1
|
Chang TS, Wu JY, Ding HY, Wang TY. Enzymatic Glycosylation of Ganoderma Terpenoid via Bacterial Glycosyltransferases and Glycoside Hydrolases. Biomolecules 2025; 15:655. [PMID: 40427548 DOI: 10.3390/biom15050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Glycosylation is a critical enzymatic modification that involves the attachment of sugar moieties to target compounds, considerably influencing their physicochemical and biological characteristics. This review explored the role of two primary enzyme classes-glycosyltransferases (GTs) and glycoside hydrolases (GHs, glycosidases)-in catalyzing the glycosylation of natural products, with a specific focus on Ganoderma triterpenoids. While GTs typically use activated sugar donors, such as uridine diphosphate glucose, certain GHs can leverage more economical sugar sources, such as sucrose and starch, through transglycosylation. This paper also reviewed strategies for producing novel terpenoid glycosides, particularly recently isolated bacterial GTs and GHs capable of glycosylating terpenoids and flavonoids. It summarized the newly synthesized glycosides' structures and biotransformation mechanisms, enhanced aqueous solubility, and potential applications. The regioselectivity and substrate specificity of GTs and GHs in catalyzing O-glycosylation (glucosylation) at distinct hydroxyl and carboxyl groups were compared. Furthermore, a special case in which the novel glycosylation reactions were mediated by GHs, including the formation of unique glycoside anomers, was included. The advantages and specific capabilities of GT/GH enzymes were evaluated for their potential in biotechnological applications and future research directions. Novel fungal triterpenoid glycosides produced through various glycosidases and sugars is expected to expand their potential applications in the future.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen 89250, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Poynton EF, van Santen JA, Pin M, Contreras MM, McMann E, Parra J, Showalter B, Zaroubi L, Duncan K, Linington RG. The Natural Products Atlas 3.0: extending the database of microbially derived natural products. Nucleic Acids Res 2025; 53:D691-D699. [PMID: 39588755 PMCID: PMC11701703 DOI: 10.1093/nar/gkae1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
The Natural Products Atlas is a database of microbially derived natural products that contains structures, producing organism taxonomy, biosynthetic and chemical ontology classifications, grouping by compound classes and cross-links to a suite of other natural product-related data resources. The database is supported by a web server that includes functionality to browse the collection, search the database using both chemical structures and text/numerical terms and visualize the chemical diversity it contains using interactive dashboards. In the current database release, we have curated 1347 papers, increasing the number of compounds to 36 545. In addition, we have initiated a large-scale effort to incorporate data from papers reporting structural reassignments and revisions to previously published structures. This effort led to the incorporation of 590 corrections to existing entries, significantly improving the accuracy of the dataset. The Natural Products Atlas may be accessed at www.npatlas.org.
Collapse
Affiliation(s)
- Ella F Poynton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jeffrey A van Santen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Matthew Pin
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Marla Macias Contreras
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK
| | - Emily McMann
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jonathan Parra
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Brandon Showalter
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Liana Zaroubi
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Katherine R Duncan
- Biosciences Institute, Catherine Cookson Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
3
|
Chen JX, Yang XQ, Sun J, Li YH, Yang YB, Ding ZT. New Antifungal and Antifeedant Metabolites from Daldinia Eschscholtzii Cocultured with Colletotrichum Pseudomajus. Chem Biodivers 2025; 22:e202401726. [PMID: 39301842 DOI: 10.1002/cbdv.202401726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
The synchronous co-culture of Daldinia eschscholtzii and Colletotrichum pseudomajus produced one new linear polyketide, eschscholin C (1), along with three known compounds (2-4). One new acorane sesquiterpene, coldaldrin A (5), and one new amide derivative, coldaldamide A (6) as the probe for polyketide intermediate capture, and three known compounds (7-9) were isolated from the sequential co-culture of D. eschscholtzii with C. pseudomajus. The structures and absolute configurations of 1, 5 and 6 were established by spectroscopic analysis including 1D, 2D NMR, the calculations of the NMR, and ECD data. Most compounds showed significant antifungal activities against the tea pathogens C. pseudomajus, and Fusarium asiaticum with MICs of 2-8 μg/mL. Compound 4 also showed antifeedant activity against silkworms with feeding deterrence indices of 79 % at the concentration of 50 μg/cm2.
