1
|
Li W, Huang D, Xu Z, Zhang Z, Wang Y, Yu H, Ma S. Electrochemical Cyclization of 2,3-Allenols. Org Lett 2025; 27:3506-3510. [PMID: 40177941 DOI: 10.1021/acs.orglett.5c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
An efficient electrochemical bromocyclization of allenols has been realized for the synthesis of spirocyclic 2,5-dihydrofurans. The reaction used commercially available and nontoxic KBr as the brominating source in a simple setup under open-air conditions. Notably, optically active products can be obtained from optically active 2,3-allenols without any racemization, further enhancing the synthetic utility.
Collapse
Affiliation(s)
- Wenyao Li
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Dong Huang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Zhuowei Xu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Zhongshuo Zhang
- Department of Chemistry, Chinese University of Hong Kong, Shatin 999077, N.T. Hong Kong SAR, P. R. China
| | - Ying Wang
- Department of Chemistry, Chinese University of Hong Kong, Shatin 999077, N.T. Hong Kong SAR, P. R. China
| | - Hao Yu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Yan HF, Zou X, Wang JQ, Guo C, Zuo HD. Metal-free radical cascade cyclization/haloazidation of enynones to access functionalized 1-indanones. Org Biomol Chem 2025; 23:1067-1072. [PMID: 39670674 DOI: 10.1039/d4ob01810a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A novel three-component radical cyclization/haloazidation of enynones, employing TMSN3 as the azide source and NIS (NBS or NCS) as the halogen source, has been developed under metal-free conditions for the efficient synthesis of various 1-indanones with moderate yields and acceptable Z/E ratio. The reaction progresses through a sequence involving radical addition, 5-exo-dig cyclization, and radical coupling, ultimately resulting in the formation of three new chemical bonds and a new ring in a single step. The synthetic benefits of this method have been proven by large-scale experiments and late-stage modification.
Collapse
Affiliation(s)
- Hua-Feng Yan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xiao Zou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Jian-Qiang Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Cheng Guo
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Hang-Dong Zuo
- School of Safety Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
3
|
Yuan M, Li Z, Shang W, Xiong B, Xu W, Zhu L, Liu Y, Tang KW, Wong WY. Iron-Catalyzed Cross-Dehydrogenative Coupling of para-Quinone Methides with Formamides: In Situ Activation of C(sp 2)-H Bonds. J Org Chem 2024; 89:16663-16678. [PMID: 39485271 DOI: 10.1021/acs.joc.4c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A novel and straightforward method for the iron-catalyzed regioselective cross-dehydrogenative coupling of para-quinone methides (p-QMs) with formamides has been developed, facilitated by the in situ activation of the C(sp2)-H bonds of the formyl and alkenyl substituents via a radical strategy. This method does not require the preactivation of the substrates, and it can accommodate a wide range of p-QMs and formamides under the optimized reaction conditions, resulting in the formation of the expected C-7 acetamides-functionalized para-quinone methides with moderate to good yields. The control experiments revealed that the reaction follows the fundamental equation of second-order kinetics. Additionally, an exploration of the Hammett effect was undertaken to elucidate the impact of the substituents for the reaction. In combination with the DFT calculation, a plausible reaction mechanism was proposed through meticulously controlled experiments.
Collapse
Affiliation(s)
- Minjing Yuan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Wenli Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
4
|
Fatma S, Ahmad F, Pankhade YA, Ranga PK, Vijaya Anand R. A HMPA-H 2O mediated oxygenative carbocyclization of 2-alkynylphenyl-substituted p-quinone methides to indenones. Org Biomol Chem 2024; 22:5891-5896. [PMID: 38967237 DOI: 10.1039/d4ob00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Herein, we report a transition-metal and base-free protocol to access a wide range of functionalized indenone derivatives through a HMPA-H2O-mediated oxygenative annulation of 2-alkynylphenyl-substituted p-quinone methides. This method worked effectively for most of the p-QMs investigated and the corresponding indenone derivatives were obtained in moderate to good yields. This methodology was further extended to the formal synthesis of one of the resveratrol based natural products, (±)-isopaucifloral F.
Collapse
Affiliation(s)
- Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India.
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India.
| | - Yogesh A Pankhade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India.
| | - Pavit K Ranga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India.
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab - 140306, India.
| |
Collapse
|
5
|
Deng YH, Xu WL, Wang L, Tang CY, Fu JY, Zhang CB. Regio- and diastereoselective synthesis of diverse spirocyclic indenes by cyclization with indene-dienes as two carbon building blocks. Org Biomol Chem 2023; 21:6681-6686. [PMID: 37540130 DOI: 10.1039/d3ob00982c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We report a base-promoted cyclization with indene-dienes as two carbon building blocks toward diverse spirocyclic indene scaffolds including hexacyclic spiroindenes bearing benzo pyran motifs and pentacyclic spiroindenes containing oxindole units in high yields with excellent diastereoselectivities.
