1
|
Liang Z, Wang W, Wang S. TBHP-Promoted Trifluoromethyl-difluoromethylthiolation of Unactivated Alkenes with CF 3SO 2Na and PhSO 2SCF 2H. Org Lett 2025; 27:2123-2127. [PMID: 39996505 DOI: 10.1021/acs.orglett.5c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
A TBHP-promoted trifluoromethyl-difluoromethylthiolation of alkenes was reported. Langlois' reagent was used as a stable and inexpensive trifluoromethyl source. In the presence of TBHP, the trifluoromethyl radical generated reacted with alkenes, achieving a new alkyl radical, which could be trapped by PhSO2SCF2H, forming C-C and C-S bonds in one step and incorporating trifluoromethyl and difluoromethylthio groups. The mild conditions and broad functional group tolerance endowed the reaction with great potential in the field of pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- Zengrui Liang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Wengui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China
| |
Collapse
|
2
|
Akita M. Dawn of photoredox catalysis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:274-301. [PMID: 40350302 DOI: 10.2183/pjab.101.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Photoredox catalysis, which facilitates organic transformations under visible-light irradiation, including sunlight, has garnered considerable attention as a cornerstone of green chemistry. Since the early days of this field around 2010, the author's group has made substantial contributions to its advancement. This review article provides a concise overview of the history and fundamental principles of photoredox catalysis, along with highlights of the achievements by the author's group. Although colorless organic compounds cannot be directly activated by visible light, photo-excited colored catalysts, with their two half-occupied frontier orbitals, play dual roles via electron transfer processes with organic substrates. The hole in the lower-energy orbital functions as a single-electron oxidant, whereas the electron in the higher-energy orbital acts as a single-electron reductant, enabling the formation of reactive radical intermediates from diverse organic compounds, including colorless ones. The discussion will focus on the key transformations developed by the author's group, including bimetallic photocatalysis, fluoroalkylation, and catalysis in aqueous media.
Collapse
Affiliation(s)
- Munetaka Akita
- Institute of Science Tokyo (former Tokyo Institute of Technology)
| |
Collapse
|
3
|
Jang J, Hwang HS, Jeong H, Cho EJ. Electrochemical trifluoromethylation of alkynes: the unique role of DMSO as a masking auxiliary. Chem Sci 2024; 15:19739-19744. [PMID: 39568876 PMCID: PMC11575639 DOI: 10.1039/d4sc06780k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Recent advancements in eco-friendly radical fluoroalkylation have substituted traditional two-electron-based reactions. However, the radical trifluoromethylation of terminal alkynes remains a significant challenge, primarily due to the high reactivity of alkenyl radical intermediates, which predominantly engage in reactions other than the desired elimination. In this work, we have developed an electrochemical trifluoromethylation method for terminal alkynes, facilitating the efficient formation of CF3-alkynes. The success of this method centers on the use of DMSO as a "masking auxiliary", which effectively stabilizes the alkenyl radical intermediate, allowing the reaction to proceed smoothly under mild conditions. This approach is supported by extensive experimental and computational studies, which elucidate the unique mechanism and expand the potential applications of radical trifluoromethylation across chemical synthesis.
Collapse
Affiliation(s)
- Jihoon Jang
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Haeryeong Jeong
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| |
Collapse
|
4
|
Zhang C, Cheng H, An Y, Li S, Wu J, Zheng D. Catalyst-Free Radical Carbosulfonylation of Enamides with Indoles, Aryldiazonium Tetrafluoroborates, and DABCO·(SO 2) 2. Org Lett 2024; 26:8307-8311. [PMID: 39311449 DOI: 10.1021/acs.orglett.4c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, we have developed a catalyst-free four-component carbosulfonylation of enamides involving indoles, DABCO·(SO2)2, and aryldiazonium tetrafluoroborates for the preparation of various β-amidosulfone products in moderate to excellent yields. This approach features mild reaction conditions, high step-efficiency, and broad substrate scope, which provides a green and efficient strategy for carbosulfonyl difunctionalization of enamides. Based on the results of mechanism studies, a radical tandem reaction process is proposed for the transformation.