Collapse
Affiliation(s)
- Jing-Xin Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xue-Qiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jing Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yu-He Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ya-Bin Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zhong-Tao Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| |
Collapse
|
4
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2024; 41:1466-1470. [PMID: 39365258 DOI: 10.1039/d4np90043j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as asperochone A from Aspergillus sp. MMC-2.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
5
|
Rangel-Grimaldo M, Earp CE, Raja HA, Wood JS, Mardiana L, Ho KL, Longcake A, Williamson RT, Palatinus L, Hall MJ, Probert MR, Oberlies NH. Wheldone Revisited: Structure Revision Via DFT-GIAO Chemical Shift Calculations, 1,1-HD-ADEQUATE NMR Spectroscopy, and X-ray Crystallography Studies. JOURNAL OF NATURAL PRODUCTS 2024; 87:2095-2100. [PMID: 39039966 PMCID: PMC11348420 DOI: 10.1021/acs.jnatprod.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Wheldone is a fungal metabolite isolated from the coculture of Aspergillus fischeri and Xylaria flabelliformis, displaying cytotoxic activity against breast, melanoma, and ovarian cancer cell lines. Initially, its structure was characterized as an unusual 5-methyl-bicyclo[5.4.0]undeca-3,5-diene scaffold with a 2-hydroxy-1-propanone side chain and a 3-(2-(1-hydroxyethyl)-2-methyl-2,5-dihydrofuran-3-yl)acrylic acid moiety. Upon further examination, minor inconsistencies in the data suggested the need for the structure to be revisited. Thus, the structure of wheldone has been revised using an orthogonal experimental-computational approach, which combines 1,1-HD-ADEQUATE NMR experiments, DFT-GIAO chemical shift calculations, and single-crystal X-ray diffraction (SCXRD) analysis of a semisynthetic p-bromobenzylamide derivative, formed via a Steglich-type reaction. The summation of these data now permits the unequivocal assignment of both the structure and absolute configuration of the natural product.
Collapse
Affiliation(s)
- Manuel Rangel-Grimaldo
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Cody E. Earp
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Jared S. Wood
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Lina Mardiana
- Indicatrix
Crystallography Ltd, Newcastle University, Newcastle NE1 7RU, U.K.
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
- Department
of Chemistry, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia
| | - Kin Lok Ho
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Alexandra Longcake
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Lukáš Palatinus
- Department
of Structure Analysis, Institute of Physics
of the Czech Academy of Sciences, Na Slovance 2, Prague 18221, Czech Republic
| | - Michael J. Hall
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Michael R. Probert
- Chemistry
− School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, U.K.
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
6
|
Zhang S, Gu L, Lin Y, Zeng H, Ding N, Wei J, Gu X, Liu C, Sun W, Zhou Y, Zhang Y, Hu Z. Chaetoxylariones A-G: undescribed chromone-derived polyketides from co-culture of Chaetomium virescens and Xylaria grammica enabled via the molecular networking strategy. Bioorg Chem 2024; 147:107329. [PMID: 38608410 DOI: 10.1016/j.bioorg.2024.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
By co-culturing two endophytic fungi (Chaetomium virescens and Xylaria grammica) collected from the medicinal and edible plant Smilax glabra Roxb. and analyzing them with MolNetEnhancer module on GNPS platform, seven undescribed chromone-derived polyketides (chaetoxylariones A-G), including three pairs of enantiomer ones (2a/2b, 4a/4b and 6a/6b) and four optical pure ones (1, 3, 5 and 7), as well as five known structural analogues (8-12), were obtained. The structures of these new compounds were characterized by NMR spectroscopy, single-crystal X-ray diffraction, 13C NMR calculation and DP4+ probability analyses, as well as the comparison of the experimental electronic circular dichroism (ECD) data. Structurally, compound 1 featured an unprecedented chromone-derived sulfonamide tailored by two isoleucine-derived δ-hydroxy-3-methylpentenoic acids via the acylamide and NO bonds, respectively; compound 2 represented the first example of enantiomeric chromone derivative bearing a unique spiro-[3.3]alkane ring system; compound 3 featured a decane alkyl side chain that formed an undescribed five-membered lactone ring between C-7' and C-10'; compound 4 contained an unexpected highly oxidized five-membered carbocyclic system featuring rare adjacent keto groups; compound 7 featured a rare methylsulfonyl moiety. In addition, compound 10 showed a significant inhibition towards SW620/AD300 cells with an IC50 value of PTX significantly decreased from 4.09 μM to 120 nM, and a further study uncovered that compound 10 could obviously reverse the MDR of SW620/AD300 cells.