Collapse
Affiliation(s)
- Yi-Hang Deng
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Wen-Li Xu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Lei Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Cheng-Yang Tang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Ji-Ya Fu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Chuan-Bao Zhang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Gaikwad RA, Savekar AT, Waghmode SB. Metal-Free Approach for Oxa-spirocyclohexadienones through [3 + 2]/[4 + 2] ipso-Cyclization of para-Quinone Methides with Halo Alcohols. J Org Chem 2023. [PMID: 37406306 DOI: 10.1021/acs.joc.3c00784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
A facile one-pot metal-free, base-mediated formal [3 + 2] and [4 + 2] dearomative ipso-cycloaddition of para-quinone methides (p-QMs) with halo alcohols has been designed for the efficient construction of 2-oxa-spirocyclohexadienones in excellent yield under mild reaction conditions. The commercial availability of the bases, reagents, and convenient reaction procedure makes it an attractive method for ipso-cyclization.
Collapse
Affiliation(s)
- Ramesh A Gaikwad
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Amol T Savekar
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
7
|
Wang JY, Zhang S, Yuan Q, Li G, Yan S. Catalytic Radical-Triggered Annulation/Iododifluoromethylation of Enynones for the Stereospecific Synthesis of 1-Indenones. J Org Chem 2023. [PMID: 37220028 DOI: 10.1021/acs.joc.3c00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A new Pd(II)-catalyzed annulation/iododifluoromethylation of enynones has been developed for the synthesis of versatile 1-indanones with moderate to good yields (26 examples). The present strategy enabled the concomitant incorporation of two important difluoroalkyl and iodo functionalities into 1-indenone skeletons with (E)-stereoselectivity. The mechanistic pathway was proposed, consisting of the difluoroalkyl radical-triggered α,β-conjugated addition/5-exo-dig cyclization/metal radical cross-coupling/reductive elimination cascade.
Collapse
Affiliation(s)
- Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shenghu Yan
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
8
|
Yang M, Jiang R, Mu Y, Hong Y, Wan Y, Hou J, Tang D. Electrochemical cycloaddition of hydrazones with cyanamide for the synthesis of substituted 5-amine-1,2,4-triazoles. Chem Commun (Camb) 2023; 59:2303-2306. [PMID: 36745484 DOI: 10.1039/d2cc06277a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An eco-friendly and efficient electrochemical method for the synthesis of 5-amine-1,2,4-triazole derivatives has been developed by employing hydrazones or in situ generation of hydrazones with cyanamide using KI as the catalyst and electrolyte. This strategy could be smoothly conducted with simple reaction conditions at room temperature without the addition of a chemical oxidant in an undivided cell, and cyanamide has been proven to be of great value in electrosynthesis.
Collapse
Affiliation(s)
- Minghua Yang
- Department of Chemical and Material Engineering, Quzhou College of Technology, No. 18 Jiangyuan Road, Quzhou 324002, Zhejiang, China
| | - Rui Jiang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and ForestryScience, Yinchuan, P. R. China.
| | - Yangxiu Mu
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and ForestryScience, Yinchuan, P. R. China.
| | - Yu Hong
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and ForestryScience, Yinchuan, P. R. China.
| | - Yaya Wan
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and ForestryScience, Yinchuan, P. R. China.
| | - Jing Hou
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and ForestryScience, Yinchuan, P. R. China.
| | - Dong Tang
- Department of Chemical and Material Engineering, Quzhou College of Technology, No. 18 Jiangyuan Road, Quzhou 324002, Zhejiang, China.,Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and ForestryScience, Yinchuan, P. R. China.
| |
Collapse
|
9
|
Ali K, Panda G. Transition-Metal-Free Multicomponent Approach to the Regioselective Synthesis of Highly Substituted N-Alkylpyrazoles. Chem Asian J 2023; 18:e202201129. [PMID: 36585904 DOI: 10.1002/asia.202201129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
An efficient transition-metal-free multicomponent approach to the regioselective synthesis of highly substituted N-alkylpyrazoles through 1,6-addition of pyrazole (in situ generated from α,β-unsaturated aldehyde and hydrazide) to para-Quinone Methides has been developed. The N-alkylpyrazole containing triarylmethanes having several heteroaryl rings (quinoline, pyridine, thiophene) at the central methine carbon atom was developed. This chemical process may be used for large-scale synthesis and provides a novel way to produce triarylmethanes with diverse functional groups.