Collapse
Affiliation(s)
- Changmei Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Hao Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Shaoyu Li
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Danqing Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Zhang T, Rabeah J, Das S. Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes. Nat Commun 2024; 15:5208. [PMID: 38890327 PMCID: PMC11189478 DOI: 10.1038/s41467-024-49514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Controlling regioselectivity during difunctionalization of alkenes remains a significant challenge, particularly when the installation of both functional groups involves radical processes. In this aspect, methodologies to install trifluoromethane (-CF3) via difunctionalization have been explored, due to the importance of this moiety in the pharmaceutical sectors; however, these existing reports are limited, most of which affording only the corresponding β-trifluoromethylated products. The main reason for this limitation arises from the fact that -CF3 group served as an initiator in those reactions and predominantly preferred to be installed at the terminal (β) position of an alkene. On the contrary, functionalization of the -CF3 group at the internal (α) position of alkenes would provide valuable products, but a meticulous approach is necessary to win this regioselectivity switch. Intrigued by this challenge, we here develop an efficient and regioselective strategy where the -CF3 group is installed at the α-position of an alkene. Molecular complexity is achieved via the simultaneous insertion of a sulfonyl fragment (-SO2R) at the β-position. A precisely regulated sequence of radical generation using red light-mediated photocatalysis facilitates this regioselective switch from the terminal (β) position to the internal (α) position. Furthermore, this approach demonstrates broad substrate scope and industrial potential for the synthesis of pharmaceuticals under mild reaction conditions.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Rostock, Germany
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp, Belgium.
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
6
|
Fan G, Wu C, Liu X, Liu P. Sequential Ring Opening/In Situ SO 2-Capture/Alkynylation of Cyclopropanols with Alkynyl Triflones Initiated by Energy Transfer. J Org Chem 2024. [PMID: 38745550 DOI: 10.1021/acs.joc.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A visible-light-triggered ring opening/in situ SO2-capture/alkynylation sequence of cyclopropyl alcohols with alkynyl triflones using 4CzIPN as a triplet energy transfer photocatalyst is herein described. This metal-free protocol provides a straightforward and atom-economical approach to alkynyl-substituted γ-keto sulfones with a broad scope of substituents. In this transformation, alkynyl triflones could be used as both radical acceptors and SO2 donors. Preliminary experimental mechanistic studies and synthetic utility are also demonstrated.
Collapse
Affiliation(s)
- Guohua Fan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Changfu Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
7
|
Li X, Majumder S, Tang X, Dolbier WR. Zinc 1,1,2,2-Tetrafluoroethanesulfinate: A Synthetically Useful Oxidative and Photoredox Source of the 1,1,2,2-Tetrafluoroethyl Radical. J Org Chem 2024; 89:5485-5490. [PMID: 38554099 DOI: 10.1021/acs.joc.3c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
1,1,2,2-Tetrafluoroethyl-containing molecules are of potential importance in drug discovery, but the efficient synthesis of such compounds is still relatively unexplored due to the lack of readily available reagents for the incorporation of the HCF2CF2 group. Herein, we introduce a new reagent, zinc 1,1,2,2-tetrafluoroethanesulfinate, which can be useful for the oxidative tetrafluoroethylation of arylboronic acids and heteroarenes as well as for a novel photoredox, three component hydro-tetrafluoroethylation of two alkenes of complementary reactivity.
Collapse
Affiliation(s)
- Xinjin Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Satyajit Majumder
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Xiaojun Tang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - William R Dolbier
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Hou X, Liu H, Huang H. Iron-catalyzed fluoroalkylative alkylsulfonylation of alkenes via radical-anion relay. Nat Commun 2024; 15:1480. [PMID: 38368406 PMCID: PMC10874428 DOI: 10.1038/s41467-024-45867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Transition metal-catalyzed reductive difunctionalization of alkenes with alkyl halides is a powerful method for upgrading commodity chemicals into densely functionalized molecules. However, super stoichiometric amounts of metal reductant and the requirement of installing a directing group into alkenes to suppress the inherent β-H elimination bring great limitations to this type of reaction. We demonstrate herein that the difunctionalization of alkenes with two different alkyl halides is accessible via a radical-anion relay with Na2S2O4 as both reductant and sulfone-source. The Na2S2O4 together with the electron-shuttle catalyst is crucial to divert the mechanistic pathway toward the formation of alkyl sulfone anion instead of the previously reported alkylmetal intermediates. Mechanistic studies allow the identification of carbon-centered alkyl radical and sulfur-centered alkyl sulfone radical, which are in equilibrium via capture or extrusion of SO2 and could be converted to alkyl sulfone anion accelerated by iron electron-shuttle catalysis, leading to the observed high chemoselectivity.
