1
|
Logotheti M, Gehres S, França AS, Bornscheuer UT, de Souza ROMA, Höhne M. Combining Photochemical Oxyfunctionalization and Enzymatic Catalysis for the Synthesis of Chiral Pyrrolidines and Azepanes. J Org Chem 2025; 90:1036-1043. [PMID: 39772597 PMCID: PMC11744798 DOI: 10.1021/acs.joc.4c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Chiral heterocyclic alcohols and amines are frequently used building blocks in the synthesis of fine chemicals and pharmaceuticals. Herein, we report a one-pot photoenzymatic synthesis route for N-Boc-3-amino/hydroxy-pyrrolidine and N-Boc-4-amino/hydroxy-azepane with up to 90% conversions and >99% enantiomeric excess. The transformation combines a photochemical oxyfunctionalization favored for distal C-H positions with a stereoselective enzymatic transamination or carbonyl reduction step. Our study demonstrates a mild and operationally simple asymmetric synthesis workflow from easily available starting materials.
Collapse
Affiliation(s)
- Maria Logotheti
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Susanne Gehres
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Alexandre S. França
- Biocatalysis
and Organic Synthesis Group, Federal University
of Rio de Janeiro, Chemistry Institute, 21941909 Rio de Janeiro, Brazil
| | - Uwe T. Bornscheuer
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Rodrigo O. M. A. de Souza
- Biocatalysis
and Organic Synthesis Group, Federal University
of Rio de Janeiro, Chemistry Institute, 21941909 Rio de Janeiro, Brazil
| | - Matthias Höhne
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
2
|
Costantino M, Giudice V, Campana F, Iannelli AA, Scala P, Longanella W, Marongiu F, Vozzella EA, Elberti MG, Alfieri M, Boccia G, Conti V, De Caro F, Filippelli A. Pre- and Post-COVID-19 Antibiotic Consumption and Stewardship Program in a Southern Italian Hospital. Antibiotics (Basel) 2024; 13:1128. [PMID: 39766518 PMCID: PMC11672782 DOI: 10.3390/antibiotics13121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antibiotic resistance is a growing global threat that significantly impacts public health and healthcare costs. The Italian National Action Plan on Antimicrobial Resistance (PNCAR) was introduced in 2017 to address this issue by improving antibiotic stewardship. This study aimed to evaluate the effectiveness of the PNCAR in enhancing antibiotic management practices in a hospital in southern Italy before and after its implementation. METHODS We conducted an observational monocentric study to analyze antibiotic consumption in a hospital setting before and after the COVID-19 pandemic (2019 and 2023) and to examine prescription appropriateness and the types of used antibiotics. RESULTS After PNCAR introduction, we recorded a significant increase in antibiotic prescription appropriateness and in Access antibiotic and targeted therapy usage, while Reserve antibiotics were prescribed in ~10% of the cases, with an increasing trend in 2023. CONCLUSIONS Our study supports the importance of targeted stewardship initiatives, including continuous monitoring and education, to sustain antibiotic prescription appropriateness and to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Maria Costantino
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.G.); (F.C.); (P.S.); (G.B.); (V.C.); (F.D.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | - Valentina Giudice
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.G.); (F.C.); (P.S.); (G.B.); (V.C.); (F.D.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | - Federica Campana
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.G.); (F.C.); (P.S.); (G.B.); (V.C.); (F.D.C.); (A.F.)
| | - Alessandra Anna Iannelli
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | - Pasqualina Scala
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.G.); (F.C.); (P.S.); (G.B.); (V.C.); (F.D.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | - Walter Longanella
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | | | - Emilia Anna Vozzella
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | - Maria Giovanna Elberti
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | - Maria Alfieri
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | - Giovanni Boccia
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.G.); (F.C.); (P.S.); (G.B.); (V.C.); (F.D.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | - Valeria Conti
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.G.); (F.C.); (P.S.); (G.B.); (V.C.); (F.D.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | - Francesco De Caro
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.G.); (F.C.); (P.S.); (G.B.); (V.C.); (F.D.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| | - Amelia Filippelli
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.G.); (F.C.); (P.S.); (G.B.); (V.C.); (F.D.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84121 Salerno, Italy; (A.A.I.); (W.L.); (E.A.V.); (M.G.E.); (M.A.)