Collapse
Affiliation(s)
- Kasim Ali
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
10
|
Zhi S, Yao H, Zhang W. Difunctionalization of Dienes, Enynes and Related Compounds via Sequential Radical Addition and Cyclization Reactions. Molecules 2023; 28:1145. [PMID: 36770814 PMCID: PMC9919800 DOI: 10.3390/molecules28031145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Radical reactions are powerful in creating carbon-carbon and carbon-heteroatom bonds. Designing one-pot radical reactions with cascade transformations to assemble the cyclic skeletons with two new functional groups is both synthetically and operationally efficient. Summarized in this paper is the recent development of reactions involving radical addition and cyclization of dienes, diynes, enynes, as well as arene-bridged and arene-terminated compounds for the preparation of difunctionalization cyclic compounds. Reactions carried out with radical initiators, transition metal-catalysis, photoredox, and electrochemical conditions are included.
Collapse
Affiliation(s)
- Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Hongjun Yao
- College of Biological Science and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
11
|
Qian BC, Zhu CZ, Shen GB. The Application of Sulfonyl Hydrazides in Electrosynthesis: A Review of Recent Studies. ACS OMEGA 2022; 7:39531-39561. [PMID: 36385900 PMCID: PMC9648049 DOI: 10.1021/acsomega.2c04205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 05/25/2023]
Abstract
Sulfonyl hydrazides are viewed as alternatives to sulfinic acids and their salts or sulfonyl halides, which are broadly used in organic synthesis or work as active pharmaceutical substances. Generally, sulfonyl hydrazides are considered good building blocks and show powerful value in a diverse range of reactions to construct C-S bonds or C-C bonds, and even C-N bonds as sulfur, carbon, or nitrogen sources, respectively. As a profound synthetic tool, the electrosynthesis method was recently used to achieve efficient and green applications of sulfonyl hydrazides. Interestingly, many unique and novel electrochemical syntheses using sulfonyl hydrazides as radical precursors have been developed, including cascade reactions, functionalization of heterocycles, as well as a continuous flow method combining with electrochemical synthesis since 2017. Accordingly, it is necessary to specifically summarize the recent developments of electrosynthesis with only sulfonyl hydrazides as radical precursors to more deeply understand and better design novel electrochemical synthesis reactions. Herein, electrosynthesis research using sulfonyl hydrazides as radical precursors since 2017 is reviewed in detail based on the chemical structures of products and reaction mechanisms.
Collapse
Affiliation(s)
- Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Chao-Zhe Zhu
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| |
Collapse
|
12
|
Hu SJ, Jiang LL, Qiu H, Luo CM, Guan YT, Li L, Dong Y, Lei KW, Wei WT. Cyclization/hydrolysis of 1,5-enenitriles initiated by sulfonyl radicals in the aqueous phase in the presence of the I 2/TBHP system. Org Biomol Chem 2022; 20:6418-6422. [PMID: 35876742 DOI: 10.1039/d2ob01124g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cyclization/hydrolysis of 1,5-enenitriles for the synthesis of valuable pyrrolidine-2,4-diones in the aqueous phase using I2 as the catalyst and tert-butyl hydroperoxide (TBHP) as the oxidant is reported. In the presence of the I2/TBHP system, sulfonyl hydrazides produce sulfonyl radicals, which undergo radical addition, intramolecular cyclization, hydrogen abstraction, and hydrolysis to give the final products. The use of the inexpensive and environmentally friendly I2/TBHP catalytic oxidation system in the aqueous phase makes it a benign and sustainable strategy.
Collapse
Affiliation(s)
- Sen-Jie Hu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Li-Lin Jiang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hui Qiu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Chun-Mei Luo
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yu-Tao Guan
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Long Li
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Youren Dong
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ke-Wei Lei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wen-Ting Wei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
13
|
Yang M, Hua J, Wang H, Ma T, Liu C, He W, Zhu N, Hu Y, Fang Z, Guo K. Photomediated Spirocyclization of N-Benzyl Propiolamide with N-Iodosuccinimide for Access to Azaspiro[4.5]deca-6,9-diene-3,8-dione. J Org Chem 2022; 87:8445-8457. [PMID: 35678323 DOI: 10.1021/acs.joc.2c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metal- and oxidant-free route for affording azaspiro[4.5]deca-6,9-diene-3,8-dione via photomediated iodinated spirocyclization of N-(4-methoxybenzyl) propiolamide has been developed. The reaction underwent a radical addition/ipso-cyclization/dearomatization process at room temperature and successfully constructed C-C and C-I bonds. This green and convenient approach could be generally expanded to produce a range of iodinated spirocyclization products in moderate to good yields.