Collapse
Affiliation(s)
- Xiaoya Hou
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China
| | - Hongchi Liu
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China.
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, P. R. China.
| |
Collapse
|
9
|
Shen J, Li L, Xu J, Shen C, Zhang P. Recent advances in the application of Langlois' reagent in olefin difunctionalization. Org Biomol Chem 2023; 21:2046-2058. [PMID: 36448510 DOI: 10.1039/d2ob01875f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this review, we summarise the recent applications of Langlois' reagent in the radical-mediated difunctionalization of alkenes. Among the various trifluoromethylation reagents, Langlois' reagent is an exceptional compound, and many important organic transformations have been realized by employing such reagents. Various organic transformations of Langlois' reagent, especially in radical chemistry, have been developed in recent years. This review describes several key activation methods for Langlois' reagent in the difunctionalization of alkenes by showcasing selected cornerstone research areas and related mechanisms to stimulate the interest of readers in promoting the wider development and application of Langlois' reagent.
Collapse
Affiliation(s)
- Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Li H, Zhang Y, Yang X, Deng Z, Zhu Z, Zhou P, Ouyang X, Yuan Y, Chen X, Yang L, Liu M, Shu C. Synthesis of Multifluoromethylated γ-Sultines by a Photoinduced Radical Addition-Polar Cyclization. Angew Chem Int Ed Engl 2023; 62:e202300159. [PMID: 36762878 DOI: 10.1002/anie.202300159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/11/2023]
Abstract
Despite the significance of sultines in synthesis, medicine, and materials science, the chemistry of sultines has remained unexplored due to their inaccessibility. Herein, we demonstrate the development of a photoredox-catalyzed multifluoromethyl radical addition/SO2 incorporation/polar cyclization cascade approach to multifluoromethylated γ-sultines. The reactions proceed by single electron transfer induced multifluoromethyl radical addition to an alkene followed by SO2 incorporation, and single-electron reduction for polar 5-exo-tet cyclization. Key to the success of the protocol is the use of easily oxidizable multifluoroalkanesulfinates as bifunctional reagents. The reactions proceed with excellent functional-group tolerance to deliver γ-sultines in moderate to excellent yields.
Collapse
Affiliation(s)
- Helian Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Yongxin Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xiaoxiao Yang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhenxi Deng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhimin Zhu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Pan Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xinke Ouyang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Yuting Yuan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xi Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Lingyue Yang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Meng Liu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Chao Shu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| |
Collapse
|
11
|
Petek N, Brodnik H, Reiser O, Štefane B. Copper- and Photoredox-Catalyzed Cascade to Trifluoromethylated Divinyl Sulfones. J Org Chem 2022; 88:6538-6547. [DOI: 10.1021/acs.joc.2c02422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nejc Petek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Helena Brodnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Laha R, Patel TI, Moschitto MJ. Desulfinative Alkylation of Heteroarenes via an Electrostatic Electron Donor-Acceptor Complex. Org Lett 2022; 24:7394-7399. [PMID: 36194682 DOI: 10.1021/acs.orglett.2c02932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Functionalized pyridine and quinoline rings are important components of numerous bioactive molecules and natural products; however, diversification of these rings often requires de novo heterocycle ring synthesis or demanding reaction conditions. We report a method for desulfinative alkylation of pyridine and quinoline N-methoxide salts that operates under both photocatalytic and electrostatic electron donor-acceptor-mediated pathways. Unlike most EDA-mediated processes, this reaction operates in the absence of light and with the desulfination of the donor compound.
