In contrast to other studies, we select larger microfluidic channels with 1-mm channel width to achieve relatively high volumetric fluxes as used in chemical synthesis reactors. Consequently, the capillary number of the flow regimes is smaller than 10−5. In conclusion, the simulation compares well to experimental data.
Collapse
|
5
|
Laudadio G, de Smet W, Struik L, Cao Y, Noël T. Design and application of a modular and scalable electrochemical flow microreactor. J Flow Chem 2018; 8:157-165. [PMID: 30931153 PMCID: PMC6404740 DOI: 10.1007/s41981-018-0024-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022]
Abstract
Electrochemistry constitutes a mild, green and versatile activation method of organic molecules. Despite these innate advantages, its widespread use in organic chemistry has been hampered due to technical limitations, such as mass and heat transfer limitations which restraints the scalability of electrochemical methods. Herein, we describe an undivided-cell electrochemical flow reactor with a flexible reactor volume. This enables its use in two different modes, which are highly relevant for flow chemistry applications, including a serial (volume ranging from 88 μL/channel up to 704 μL) or a parallel mode (numbering-up). The electrochemical flow reactor was subsequently assessed in two synthetic transformations, which confirms its versatility and scale-up potential.
Collapse
Affiliation(s)
- Gabriele Laudadio
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, De Rondom 70 (Helix, STO 1.37), 5612 AP Eindhoven, The Netherlands
| | - Wouter de Smet
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, De Rondom 70 (Helix, STO 1.37), 5612 AP Eindhoven, The Netherlands
| | - Lisa Struik
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, De Rondom 70 (Helix, STO 1.37), 5612 AP Eindhoven, The Netherlands
| | - Yiran Cao
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, De Rondom 70 (Helix, STO 1.37), 5612 AP Eindhoven, The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, De Rondom 70 (Helix, STO 1.37), 5612 AP Eindhoven, The Netherlands
| |
Collapse
|
6
|
Movsisyan M, Heugebaert TSA, Roman BI, Dams R, Van Campenhout R, Conradi M, Stevens CV. Atom- and Mass-economical Continuous Flow Production of 3-Chloropropionyl Chloride and its Subsequent Amidation. Chemistry 2018; 24:11779-11784. [PMID: 29879290 DOI: 10.1002/chem.201802208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Indexed: 11/07/2022]
Abstract
3-Chloropropionyl chloride is a chemically versatile building block with applications in the field of adhesives, pharmaceuticals, herbicides and fungicides. Its current production entails problems concerning safety, prolonged reaction times and the use of excessive amounts of chlorinating reagents. We developed a continuous flow procedure for acid chloride formation from acrylic acid and a consecutive 1,4-addition of hydrogen chloride generating 3-chloropropionyl chloride, as presented in this paper. Up to 94 % conversion was reached in 25 minutes at mild temperatures and pressures. This continuous flow method offers a safer alternative and is highly efficient in terms of consumption of starting product and shorter residence time. Valorization of this building block is exemplified by the synthesis of beclamide, a compound with sedative and anticonvulsant properties. Over 80 % conversion towards this drug was achieved in 1 minute in a continuous flow setup. Further research is needed to telescope the synthesis of 3-chloropropionyl chloride and subsequent beclamide formation without intermediate purification.
Collapse
Affiliation(s)
- Marine Movsisyan
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thomas S A Heugebaert
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Bart I Roman
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Rudolf Dams
- Materials Resource Division, 3M (Belgium) BVBA, Haven 1005, Canadastraat 11, 2070, Zwijndrecht, Belgium
| | - Rudy Van Campenhout
- Materials Resource Division, 3M (Belgium) BVBA, Haven 1005, Canadastraat 11, 2070, Zwijndrecht, Belgium
| | - Matthias Conradi
- Materials Resource Division, 3M (Belgium) BVBA, Haven 1005, Canadastraat 11, 2070, Zwijndrecht, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
7
|
Abstract
Abstract
The pre-Socratic philosophers made the first honest attempt, at least in the western world, to describe natural phenomena in a rudimentary scientific manner and to exploit those for technological application [1]. Pythagoras of Samos (570–495 BC) was an Ionian Greek philosopher and the first to actually call himself a “philosopher”. He was credited with many mathematical and scientific discoveries, including the Pythagorean theorem, Pythagorean tuning, the five regular solids, the theory of proportions, and the sphericity of the Earth. The Pythagorean triple is also well-known. Heraclitus of Ephesus (535–475 BC) was famous for his insistence on ever-present change as the fundamental essence of the universe, as stated in the famous saying
“panta rhei”
—everything flows.
Collapse
|
8
|
Li Z, Ebule R, Kostyo J, Hammond GB, Xu B. HBr-DMPU: The First Aprotic Organic Solution of Hydrogen Bromide. Chemistry 2017; 23:12739-12743. [PMID: 28762258 PMCID: PMC5682921 DOI: 10.1002/chem.201703457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 12/24/2022]
Abstract
HBr and DMPU (1,3-dimethyl-3,4,5,6-tetrahydro-2-pyrimidinone) form a room-temperature-stable complex that provides a mild, effective, and selective hydrobrominating reagent toward alkynes, alkenes, and allenes. HBr-DMPU could also replace other halogenating reagents in the halo-Prins reaction, ether cleavage, and deoxy-bromination reactions.