Collapse
Affiliation(s)
- Man Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
14
|
Qu CH, Gao LX, Tang Y, Liu Y, Luo XQ, Song GT. Metal-Free Reductive Coupling of para-Quinone Methides with 4-Cyanopyridines Enabled by Pyridine-Boryl Radicals: Access to Pyridylated Diarylmethanes with Anti-Cancer Activity. Chemistry 2022; 28:e202200264. [PMID: 35301762 DOI: 10.1002/chem.202200264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/07/2022]
Abstract
Reported herein is a streamlined protocol to produce pyridylated diarylmethanes through pyridine-boryl radical induced reductive coupling between para-quinone methides (p-QMs) and 4-cyanopyridines using bis(pinacolato)diboron (B2 pin2 ) as a templated reagent. The metal-free process is characterized by an operationally simple approach, excellent chemoselectivity (1,2- vs. 1,6-selectivity), and a broad substrate scope with good functional group compatibility. The mechanistic studies provided important insights into the reductive cross-coupling process between diarylmethyl radical and pyridine-boryl radical. Moreover, part of the obtained pyridylated diarylmethane products were screened against a panel of cancer cell lines, and 3 v was confirmed to significantly inhibit the proliferation of head and neck squamous cell carcinoma (HNSCC) cells. This method offers a platform for the preparation of new lead compounds with antitumor activity.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Li-Xia Gao
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Yan Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Yuan Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Xiao-Qin Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| |
Collapse
|
15
|
Ruan S, Zhou C, Li L, Wang L, Liu J, Li P. Microwave-accelerated and benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with cyclic alkanes under metal-free conditions. Org Biomol Chem 2022; 20:3817-3822. [PMID: 35467683 DOI: 10.1039/d2ob00430e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel and efficient method for preparing exocyclic indan derivatives, with this method involving benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with simple cyclic alkanes under microwave irradiation, has been developed. The presented approach showed advantages of simple conditions, an environmentally friendly protocol, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Shuchen Ruan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Laiqiang Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Anhui Laboratory of Clean Catalytic Engineering and College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China.
| |
Collapse
|
16
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
17
|
Coppola GA, Pillitteri S, Van der Eycken EV, You SL, Sharma UK. Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency. Chem Soc Rev 2022; 51:2313-2382. [PMID: 35244107 DOI: 10.1039/d1cs00510c] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.
Collapse
Affiliation(s)
- Guglielmo A Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| |
Collapse
|
18
|
Yang J, Li G, Yu K, Xu B, Chen Q. Electrochemical Sulfonylation-Induced Lactonization of Alkenes: Synthesis of Sulfonyl Phthalides. J Org Chem 2022; 87:1208-1217. [PMID: 34989241 DOI: 10.1021/acs.joc.1c02557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An electrochemical cascade sulfonylation and lactonization process of alkenes and a most widely used arylsulfonylation reagent─sulfonyl hydrazines─was developed for the first time. This electrochemical sulfonyl lactonization avoided the use of toxic metal catalysts or stoichiometric oxidants and was carried out under mild conditions. The target product γ-sulfonylated phthalides with broad and excellent substrate tolerance were achieved.
Collapse
Affiliation(s)
- Jiajun Yang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Guodong Li
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Ke Yu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
19
|
Pan Y, Ren W, Zhang Z, Luo F, Hou X, Li X, Yang YF, Wang Y. Tandem 1,6-addition/cyclopropanation/rearrangement reaction of vinylogous para-quinone methides with 3-chlorooxindoles: construction of vicinal quaternary carbon centers. Org Chem Front 2022. [DOI: 10.1039/d2qo00471b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel tandem 1,6-addition/cyclopropanation/rearrangement reaction of vinylogous para-quinone methides with 3-chlorooxindoles has been developed, providing dispirooxindole–cyclopentane–cyclohexadienones with vicinal quaternary carbon centers.
Collapse
Affiliation(s)
- Yuan Pan
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Zhanhao Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fengbiao Luo
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaohan Hou
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoyang Li
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
20
|
Meng FT, Chen JL, Qin XY, Zhang TS, Tu SJ, Jiang B, Hao WJ. Gold self-relay catalysis for accessing functionalized cyclopentenones bearing an all-carbon quaternary stereocenter. Org Chem Front 2022. [DOI: 10.1039/d1qo01313k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new gold(i) self-relay catalysis consisting of a 3,3-rearrangement, Nazarov cyclization and Michael addition cascade of 1,3-enyne acetates with aurones and their derived azadienes is reported, producing functionalized cyclopentenones.
Collapse
Affiliation(s)
- Fan-Tao Meng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Jing-Long Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiao-Yan Qin
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| |
Collapse
|
21
|
He C, Zhong Y, Han H, Wang Q, Xu L, Zhang T, Hu Y, Huang Q, Liu J, Yang M. Photoinduced decarboxylative 1,6-addition of para-quinone methides with α-keto acids: an eco-friendly approach to α,α′-diarylated ketones. NEW J CHEM 2022. [DOI: 10.1039/d2nj04562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The photoinduced decarboxylative 1,6-addition of para-quinone methides with α-keto acids in an eco-friendly approach to α,α′-diarylated ketones is developed.