Collapse
Affiliation(s)
- Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yongtong Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Nanjin Ding
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiangchun Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaoxia Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chang Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuan Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
7
|
Cowled MS, Kalaitzis JA, Crombie A, Chen R, Sbaraini N, Lacey E, Piggott AM. Fungal Duel between Penicillium brasilianum and Aspergillus nomius Results in Dual Induction of Miktospiromide A and Kitrinomycin A. JOURNAL OF NATURAL PRODUCTS 2023; 86:2398-2406. [PMID: 37737825 DOI: 10.1021/acs.jnatprod.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Cocultivation of the fungi Penicillium brasilianum MST-FP1927 and Aspergillus nomius MST-FP2004 resulted in the reciprocal induction of two new compounds, miktospiromide A (1) from A. nomius and kitrinomycin A (2) from P. brasilianum. A third new compound, kitrinomycin B (3), was also identified from an axenic culture of P. brasilianum, along with the previously reported compounds austalide K (4), 17S-dihydroaustalide K (5), verruculogen (6), and fumitremorgin B (7). The structures of 1-3 were elucidated by detailed spectroscopic analysis and DFT calculations, while 4-7 were identified by comparison to authentic standards. The genome of A. nomius MST-FP2004 was sequenced, and a putative biosynthetic gene cluster for 1 was identified. Compound 2 showed activity against murine melanoma NS-1 cells (LD99 7.8 μM) and the bovine parasite Tritrichomonas foetus (LD99 4.8 μM).
Collapse
Affiliation(s)
- Michael S Cowled
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - John A Kalaitzis
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Rachel Chen
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Nicolau Sbaraini
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Ernest Lacey
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
8
|
Alanzi A, Elhawary EA, Ashour ML, Moussa AY. Aspergillus co-cultures: A recent insight into their secondary metabolites and microbial interactions. Arch Pharm Res 2023; 46:273-298. [PMID: 37032397 DOI: 10.1007/s12272-023-01442-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
There is an urgent need for novel antibiotics to combat emerging resistant microbial strains. One of the most pressing resources is Aspergillus microbial cocultures. The genome of Aspergillus species comprises a far larger number of novel gene clusters than previously expected, and novel strategies and approaches are essential to exploit this potential source of new drugs and pharmacological agents. This is the first review consulting recent developments and chemical diversity of Aspergillus cocultures and highlighting its untapped richness. The analyzed data revealed that cocultivation of several Aspergillus species with other microorganisms, including bacteria, plants, and fungi, is a source of novel bioactive natural products. Various vital chemical skeleton leads were newly produced or augmented in Aspergillus cocultures, among which were taxol, cytochalasans, notamides, pentapeptides, silibinin, and allianthrones. The possibility of mycotoxin production or complete elimination in cocultivations was detected, which pave the way for better decontamination strategies. Most cocultures revealed a remarkable improvement in their antimicrobial or cytotoxic behavior due to their produced chemical patterns; for instance, weldone and asperterrin whose antitumor and antibacterial activities, respectively, were superior. Microbial cocultivation elicited the upregulation or production of specific metabolites whose importance and significance are yet to be revealed. With more than 155 compounds isolated from Aspergillus cocultures in the last 10 years, showing overproduction, reduction, or complete suppression under the optimized coculture circumstances, this study filled a gap for medicinal chemists searching for new lead sources or bioactive molecules as anticancer agents or antimicrobials.
Collapse
Affiliation(s)
- Abdullah Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt
- Pharmacy Program, Department of Pharmaceutical Science, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt.
| |
Collapse
|
9
|
The Potential Use of Fungal Co-Culture Strategy for Discovery of New Secondary Metabolites. Microorganisms 2023; 11:microorganisms11020464. [PMID: 36838429 PMCID: PMC9965835 DOI: 10.3390/microorganisms11020464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Fungi are an important and prolific source of secondary metabolites (SMs) with diverse chemical structures and a wide array of biological properties. In the past two decades, however, the number of new fungal SMs by traditional monoculture method had been greatly decreasing. Fortunately, a growing number of studies have shown that co-culture strategy is an effective approach to awakening silent SM biosynthetic gene clusters (BGCs) in fungal strains to produce cryptic SMs. To enrich our knowledge of this approach and better exploit fungal biosynthetic potential for new drug discovery, this review comprehensively summarizes all fungal co-culture methods and their derived new SMs as well as bioactivities on the basis of an extensive literature search and data analysis. Future perspective on fungal co-culture study, as well as its interaction mechanism, is supplied.