Collapse
Affiliation(s)
- Ramkrishna Laha
- Department of Medicinal Chemistry Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey 163 Frelinghuysen Road, Piscataway New Jersey 08901, United States
| | - Twinkle I Patel
- Department of Medicinal Chemistry Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey 163 Frelinghuysen Road, Piscataway New Jersey 08901, United States
| | - Matthew J Moschitto
- Department of Medicinal Chemistry Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey 163 Frelinghuysen Road, Piscataway New Jersey 08901, United States
| |
Collapse
|
13
|
Kim M, You E, Kim J, Hong S. Site-Selective Pyridylic C-H Functionalization by Photocatalytic Radical Cascades. Angew Chem Int Ed Engl 2022; 61:e202204217. [PMID: 35481719 DOI: 10.1002/anie.202204217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/08/2022]
Abstract
An efficient pyridylic C(sp3 )-H functionalization has been developed through photocatalytic radical-mediated fluoroalkylation or cascade reactions. This method is enabled by the reversible formation of alkylidene dihydropyridine intermediates via the facile enolate formation of C4-alkyl N-amidopyridinium salts in the absence of an external base, thereby establishing the conditions necessary for subsequent intermolecular radical trapping. Rapid structural diversification of the pyridylic site can be achieved through photocatalytic multicomponent cascade reactions involving alkene trifluoromethylation, SO2 -reincorporation, and sulfonyl radical addition. This operationally simple method features a broad substrate scope and high chemoselectivity and offers a unique approach for the rational modification of the heterobenzylic C-H bonds of pyridines and quinolines with uniform site-selective control. Furthermore, experimental and theoretical studies were performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Euna You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jieun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
14
|
Kim M, You E, Kim J, Hong S. Site‐Selective Pyridylic C–H Functionalization by Photocatalytic Radical Cascades. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Myojeong Kim
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Euna You
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Jieun Kim
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Sungwoo Hong
- Korea Advanced Institute of Science and Technology KAIST Department of Chemistry Yusung Gu (KAIST) 34141 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
15
|
Ramani A, Desai B, Dholakiya BZ, Naveen T. Recent advances in visible-light mediated functionalization of olefins and alkynes using copper catalysts. Chem Commun (Camb) 2022; 58:7850-7873. [DOI: 10.1039/d2cc01611g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decade, visible-light photoredox catalysis has blossomed as a powerful strategy and offers a discrete activation mode complementary to thermal controlled reactions. Visible-light-mediated photoredox catalysis also offers exciting...
Collapse
|
16
|
Kaboudin B, Ghashghaee M, Bigdeli A, Farkhondeh A, Eskandari M, Esfandiari H. Recent Advances on the Application of Langlois’ Reagent in Organic Transformations. ChemistrySelect 2021. [DOI: 10.1002/slct.202103867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mojtaba Ghashghaee
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Akram Bigdeli
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Amir Farkhondeh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mahboobe Eskandari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Hesam Esfandiari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| |
Collapse
|
17
|
Wang H, Bellotti P, Zhang X, Paulisch TO, Glorius F. A base-controlled switch of SO2 reincorporation in photocatalyzed radical difunctionalization of alkenes. Chem 2021. [DOI: 10.1016/j.chempr.2021.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Li H, Peng X, Nie L, Zhou L, Yang M, Li F, Hu J, Yao Z, Liu L. Graphene oxide-catalyzed trifluoromethylation of alkynes with quinoxalinones and Langlois' reagent. RSC Adv 2021; 11:38667-38673. [PMID: 35493205 PMCID: PMC9044184 DOI: 10.1039/d1ra07014b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The direct C–H trifluoromethylation of alkynes and quinoxalinones has been achieved using a graphene oxide/Langlois' reagent system. This multi-component tandem reaction using graphene oxide as the catalyst and Langlois' reagent as the robust CF3 radical source results in the formation of olefinic C–CF3 to access a series of 3-trifluoroalkylated quinoxalin-2(1H)-ones. The direct C–H trifluoromethylation of alkynes and quinoxalinones using a graphene oxide/Langlois' reagent system.![]()
Collapse
Affiliation(s)
- Hong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Liang Nie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Lin Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Ming Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Fan Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Jian Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Zhiyang Yao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Liangxian Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| |
Collapse
|
19
|
Wang L, Zhang H, Zhu C, Feng C. Expedient Trifluoromethylacylation of Styrenes Enabled by Photoredox Catalysis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lu Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Heng Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Chuan Zhu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| |
Collapse
|
20
|
Chalotra N, Kumar J, Naqvi T, Shah BA. Photocatalytic functionalizations of alkynes. Chem Commun (Camb) 2021; 57:11285-11300. [PMID: 34617556 DOI: 10.1039/d1cc04014f] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible light mediated functionalizations have significantly expanded the scope of alkynes by unraveling new mechanistic pathways and enabling their transformation to diverse structural entities. The photoredox reactions on alkynes rely on their innate capability to generate myriad carbon-centred radicals via single electron transfer (SET), thereby, allowing the introduction of new radical precursors. Moreover, an array of methods have been developed facilitating transformations such as vicinal or gem-difunctionalization, annulation, cycloaddition and oxidative reactions to construct numerous key building blocks of natural and pharmaceutically important molecules. In addition, the introduction of photoredox chemistry has successfully been used to deal with the challenges associated with alkyne functionalization such as stereoselective and regioselective control. This article accounts for several visible light mediated functionalization reactions of alkynes, wherein they have been transformed into α-oxo compounds, β-keto sulfoxides, substituted olefins, N-heterocycles, internal alkynes and sulfur containing compounds. The article has been primarily categorized into various sections based on the reaction type with particular attention being paid to mechanistic details, advancement and future applications.