Collapse
Affiliation(s)
- Chen He
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yingfang Zhong
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Huiqi Han
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Qi Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Lijing Xu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Ting Zhang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yaqiong Hu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Qitong Huang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Jun Liu
- Department of Neurosurgery, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, 341000, China
| | - Min Yang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| |
Collapse
|
22
|
Zhang J, Shi SQ, Hao WJ, Dong GY, Tu SJ, Jiang B. Tunable Electrocatalytic Annulations of o-Arylalkynylanilines: Green and Switchable Syntheses of Skeletally Diverse Indoles. J Org Chem 2021; 86:15886-15896. [PMID: 33534572 DOI: 10.1021/acs.joc.0c02898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tunable electrocatalytic annulation reactions of o-arylalkynylanilines have been established, leading to green and divergent syntheses of skeletally diverse indoles by adjusting the electrolytes and the solvents. The presence of ammonium halides as the electrolytes enabled the halogenation of o-arylalkynylanilines to give C3-halogenated indoles whereas naphtho[1',2':4,5]furo[3,2-b]indoles could be obtained by changing the electrolyte from ammonium halides to KI. Interestingly, by combining acetone as the solvent and both NH4I and NH4Cl as the electrolytes, the reaction worked through an intramolecular annulation and [5 + 1] cyclization cascade to form naphtho[1',2':5,6][1,3]oxazino[3,4-a]indoles.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Shao-Qing Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Guo-Yun Dong
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| |
Collapse
|
23
|
Wang SC, Shen YT, Zhang TS, Hao WJ, Tu SJ, Jiang B. Cyclic Oxime Esters as Deconstructive Bifunctional Reagents for Cyanoalkyl Esterification of 1,6-Enynes. J Org Chem 2021; 86:15488-15497. [PMID: 34664501 DOI: 10.1021/acs.joc.1c01972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A concise copper catalysis strategy for the addition-cyclization of cyclic oxime esters across 1,6-enynes with high stereoselectivity to generate 1-indanones bearing an all-carbon quaternary center is reported. In this process, single-electron reduction of cyclic oxime esters enables deconstructive carbon-carbon cleavage to provide a key cyanopropyl radical poised for the addition-cyclization. This reaction is redox-neutral, exhibits good functional group compatibility, and features 100% atomic utilization. This process driven by copper catalyst makes readily available cyclic oxime esters as bifunctional reagents to demonstrate convergent synthesis.
Collapse
Affiliation(s)
- Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yi-Ting Shen
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
24
|
Chen F, Huang X, Yang C, Jiang H, Zeng W. Photocatalyzed Coupling-Cyclization of ortho-Alkynylaryl Vinylethers with Arylsulfonyl Azides. J Org Chem 2021; 86:14572-14585. [PMID: 34623805 DOI: 10.1021/acs.joc.1c01437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel visible-light-induced coupling-cyclization of ortho-alkynylaryl vinylethers with arylsulfonyl azides has been described. This transformation provided a concise approach to access C3-exocyclic C═C bond/C2-alkylsulfone-tethered benzofurans via a solvent-leveraged carbosulfonylation and [2 + 2 + 3] cyclization. Primary mechanistic studies demonstrated that THF belongs to a crucial H atom source.
Collapse
Affiliation(s)
- Fengjuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiang Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
25
|
Xu Y, Yu C, Zhang X, Fan X. Synthesis of Indolyl-Tethered Spiro[cyclobutane-1,1'-indenes] through Cascade Reactions of 1-(Pyridin-2-yl)-1 H-indoles with Alkynyl Cyclobutanols. Org Lett 2021; 23:8510-8515. [PMID: 34652921 DOI: 10.1021/acs.orglett.1c03200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Presented herein is an efficient and unprecedented synthesis of indolyl-tethered spiro[cyclobutane-1,1'-indenes] through the cascade reaction of 1-(pyridin-2-yl)-1H-indoles with alkynyl cyclobutanols. Mechanistic experiments implicate a sequential process in which 1-(pyridin-2-yl)-1H-indole first undergoes an alkenylation with alkynyl cyclobutanol followed by an intramolecular Friedel-Crafts reaction to give the title products. The utility of this novel protocol was reflected by the ample substrate scope, high chemo- and regioselectivity, removable directing group, and scalable preparation. In addition, the product thus obtained can be further derivatized quite efficiently.