| |
Collapse
|
3
|
Boccardi D, Marini V, Baiardi G, Cameran Caviglia M, Sacco F, Piras F, Del Puente F, Boni S, Pontali E, Mattioli F. Ceftobiprole quantification in human serum by HPLC-UV to implement routine TDM in clinical practice. Clin Chim Acta 2024; 561:119806. [PMID: 38852792 DOI: 10.1016/j.cca.2024.119806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND AND AIMS Ceftobiprole is a recent 5th generation parenteral cephalosporin with antibacterial activity against a large range Gram+ and Gram- bacteria. Therapeutic drug monitoring (TDM) is an essential tool for maintaining plasma concentrations of antibiotics above the MIC by the end of the dosing interval, thus preventing the resistant strain diffusion. TDM is already recommended for other cephalosporins, and it is a reasonable tool contributing to the safety and efficacy of these drugs. During the treatment of patients in real-life, a number of pharmacokinetic (PK) changes not normally seen in healthy volunteers can occur which can impair the pharmacokinetic/pharmacodynamic target attainment. We aimed to develop simple and rapid HPLC-UV method for determination of ceftobiprole in human serum to implement TDM in clinical practice and support PKs and pharmacokinetic/pharmacodynamic (PK/PD) studies. MATERIALS AND METHODS Samples preparation of calibration standards, QC, and anonymous patients serum samples was performed by protein precipitation by adding 0.01 ml of sulphosalicylic acid at 30 % to 0.1 ml of each sample. Then samples were vortexed and the centrifuged at 12,000 rpm for 10 min at 4 °C. Fifty microlitres of clear supernatant were diluted 1:1 with mobile phase and transferred into HPLC autosampler held at 8 °C. Chromatographic separation was carried out in a gradient mode at 35 °C on an ultra-Biphenyl column using a Thermo Scientific chromatographic system with a Diode array. Data management was performed with Chromeleon 7.4 software. RESULTS The HPLC-UV method proved to be linear over wide concentration ranges (0.5-50.0 mg/L) and was accurate and reproducible in the absence of matrix effects, allowing for robust, specific, and rapid quantification of ceftobiprole from a low amount of serum (0.1 mL). The mean steady state Ctrough and Cend values measured in the anonymous patients' samples were 6.26 ± 3.81 mg/L and 22.56 ± 15.69 mg/L, respectively. CONCLUSIONS We report a broadened simple and fast HPLC with UV detection method for quantification of ceftobiprole in human serum to implement ceftobiprole TDM as clinical routine, and support future (PK/PD) studies in special patients' population.
Collapse
Affiliation(s)
- Davide Boccardi
- Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Valeria Marini
- Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Giammarco Baiardi
- Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy.
| | - Michela Cameran Caviglia
- Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Fabio Sacco
- Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Fabio Piras
- Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Filippo Del Puente
- Department of Infectious Diseases, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Silvia Boni
- Department of Infectious Diseases, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Emanuele Pontali
- Department of Infectious Diseases, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Francesca Mattioli
- Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| |
Collapse
|
4
|
Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023; 28:molecules28031421. [PMID: 36771086 PMCID: PMC9919330 DOI: 10.3390/molecules28031421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Continuous-flow chemistry has become a mainstream process and a notable trend among emerging technologies for drug synthesis. It is routinely used in academic and industrial laboratories to generate a wide variety of molecules and building blocks. The advantages it provides, in terms of safety, speed, cost efficiency and small-equipment footprint compared to analog batch processes, have been known for some time. What has become even more important in recent years is its compliance with the quality objectives that are required by drug-development protocols that integrate inline analysis and purification tools. There can be no doubt that worldwide government agencies have strongly encouraged the study and implementation of this innovative, sustainable and environmentally friendly technology. In this brief review, we list and evaluate the development and applications of continuous-flow processes for antibiotic synthesis. This work spans the period of 2012-2022 and highlights the main cases in which either active ingredients or their intermediates were produced under continuous flow. We hope that this manuscript will provide an overview of the field and a starting point for a deeper understanding of the impact of flow chemistry on the broad panorama of antibiotic synthesis.