Collapse
Affiliation(s)
- Neha Chalotra
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Tahira Naqvi
- Govt. College for Women, MA Road, Srinagar 190001, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
21
|
Dong X, Jiang W, Hua D, Wang X, Xu L, Wu X. Radical-mediated vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes. Chem Sci 2021; 12:11762-11768. [PMID: 34659713 PMCID: PMC8442677 DOI: 10.1039/d1sc03315h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
The addition of sulfonyl radicals to alkenes and alkynes is a valuable method for constructing useful highly functionalized sulfonyl compounds. The underexplored alkoxy- and fluorosulfonyl radicals are easily accessed by CF3 radical addition to readily available allylsulfonic acid derivatives and then β-fragmentation. These substituted sulfonyl radicals add to aryl alkyl alkynes to give vinyl radicals that are trapped by trifluoromethyl transfer to provide tetra-substituted alkenes bearing the privileged alkoxy- or fluorosulfonyl group on one carbon and a trifluoromethyl group on the other. This process exhibits broad functional group compatibility and allows for the late-stage functionalization of drug molecules, demonstrating its potential in drug discovery and chemical biology. An unprecedented method for vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes has been developed to afford useful alkenylsulfonate esters and alkenylsulfonyl fluorides.![]()
Collapse
Affiliation(s)
- Xinrui Dong
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Wenhua Jiang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Dexiang Hua
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Xiaohui Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Liang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| |
Collapse
|
22
|
Abstract
Developments in synthetic chemistry are increasingly driven by improvements in the selectivity and sustainability of transformations. Bifunctional reagents, either as dual coupling partners or as a coupling partner in combination with an activating species, offer an atom-economic approach to chemical complexity, while suppressing the formation of waste. These reagents are employed in organic synthesis thanks to their ability to form complex organic architectures and empower novel reaction pathways. This Review describes several key bifunctional reagents by showcasing selected cornerstone research areas and examples, including radical reactions, C-H functionalization, cross-coupling, organocatalysis and cyclization reactions.
Collapse
|
23
|
Ren S, Fu J, Cheng D, Li X, Xu X. A facile access for multisubstituted trifluoromethyl olefins by visible light catalysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Liao LL, Cao GM, Jiang YX, Jin XH, Hu XL, Chruma JJ, Sun GQ, Gui YY, Yu DG. α-Amino Acids and Peptides as Bifunctional Reagents: Carbocarboxylation of Activated Alkenes via Recycling CO2. J Am Chem Soc 2021; 143:2812-2821. [DOI: 10.1021/jacs.0c11896] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Guang-Mei Cao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xing-Hao Jin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xin-Long Hu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Jason J. Chruma
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Guo-Quan Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People’s Republic of China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
25
|
Guo Y, Wang K, Wang R, Song H, Liu Y, Wang Q. Visible‐Light‐Induced Three‐Component Intermolecular Trifluoromethyl‐Alkenylation Reactions of Unactivated Alkenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuan‐Qiang Guo
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Kaihua Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Ruiguo Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|
26
|
Zheng M, Gao K, Zhang Y, Lu H. Visible-light photoredox-catalyzed aryl radical in situ SO 2-capture reactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00099c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An aryl radical in situ SO2-capture reaction is developed for the synthesis of various β-keto, allyl and alkynyl arylsulfone derivatives.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Ke Gao
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yanhu Zhang
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
27
|
Laishram RD, Chen J, Fan B. Progress in Visible Light‐Induced Difluroalkylation of Olefins. CHEM REC 2020; 21:69-86. [DOI: 10.1002/tcr.202000094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ronibala Devi Laishram
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| | - Baomin Fan
- School of Chemistry and Environment Yunnan Minzu University Kunming 650504 Yunnan China
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| |
Collapse
|