Collapse
Affiliation(s)
- Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
26
|
Zhou N, Xia Z, Wu S, Kuang K, Xu Q, Zhang M. Visible-Light-Induced Multicomponent Cascade Cycloaddition of N-Propargyl Aromatic Amines, Cyclobutanone Oxime Esters, and K 2S 2O 5: Access to Cyanoalkylsulfonylated Quinolines. J Org Chem 2021; 86:15253-15262. [PMID: 34643392 DOI: 10.1021/acs.joc.1c01866] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A visible-light-induced cascade cyanoalkylsulfonylation/cyclization/aromatization of N-propargyl aromatic amines with K2S2O5 and cyclobutanone oxime esters for the construction of cyanoalkylsulfonylated quinolines is developed. This cascade transformation features mild reaction conditions, a broad substrate scope, and excellent functional group compatibility, providing a convenient route toward cyanoalkylsulfonylated quinolines via the formation of a C-C bond and two C-S bonds in one step.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ziqin Xia
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qiankun Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
27
|
Electrosynthesis of N-unsubstituted enaminosulfones from vinyl azides and sodium sulfinates mediated by NH4I. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Yang M, Han H, Jiang H, Ye S, Fan X, Wu J. Photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide and para-quinone methides via radical 1,6-addition. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Chen H, Lu T, Qiao M, Hu J, Li C, Qi C, Zhang F. Efficient domino strategy for synthesis of 3‐substituted 1,5‐dihydro
‐4
H
‐pyrrolo[3,2‐
c
]pyridin‐4‐one derivatives. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Huaqian Chen
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Tao Lu
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Minglong Qiao
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Jiawen Hu
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Chenze Qi
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Furen Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| |
Collapse
|
30
|
Jiang LL, Hu SJ, Xu Q, Zheng H, Wei WT. Radical Cyclization of 1,n-Enynes and 1,n-Dienes for the Synthesis of 2-Pyrrolidone. Chem Asian J 2021; 16:3068-3081. [PMID: 34423568 DOI: 10.1002/asia.202100829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/14/2021] [Indexed: 12/17/2022]
Abstract
2-Pyrrolidones have aroused enormous interest as a useful structural moiety in drug discovery; however, not only does their syntheses suffer from low selectivity and yield, but also it requires high catalyst loadings. The radical cyclization of 1,n-enynes and 1,n-dienes has demonstrated to be an attractive method for the synthesis of 2-pyrrolidones due to its mild reaction conditions, fewer steps, higher atom economy, excellent functional group compatibility, and high regioselectivity. Furthermore, radical receptors with unsaturated bonds (i. e. 1,n-enynes and 1,n-dienes) play a crucial role in realizing radical cyclization because of the ability to selectively introduce one or more radical sources. In this review, we discuss representative examples of methods involving the radical cyclization of 1,n-enynes and 1,n-dienes published in the last five years and discuss each prominent reaction design and mechanism, providing favorable tools for the synthesis of valuable 2-pyrrolidone for a variety of applications.
Collapse
Affiliation(s)
- Li-Lin Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Sen-Jie Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
31
|
Gu Q, Wang X, Liu X, Wu G, Xie Y, Shao Y, Zhao Y, Zeng X. Electrochemical sulfonylation of enamides with sodium sulfinates to access β-amidovinyl sulfones. Org Biomol Chem 2021; 19:8295-8300. [PMID: 34519742 DOI: 10.1039/d1ob01485d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical sulfonylation of enamides with sodium sulfinates was developed in an undivided cell in constant current mode, leading to the formation of β-amidovinyl sulfones in moderate to good yields. The catalyst-, electrolyte- and oxidant-free protocol features good functional group tolerance and employs electric current as a green oxidant. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xin Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xinyi Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Guixia Wu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yushan Xie
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|
32
|
Bhargava Reddy M, Peri R, Bhagavathiachari M, Anandhan R. Electrochemical synthesis of isobenzofuran-1-imines using oxidative halocyclization of o-alkynylbenzamides. Org Biomol Chem 2021; 19:6792-6796. [PMID: 34318854 DOI: 10.1039/d1ob00953b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electrochemical oxidative 5-exo-dig-oxo-halocyclization of o-alkynylbenzamides was achieved using readily available NaX (X = Cl, Br and I) salts under mild reaction conditions. The use of a cheap and highly stable sodium halide as a halide ion source is impressive for the synthesis of a variety of halogenated isobenzofuran-1-imines. This electrochemical protocol shows regioselectivity and excellent conversion to isobenzofuran-1-imines in good yields without the use of stoichiometric amounts of oxidants and transition metal catalysts.
Collapse
|
33
|
Wang SC, Liu PY, Chen YX, Shen ZJ, Hao WJ, Tu SJ, Jiang B. Copper/silver co-mediated three-component bicyclization for accessing indeno[1,2- c]azepine-3,6-diones. Chem Commun (Camb) 2021; 57:7966-7969. [PMID: 34286745 DOI: 10.1039/d1cc02973h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new copper/silver-co-mediated three-component bicyclization of benzene-linked 1,6-enynes with ICF2CO2Et with TMSN3 was reported, and used to produce a wide range of hitherto unreported difluorinated tetrahydroindeno[1,2-c]azepine-3,6-diones with moderate to good yields. The mechanistic pathway consists of radical-induced 1,6-addition-cyclization, oxidative addition, reductive elimination, nitrene insertion and N-O cleavage, resulting in continuous multiple bond-forming events including C-C and C-N bonds to build up a 6/5/7 tricyclic framework.