Collapse
|
10
|
Knowles SL, Raja HA, Roberts CD, Oberlies NH. Fungal-fungal co-culture: a primer for generating chemical diversity. Nat Prod Rep 2022; 39:1557-1573. [PMID: 35137758 PMCID: PMC9384855 DOI: 10.1039/d1np00070e] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 01/25/2023]
Abstract
Covering: 2002 to 2020In their natural environment, fungi must compete for resources. It has been hypothesized that this competition likely induces the biosynthesis of secondary metabolites for defence. In a quest to discover new chemical diversity from fungal cultures, a growing trend has been to recapitulate this competitive environment in the laboratory, essentially growing fungi in co-culture. This review covers fungal-fungal co-culture studies beginning with the first literature report in 2002. Since then, there has been a growing number of new secondary metabolites reported as a result of fungal co-culture studies. Specifically, this review discusses and provides insights into (1) rationale for pairing fungal strains, (2) ways to grow fungi for co-culture, (3) different approaches to screening fungal co-cultures for chemical diversity, (4) determining the secondary metabolite-producing strain, and (5) final thoughts regarding the fungal-fungal co-culture approach. Our goal is to provide a set of practical strategies for fungal co-culture studies to generate unique chemical diversity that the natural products research community can utilize.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Christopher D Roberts
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
11
|
Li F, Huang Z, Mo S, Gu S, Zhang S, Yang B, Wang J, Hu Z, Zhang Y. Two undescribed pairs of isoprenyl hydroxybenzoic acid derivatives from coculture of Pestalotiopsis sp. and Penicillium bialowiezense: enantioseparation and their absolute configurations. NEW J CHEM 2022. [DOI: 10.1039/d2nj03531f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two undescribed pairs of ester dimer enantiomers, namely glyceryl 4-hydroxy-3-prenyl-benzoate and anofinic glyceride, which represented the first examples of isoprenyl hydroxybenzoic acid derivatives bearing a glycerol moiety, were isolated from...
Collapse
|
12
|
Yu G, Sun Y, Han H, Yan X, Wang Y, Ge X, Qiao B, Tan L. Coculture, An Efficient Biotechnology for Mining the Biosynthesis Potential of Macrofungi via Interspecies Interactions. Front Microbiol 2021; 12:663924. [PMID: 33815350 PMCID: PMC8010659 DOI: 10.3389/fmicb.2021.663924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Macrofungi, which are also known as mushrooms, can produce various bioactive constituents and have become promising resources as lead drugs and foods rich in nutritional value. However, the production of these bioactive constituents under standard laboratory conditions is inefficiency due to the silent expression of their relevant genes. Coculture, as an important activation strategy that simulates the natural living conditions of macrofungi, can activate silent genes or clusters through interspecific interactions. Coculturing not only can trigger the biosynthesis of diverse secondary metabolites and enzymes of macrofungi, but is also useful for uncovering the mechanisms of fungal interspecific interactions and novel gene functions. In this paper, coculturing among macrofungi or between macrofungi and other microorganisms, the triggering and upregulation of secondary metabolites and enzymes, the potential medicinal applications, and the fungal-fungal interaction mechanisms are reviewed. Finally, future challenges and perspectives in further advancing coculture systems are discussed.