Collapse
Affiliation(s)
- Marziale Comito
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Riccardo Monguzzi
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Giovanni Palmisano
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-7183
| |
Collapse
|
5
|
Study of Degradation Kinetics and Structural Analysis of Related Substances of Ceftobiprole by HPLC with UV and MS/MS Detection. Int J Mol Sci 2022; 23:ijms232315252. [PMID: 36499576 PMCID: PMC9735983 DOI: 10.3390/ijms232315252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Ceftobiprole is a novel β-lactam antibiotic, active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant S. aureus and penicillin-resistant Streptococcus pneumoniae. To artificially generate potential degradation products (DPs) of ceftobiprole that may be formed under relevant storage conditions, acidic, alkaline, oxidative, photolytic and thermolytic stress tests were performed in both solution and solid state. A novel selective HPLC method was developed for the separation of ceftobiprole from its DPs and synthesis by-products (SBPs) using Kinetex Biphenyl column, ammonium acetate buffer pH 5.8 and acetonitrile. The kinetic studies demonstrated the low stability of ceftobiprole in alkaline solution, in the presence of an oxidising agent and under irradiation with near UV. In the solid state, ceftobiprole underwent oxidation when the powder was irradiated with visible light and UV. Based on mass spectroscopic analysis, 13 new structural formulas of SBPs and DPs were proposed, along with molecular formulas for three other DPs obtained in solution and four oxidative DPs characteristic of solid-state degradation.
Collapse
|
6
|
Wójcicki M, Chmielarczyk A, Świder O, Średnicka P, Strus M, Kasperski T, Shymialevich D, Cieślak H, Emanowicz P, Kowalczyk M, Sokołowska B, Juszczuk-Kubiak E. Bacterial Pathogens in the Food Industry: Antibiotic Resistance and Virulence Factors of Salmonella enterica Strains Isolated from Food Chain Links. Pathogens 2022; 11:1323. [PMID: 36365074 PMCID: PMC9692263 DOI: 10.3390/pathogens11111323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 10/13/2023] Open
Abstract
Salmonella is one of the most important foodborne pathogens. Fifty-three strains of Salmonella deposited in the Culture Collection of Industrial Microorganisms-Microbiological Resources Center (IAFB) were identified using molecular and proteomic analyses. Moreover, the genetic similarity of the tested strains was determined using the PFGE method. Main virulence genes were identified, and phenotypical antibiotic susceptibility profiles and prevalence of resistance genes were analyzed. Subsequently, the occurrence of the main mechanisms of β-lactam resistance was determined. Virulence genes, invA, fimA, and stn were identified in all tested strains. Phenotypic tests, including 28 antibiotics, showed that 50.9% of the strains were MDR. The tet genes associated with tetracyclines resistance were the most frequently identified genes. Concerning the genes associated with ESBL-producing Salmonella, no resistance to the TEM and CTX-M type was identified, and only two strains (KKP 1597 and KKP 1610) showed resistance to SHV. No strains exhibited AmpC-type resistance but for six Salmonella strains, the efflux-related resistance of PSE-1 was presented. The high number of resistant strains in combination with multiple ARGs in Salmonella indicates the possible overuse of antibiotics. Our results showed that it is necessary to monitor antimicrobial resistance profiles in all food chain links constantly and to implement a policy of proper antibiotic stewardship to contain or at least significantly limit the further acquisition of antibiotic resistance among Salmonella strains.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Agnieszka Chmielarczyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Tomasz Kasperski
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
7
|
Turner J, Muraoka A, Bedenbaugh M, Childress B, Pernot L, Wiencek M, Peterson YK. The Chemical Relationship Among Beta-Lactam Antibiotics and Potential Impacts on Reactivity and Decomposition. Front Microbiol 2022; 13:807955. [PMID: 35401470 PMCID: PMC8988990 DOI: 10.3389/fmicb.2022.807955] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/14/2022] [Indexed: 12/05/2022] Open
Abstract
Beta-lactam antibiotics remain one of the most commonly prescribed drug classes, but they are limited by their propensity to cause hypersensitivity reactions (e.g., from allergy to anaphylaxis) as well as by the emergence of bacteria with a myriad of resistance mechanisms such as β-lactamases. While development efforts continue to focus on overcoming resistance, there are ongoing concerns regarding cross-contamination of β-lactams during manufacturing and compounding of these drugs. Additionally, there is a need to reduce levels of drugs such as β-lactam antibiotics in waste-water to mitigate the risk of environmental exposure. To help address future development of effective remediation chemistries and processes, it is desired to better understand the structural relationship among the most common β-lactams. This study includes the creation of a class-wide structural ordering of the entire β-lactam series, including both United States Food and Drug Association (US-FDA)-approved drugs and experimental therapies. The result is a structural relational map: the "Lactamome," which positions each substance according to architecture and chemical end-group. We utilized a novel method to compare the structural relationships of β-lactam antibiotics among the radial cladogram and describe the positioning with respect to efficacy, resistance to hydrolysis, reported hypersensitivity, and Woodward height. The resulting classification scheme may help with the development of broad-spectrum treatments that reduce the risk of occupational exposure and negative environmental impacts, assist practitioners with avoiding adverse patient reactions, and help direct future drug research.