Collapse
Affiliation(s)
- Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Peng-Yu Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yi-Xin Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Zheng-Jia Shen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
34
|
Singh G, Pandey R, Pankhade YA, Fatma S, Anand RV. Construction of Oxygen- and Nitrogen-based Heterocycles from p-Quinone Methides. CHEM REC 2021; 21:4150-4173. [PMID: 34369640 DOI: 10.1002/tcr.202100137] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023]
Abstract
In the last few years, there has been an explosive growth in the area of para-quinone methide (p-QM) chemistry. This boom is actually due to the unique reactivity pattern of p-QMs, and also their remarkable synthetic applications. In fact, p-QMs serve as synthons for unsymmetrical diaryl- and triarylmethanes, and also for the construction of diverse range of carbocycles and heterocycles. In the last few years, a wide range of structurally complex heterocyclic frameworks could be accessed through the synthetic transformations of structurally modified stable p-QMs. Therefore, the main focus of this review article is to cover the recent advancements in the transition-metal, Lewis acid and base-catalyzed/mediated synthetic transformations of the stable p-quinone methides (p-QMs) to oxygen- and nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Rajat Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Yogesh A Pankhade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| |
Collapse
|
35
|
Wu SP, Wang DK, Kang QQ, Ge GP, Zheng H, Zhu M, Li T, Zhang JQ, Wei WT. Sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes. Chem Commun (Camb) 2021; 57:8288-8291. [PMID: 34318821 DOI: 10.1039/d1cc03252f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and broad substrate scope are the attractive features of this synthetic protocol, which provides a unique platform for precise radical cyclization.
Collapse
Affiliation(s)
- Shi-Ping Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yu KY, Deng YH, Ge XM, An XT, Shu PF, Cao YX, Zhao XH, Fan CA. Tandem (2 + 2) Annulation/Retro-4π Electrocyclization/Imino-Nazarov Cyclization Reaction of p-Quinone Methides with Ynamides: Expeditious Construction of Functionalized Aminoindenes. Org Lett 2021; 23:5885-5890. [PMID: 34279973 DOI: 10.1021/acs.orglett.1c02003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new tandem annulation of p-quinone methides (p-QMs) with ynamides is described. This cascade reaction features a unique combination of (2 + 2) annulation, retro-4π electrocyclization, and imino-Nazarov cyclization, wherein vinyl p-quinone methides (p-VQMs) as one of the key intermediates have been identified chemically. Significantly, an unusual structural reconstruction of p-QMs involving the cleavage of the C5-C6 bond and the late-stage formation of the C4-C6 bond is involved, leading to a methodology development for the construction of functionalized aminoindenes.
Collapse
Affiliation(s)
- Ke-Yin Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiao-Min Ge
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Peng-Fei Shu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Ye-Xing Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| |
Collapse
|
37
|
Zhou N, Kuang K, Wu M, Wu S, Xu Q, Xia Z, Zhang M. tert
‐Butyl Hydroperoxide‐Initiated Radical Cyclization of 1‐(Allyloxy)‐2‐(1‐Arylvinyl)Benzenes with Sulfinic Acids to Access Sulfonated Benzoxepines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Qiankun Xu
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Ziqin Xia
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu Anhui 241000 People's Republic of China
| |
Collapse
|
38
|
Zhang MM, Sun Y, Wang WW, Chen KK, Yang WC, Wang L. Electrochemical synthesis of sulfonated benzothiophenes using 2-alkynylthioanisoles and sodium sulfinates. Org Biomol Chem 2021; 19:3844-3849. [PMID: 33949560 DOI: 10.1039/d1ob00079a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electrochemical sulfonylation/cyclization of 2-alkynylthioanisoles with sodium sulfinates was developed under catalyst-, external oxidant- and metal-free conditions. The electrosynthesis provides sustainable and efficient access to 3-sulfonated benzothiophenes with good substrate scope and functional group tolerance. This cascade radical process has been triggered through a sulfonyl radical addition to alkynes using sodium sulfinates under electrochemical conditions.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- Institute of Pesticide, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Yu Sun
- Institute of Pesticide, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Wan-Wan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, Jiangsu 225300, P. R. China
| | - Kang-Kang Chen
- Institute of Pesticide, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Wen-Chao Yang
- Institute of Pesticide, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.
| |
Collapse
|
39
|
Zuo HD, Zhu SS, Hao WJ, Wang SC, Tu SJ, Jiang B. Copper-Catalyzed Asymmetric Deconstructive Alkynylation of Cyclic Oximes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00842] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hang-Dong Zuo
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shan-Shan Zhu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
40
|
Terashima K, Kawasaki-Takasuka T, Yamazaki T. Construction of fully substituted carbon centers containing a heteroatom and a CF 3 group via in situ generated p-quinone methides. Org Biomol Chem 2021; 19:1305-1314. [PMID: 33503080 DOI: 10.1039/d0ob02469d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1,6-Conjugate additions of in situ generated δ-CF3-δ-substituted p-quinone methides have been achieved with a variety of heteronucleophiles under mild conditions, which led to facile and practical construction of fully substituted carbon centers including a heteroatom and a CF3 group. In particular, it was revealed that some amines themselves worked for efficient cleavage of the TBS protective group, and addition of a catalytic amount of an appropriate Brønsted acid was found to sometimes improve the progress of the desired process.