Collapse
Affiliation(s)
- Guihong Yu
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yuman Sun
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Heyang Han
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xiu Yan
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxuan Ge
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Bin Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lingling Tan
- Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
Flores-Bocanegra L, Raja HA, Bacon JW, Maldonado AC, Burdette JE, Pearce CJ, Oberlies NH. Cytotoxic Naphthoquinone Analogues, Including Heterodimers, and Their Structure Elucidation Using LR-HSQMBC NMR Experiments. JOURNAL OF NATURAL PRODUCTS 2021; 84:771-778. [PMID: 33006889 PMCID: PMC8005429 DOI: 10.1021/acs.jnatprod.0c00856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Approximately 1700 naphthoquinones have been reported from a range of natural product source materials, but only 283 have been isolated from fungi, fewer than 75 of those were dimers, and only 2 were heterodimers with a head-to-tail linkage. During a search for anticancer leads from fungi, a series of new naphthoquinones (1-4), including two heterodimers (3 and 4), were isolated from Pyrenochaetopsis sp. (strain MSX63693). In addition, the previously reported 5-hydroxy-6-(1-hydroxyethyl)-2,7-dimethoxy-1,4-naphthalenedione (5), misakimycin (6), 5-hydroxy-6-[1-(acetyloxy)ethyl]-2,7-dimethoxy-1,4-naphthalenedione (7), 6-ethyl-2,7-dimethoxyjuglone (8), and kirschsteinin (9) were isolated. While the structure elucidation of 1-9 was achieved using procedures common for natural products chemistry studies (high-resolution electrospray ionization mass spectrometry (HRESIMS), 1D and 2D NMR), the elucidation of the heterodimers was facilitated substantially by data from the long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC) experiment. The absolute configuration of 1 was established by analysis of the measured vs calculated ECD data. The racemic mixture of 4 was established via X-ray crystallography of an analogue that incorporated a heavy atom. All compounds were evaluated for cytotoxicity against the human cancer cells lines MDA-MB-435 (melanoma), MDA-MB-231 (breast), and OVCAR3 (ovarian), where the IC50 values ranged between 1 and 20 μM.
Collapse
Affiliation(s)
- Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Jeffrey W Bacon
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Amanda C Maldonado
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| |
Collapse
|
14
|
Inducing new bioactive metabolites production from coculture of Pestalotiopsis sp. and Penicillium bialowiezense. Bioorg Chem 2021; 110:104826. [PMID: 33780746 DOI: 10.1016/j.bioorg.2021.104826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
Coculturing two or more fungi is a useful strategy to awaken the silent genes to produce structurally diverse and bioactive natural products. Through the coculture of Pestalotiopsis sp. and Penicillium bialowiezense, six new isoprenylated chromane derivatives, including two pairs of enantiomeric ones (1a/1b-2a/2b) and two optical pure ones (3-4), two new isoprenylated phenol glucoside derivatives (6-7), as well as eight known structural analogues (5 and 8-14), were obtained. The structures of these new compounds were characterized by NMR spectroscopy, single-crystal X-ray crystallography, and ECD calculation. The Δ10,11 double bond of pestaloficin D (5) was revised to E-configurated based on the extensive spectroscopic analyses. Compounds 1a/1b and 2a/2b were the first examples of enantiomeric isoprenylated chromane derivatives, which were successfully separated by chiral HPLC. Additionally, all the isolated compounds were evaluated for the in vitro β-glucuronidase (GUS) and butyrylcholinesterase (BChE) inhibitory activities. Compounds 1a and 1b showed significant β-glucuronidase inhibitory potency with IC50 values of 7.6 and 10.3 μM, respectively. Compound 14 exhibited moderate BChE inhibitory activity with an IC50 value of 21.3 μM. In addition, the structure-enzyme inhibitory activity relationship of compounds 1-14 is discussed.
Collapse
|
15
|
Becker K, Stadler M. Recent progress in biodiversity research on the Xylariales and their secondary metabolism. J Antibiot (Tokyo) 2021; 74:1-23. [PMID: 33097836 PMCID: PMC7732752 DOI: 10.1038/s41429-020-00376-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022]
Abstract
The families Xylariaceae and Hypoxylaceae (Xylariales, Ascomycota) represent one of the most prolific lineages of secondary metabolite producers. Like many other fungal taxa, they exhibit their highest diversity in the tropics. The stromata as well as the mycelial cultures of these fungi (the latter of which are frequently being isolated as endophytes of seed plants) have given rise to the discovery of many unprecedented secondary metabolites. Some of those served as lead compounds for development of pharmaceuticals and agrochemicals. Recently, the endophytic Xylariales have also come in the focus of biological control, since some of their species show strong antagonistic effects against fungal and other pathogens. New compounds, including volatiles as well as nonvolatiles, are steadily being discovered from these ascomycetes, and polythetic taxonomy now allows for elucidation of the life cycle of the endophytes for the first time. Moreover, recently high-quality genome sequences of some strains have become available, which facilitates phylogenomic studies as well as the elucidation of the biosynthetic gene clusters (BGC) as a starting point for synthetic biotechnology approaches. In this review, we summarize recent findings, focusing on the publications of the past 3 years.
Collapse
Affiliation(s)
- Kevin Becker
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- German Centre for Infection Research Association (DZIF), partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|