Collapse
Affiliation(s)
- Jonathan Turner
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| | - Alyssa Muraoka
- College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| | | | - Blaine Childress
- South Carolina Research Authority, Greenville, SC, United States
| | | | | | - Yuri K. Peterson
- College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
8
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
9
|
Yang Y, Pannecouque C, Clercq ED, Zhuang C, Chen FE. Privileged scaffold inspired design of novel oxime-biphenyl-DAPYs in treatment of HIV-1. Bioorg Chem 2020; 99:103825. [DOI: 10.1016/j.bioorg.2020.103825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 11/24/2022]
|
10
|
Abstract
Oximes, which are highly bioactive molecules, have versatile uses in the medical sector and have been indicated to possess biological activity. Certain oximes exist in nature in plants and animals, but they are also obtained by chemical synthesis. Oximes are known for their anti-inflammatory, antimicrobial, antioxidant and anticancer activities. Moreover, they are therapeutic agents against organophosphate (OP) poisoning. Two oximes are already commonly used in therapy. Due to these abilities, new oxime compounds have been synthesized, and their biological activity has been verified. Often, modification of carbonyl compounds into oximes leads to increased activity. Nevertheless, in some cases, oxime activity is connected to the activity of the substrate. Recent works have revealed that new oxime compounds can demonstrate such functions and thus are considered to be potential drugs for pathogenic diseases, as adjuvant therapy in various types of cancer and inflammation and as potential next-generation drugs against OP poisoning.
Collapse
|
11
|
Toward the synthesis of thiadiazole-based therapeutic agents: synthesis, spectroscopic study, X-ray analysis, and cross-coupling reactions of the key intermediate 3,5-diiodo-1,2,4-thiadiazole. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04047-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractThe 1,2,4-thiadiazole moiety is an important component of several biologically active compounds, and varying substituents on this aromatic ring is one of the possible methods to develop novel thiadiazole-based drugs for medicine. A key building block to this end, namely 3,5-diiodo-1,2,4-thiadiazole (1), has been synthesized and characterized in this work for the first time. 1 has exhibited high selectivity for the replacement of iodine atom at position C5 (carbon next to sulfur) in Sonogashira-type cross-coupling reactions with phenylacetylene. Therefore, 3-iodo-5-(phenylethynyl)-1,2,4-thiadiazole (4) or 3,5-bis(phenylethynyl)-1,2,4-thiadiazole (5) could be synthesized selectively depending on reaction conditions. All three novel molecules have been characterized by NMR, IR, Raman, mass, and UV spectroscopies, and their solid phase structures have been determined by single-crystal X-ray diffraction. 1 is expected to be a key starting material for producing thiadiazole-based therapeutic agents using cross-coupling reactions.