Collapse
Affiliation(s)
- Kyu Terashima
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| | - Takashi Yamazaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| |
Collapse
|
41
|
Yuan X, Cui Y, Zhang X, Qin L, Sun Q, Duan X, Chen L, Li G, Qiu J, Guo K. Electrochemical Tri‐ and Difluoromethylation‐Triggered Cyclization Accompanied by the Oxidative Cleavage of Indole Derivatives. Chemistry 2021; 27:6522-6528. [DOI: 10.1002/chem.202005368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Yu‐Sheng Cui
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Xin‐Peng Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Long‐Zhou Qin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Qi Sun
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Xiu Duan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Lin Chen
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Guigen Li
- Institute of Chemistry & Biomedical Science Nanjing University No.163, Xianlin Avenue, Qixia District Nanjing 210093 P. R. China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409-1061 USA
| | - Jiang‐Kai Qiu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| |
Collapse
|
42
|
Wu D, Lu Y, Hao W, Tu S, Jiang B. Synthesis of Fully Substituted Oxazoles via an NFSI/KF‐Mediated Double Bond Cleavage‐Rearrangement Cascade. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dan Wu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Yi Lu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Wen‐Juan Hao
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Shu‐Jiang Tu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Bo Jiang
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| |
Collapse
|
43
|
Shen Z, Huang B, Ma N, Yao L, Yang C, Guo L, Xia W. Transition Metal‐Free Synthesis of Sulfonyl‐ and Bromo‐Substituted Indolo[2,1‐
α
]isoquinoline Derivatives through Electrochemical Radical Cascade Cyclization. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zheng‐Jia Shen
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Binbin Huang
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Na Ma
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Lijuan Yao
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University
| |
Collapse
|
44
|
Scheide MR, Nicoleti CR, Martins GM, Braga AL. Electrohalogenation of organic compounds. Org Biomol Chem 2021; 19:2578-2602. [DOI: 10.1039/d0ob02459g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review we target sp, sp2 and sp3 carbon fluorination, chlorination, bromination and iodination reactions using electrolysis as a redox medium. Mechanistic insights and substrate reactivity are also discussed.
Collapse
Affiliation(s)
- Marcos R. Scheide
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Celso R. Nicoleti
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Guilherme M. Martins
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Antonio L. Braga
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| |
Collapse
|
45
|
Yi R, Liu D, Wu Q, Zhao M, Wang Y, Wang Z. Electrochemical Oxidated-Iodide Promoted α-H Aryl(alkyl)selenation of Acetone for the Preparation of α-Aryl(alkyl)selenoacetones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Li H, Pang J, Liu H, Zhao C, Li S, Wang H, Liu X. Sc(OTf) 3-Catalyzed 1,6-Conjugate Addition of Thiols to δ-CF 3- δ-aryl-disubstituted para-Quinone Methides: Efficient Construction of Diarylmethane Thioethers. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Wang D, Kan L, Ma Y, Liu L. NaO tBu-Catalyzed Hydrophosphonylation of δ-CN- δ-aryl-disubstituted para-Quinone Methides with Phosphine Oxides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Zuo HD, Ji XS, Guo C, Tu SJ, Hao WJ, Jiang B. Cu-Catalyzed radical-triggered spirotricyclization of enediynes and enyne-nitriles for the synthesis of pentacyclic spiroindenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01640c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new copper-catalyzed radical-triggered fluoromethylation-spirotricyclization of enediyne- and enyne-nitrile-containing para-quinone methides (p-QMs) was reported for the first time, and used to produce a series of hitherto unreported pentacyclic spiroindenes.
Collapse
Affiliation(s)
- Hang-Dong Zuo
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- School of Chemistry & Materials Science
| | - Xiao-Shuang Ji
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Cheng Guo
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
49
|
Liu Q, Lv Y, Liu R, Zhao X, Wang J, Wei W. Catalyst- and additive-free selective sulfonylation/cyclization of 1,6-enynes with arylazo sulfones leading to sulfonylated γ-butyrolactams. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Xu H, Meng X, Zheng Y, Luo J, Huang S. Electrochemical Annulations of o-Alkynylanilines for Synthesis of 3-Iodoindoles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202112016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|