Collapse
Affiliation(s)
- Zhou Li
- Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, United States
| | - Rene Ebule
- Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, United States
| | - Jessica Kostyo
- Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, United States
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, United States
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, China
| |
Collapse
|
9
|
Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's Guide to Flow Chemistry ∥. Chem Rev 2017; 117:11796-11893. [PMID: 28570059 DOI: 10.1021/acs.chemrev.7b00183] [Citation(s) in RCA: 1082] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Collapse
Affiliation(s)
- Matthew B Plutschack
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kerry Gilmore
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
10
|
Kockmann N, Thenée P, Fleischer-Trebes C, Laudadio G, Noël T. Safety assessment in development and operation of modular continuous-flow processes. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00021a] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Improved safety is one of the main drivers for microreactor application in chemical process development and small-scale production.
Collapse
Affiliation(s)
- Norbert Kockmann
- Laboratory of Equipment Design
- Department of Biochemical and Chemical Engineering
- TU Dortmund
- Germany
| | | | | | - Gabriele Laudadio
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry and Process Technology
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry and Process Technology
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
11
|
Cantillo D, Kappe CO. Halogenation of organic compounds using continuous flow and microreactor technology. REACT CHEM ENG 2017. [DOI: 10.1039/c6re00186f] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Halogenation reactions involving highly reactive halogenating agents can be performed safely and with improved efficiency and selectivity under continuous flow conditions.
Collapse
Affiliation(s)
- David Cantillo
- Institute of Chemistry
- University of Graz
- Graz
- Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE)
| | - C. Oliver Kappe
- Institute of Chemistry
- University of Graz
- Graz
- Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE)
| |
Collapse
|
12
|
Bana P, Örkényi R, Lövei K, Lakó Á, Túrós GI, Éles J, Faigl F, Greiner I. The route from problem to solution in multistep continuous flow synthesis of pharmaceutical compounds. Bioorg Med Chem 2016; 25:6180-6189. [PMID: 28087127 DOI: 10.1016/j.bmc.2016.12.046] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 12/11/2022]
Abstract
Recent advances in the field of continuous flow chemistry allow the multistep preparation of complex molecules such as APIs (Active Pharmaceutical Ingredients) in a telescoped manner. Numerous examples of laboratory-scale applications are described, which are pointing towards novel manufacturing processes of pharmaceutical compounds, in accordance with recent regulatory, economical and quality guidances. The chemical and technical knowledge gained during these studies is considerable; nevertheless, connecting several individual chemical transformations and the attached analytics and purification holds hidden traps. In this review, we summarize innovative solutions for these challenges, in order to benefit chemists aiming to exploit flow chemistry systems for the synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Péter Bana
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Róbert Örkényi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Klára Lövei
- Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary
| | - Ágnes Lakó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | | | - János Éles
- Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary
| | - Ferenc Faigl
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary; MTA-BME Organic Chemical Technology Research Group, Budafoki út 8, H-1111 Budapest, Hungary
| | - István Greiner
- Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary.
| |
Collapse
|
13
|
Movsisyan M, Heugebaert TSA, Dams R, Stevens CV. Safe, Selective, and High-Yielding Synthesis of Acryloyl Chloride in a Continuous-Flow System. CHEMSUSCHEM 2016; 9:1945-1952. [PMID: 27325562 DOI: 10.1002/cssc.201600348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/26/2016] [Indexed: 06/06/2023]
Abstract
Acid chlorides are an important class of compounds and their high reactivity and instability has prompted us to develop a straightforward procedure for their synthesis with on-demand and on-site synthesis possibilities. The focus of this report is acryloyl chloride, mainly important for the acrylate and polymer industry. A continuous-flow methodology was developed for the fast and selective synthesis of the otherwise highly unstable acryloyl chloride. Three routes were investigated in a microreactor setup and all three can potentially be used for its production. The methodology was further expanded to the synthesis of other unstable acid chlorides by both the thionyl chloride and the oxalyl chloride mediated processes. The most sustainable method was the oxalyl chloride mediated procedure under solvent-free conditions, in which near-equimolar amounts of carboxylic acid and oxalyl chloride were used in the presence of catalytic amounts of DMF at room temperature. Within 1 to 3 min, nearly full conversions into the acid chlorides were achieved.
Collapse
Affiliation(s)
- Marine Movsisyan
- Department of Sustainable Organic Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thomas S A Heugebaert
- Department of Sustainable Organic Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Rudy Dams
- Materials Resource Division, 3 M Belgium BVBA, Haven 1005, Canadastraat 11, 2070, Zwijndrecht, Belgium.
| | - Christian V Stevens
- Department of Sustainable Organic Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|