Collapse
|
12
|
Wang LL, Battini N, Bheemanaboina RRY, Ansari MF, Chen JP, Xie YP, Cai GX, Zhang SL, Zhou CH. A new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antibacterial agents: Design, synthesis and evaluation acting on microbes, DNA, HSA and topoisomerase IV. Eur J Med Chem 2019; 179:166-181. [PMID: 31254919 DOI: 10.1016/j.ejmech.2019.06.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/26/2023]
Abstract
This work did a new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antimicrobial agents. A class of novel hybrids of quinolone, aminothiazole, piperazine and oxime fragments were designed for the first time, conveniently synthesized as well as characterized by 1H NMR, 13C NMR and HRMS spectra. Biological activity showed that some of the synthesized compounds exhibited good antimicrobial activities in comparison with the reference drugs. Especially, O-methyl oxime derivative 10b displayed excellent inhibitory efficacy against MRSA and S. aureus 25923 with MIC values of 0.009 and 0.017 mM, respectively. Further studies indicated that the highly active compound 10b showed low toxicity toward BEAS-2B and A549 cell lines and no obvious propensity to trigger the development of bacterial resistance. Quantum chemical studies have also been conducted and rationally explained the structural features essential for activity. The preliminarily mechanism exploration revealed that compound 10b could not only exert efficient membrane permeability by interfering with the integrity of cells, bind with topoisomerase IV-DNA complex through hydrogen bonds and π-π stacking, but also form a steady biosupramolecular complex by intercalating into DNA to exert the efficient antibacterial activity. The supramolecular interaction between compound 10b and human serum albumin (HSA) was a static quenching, and the binding process was spontaneous, where hydrogen bonds and van der Waals force played vital roles in the supramolecular transportation of the active compound 10b by HSA.
Collapse
Affiliation(s)
- Liang-Liang Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Giacobbe DR, Corcione S, Salsano A, Del Puente F, Mornese Pinna S, De Rosa FG, Mikulska M, Santini F, Viscoli C. Current and emerging pharmacotherapy for the treatment of infections following open-heart surgery. Expert Opin Pharmacother 2019; 20:751-772. [PMID: 30785333 DOI: 10.1080/14656566.2019.1574753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Patients undergoing open-heart surgery may suffer from postoperative complications, including severe infections. Antimicrobials to treat infectious complications in this population should be selected thoughtfully, taking into account three different and fundamental issues: (i) the site of infection; (ii) the suspected or proven causative agent and its susceptibility pattern; and (iii) the risk of suboptimal pharmacokinetic characteristics and potential toxicity of the chosen drug/s. AREAS COVERED The present narrative review summarizes the current and future antimicrobial options for the treatment of infections developing after open-heart surgery. EXPERT OPINION The pharmacological treatment of infections developing in cardiac surgery patients poses peculiar challenges, including the need for an active empirical therapy for severe events such as bloodstream infections, deep sternal wound infections, or early-onset postoperative prosthetic endocarditis. In addition, the risk for multidrug-resistant pathogens should also be taken into account in endemic areas. A multidisciplinary evaluation on a patient-by-patient basis, deeply involving infectious diseases specialists and cardiothoracic surgeons, remains essential for appropriately balancing both short-term and long-term risks and benefits of any possible surgical reintervention in combination with adequate pharmacotherapy.
Collapse
Affiliation(s)
| | - Silvia Corcione
- b Department of Medical Sciences, Infectious Diseases , University of Turin , Turin , Italy
| | - Antonio Salsano
- c Division of Cardiac Surgery, Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC) , University of Genoa , Genoa , Italy.,d Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino , Genoa , Italy
| | - Filippo Del Puente
- a Dipartimento di Scienze della Salute (DISSAL) , University of Genoa , Genoa , Italy
| | - Simone Mornese Pinna
- b Department of Medical Sciences, Infectious Diseases , University of Turin , Turin , Italy
| | | | - Malgorzata Mikulska
- a Dipartimento di Scienze della Salute (DISSAL) , University of Genoa , Genoa , Italy.,d Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino , Genoa , Italy
| | - Francesco Santini
- c Division of Cardiac Surgery, Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC) , University of Genoa , Genoa , Italy.,d Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino , Genoa , Italy
| | - Claudio Viscoli
- a Dipartimento di Scienze della Salute (DISSAL) , University of Genoa , Genoa , Italy.,d Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino , Genoa , Italy
| |
Collapse
|