1
|
Fors SA, Yap YJ, Malapit CA. Effect of Alternating Polarity in Electrochemical Olefin Hydrocarboxylation. Angew Chem Int Ed Engl 2025:e202424865. [PMID: 40192267 DOI: 10.1002/anie.202424865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
The electrochemical generation of radical anions from feedstock olefins offers a selective and efficient route for synthesizing commodity chemicals and pharmaceutical precursors via hydrofunctionalization. Traditional methods for electrochemical olefin hydrofunctionalization, for example, hydrocarboxylation, rely on anion intermediates and follow an electrochemical-chemical-electrochemical-chemical (ECEC) mechanism involving olefin reduction, carboxylation, further reduction, and protonation. Enhancing terminal carboxylate selectivity often requires a proton source, reducing functional group tolerance and favoring proton reduction over olefin reduction. Alternating polarity, a nascent technique in organic electrochemistry, can improve product selectivity by influencing electron transfer rates and electrode surface species. Herein, we report the use of alternating polarity to selectively generate radical anions from styrene derivatives, using electrochemical hydrocarboxylation as a model. This approach shifts the mechanism to an electrochemical-chemical-chemical (ECC) pathway, where the final step involves hydrogen atom transfer. We showcase how alternating polarity modulates product selectivity, yield, and material decomposition, offering new insights into how alternating polarity can advance olefin functionalization by enabling more controlled and selective reaction pathways.
Collapse
Affiliation(s)
- Stella A Fors
- Department of Chemistry, Northwestern University, 2145 N Sheridan Rd, Evanston, IL, 60208, USA
| | - Yong Jia Yap
- Department of Chemistry, Northwestern University, 2145 N Sheridan Rd, Evanston, IL, 60208, USA
| | - Christian A Malapit
- Department of Chemistry, Northwestern University, 2145 N Sheridan Rd, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
De Bon F, Vaz Simões A, Serra AC, Coelho JFJ. Alternating and Pulsed Current Electrolysis for Atom Transfer Radical Polymerization. Chempluschem 2025; 90:e202400661. [PMID: 39620913 DOI: 10.1002/cplu.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Indexed: 12/12/2024]
Abstract
This concept focuses on the application of alternating current (AC) and pulsed electrolysis in Atom Transfer Radical Polymerization (ATRP) for polymer synthesis. AC electrolysis, which oscillates between reduction and oxidation, can be tuned to increase selectivity for a specific reaction pathway, minimize side reactions, and improve product selectivity and reagent conversion. Pulsed electrolysis can also be used to sustain electrochemical reactions in ATRP. The challenges and limitations associated with AC electrolysis are discussed along with an outlook on future developments in polymer synthesis and related applications. A concise overview of recent developments in electro-organic synthesis using AC electrolysis will be provided.
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Alexandre Vaz Simões
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Jorge F J Coelho
- Centre for Mechanical Engineering Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| |
Collapse
|
3
|
Zhu SJ, Lin YC, Yuan GC, He X, Yu C, Ye KY. Electrochemical Denitrative Cyclization Driven by Alternating Polarity. Org Lett 2025; 27:1186-1191. [PMID: 39880842 DOI: 10.1021/acs.orglett.4c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Alternating current electrolysis has emerged as a promising technique for addressing challenging redox reactions that are otherwise difficult or impossible for direct current electrolysis. Under mild and transition-metal-free reaction conditions, a general electrochemical denitrative cyclization of nitroarenes was developed to access various cyclic sulfone-containing derivatives of biological significance. The key to success lies in the facile manipulation of multiple redox events upon rapid alternating polarity switching to enhance the selectivity and efficiency.
Collapse
Affiliation(s)
- Shuang-Jun Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi-Chao Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Guo-Cai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinglei He
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunlong Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Yadav MK, Chowdhury S. Recent advances in the electrochemical functionalization of N-heterocycles. Org Biomol Chem 2025; 23:506-545. [PMID: 39564858 DOI: 10.1039/d4ob01187b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nitrogen-containing heterocyclic cores are of immense importance due to their high abundance in naturally occurring or synthetic molecules having wide applications in different fields of basic and applied sciences. The functionalities introduced in an N-heterocyclic core play an important role in regulating the physiochemical behavior of the particular N-heterocycles to alter their chemical and biological reactivity. Suitably functionalized N-heterocycles demonstrate their widespread applications in pharmaceuticals, agronomy, materials sciences, synthetic chemistry, pigments, etc. During the last decade, electrochemistry has emerged as a sustainable alternative to conventional synthetic approaches by minimizing reagent uses and chemical waste. Synthetic chemists have extensively utilized the tool to functionalize N-heterocycles. This is evidenced by the appearance of more than a hundred methods on the topic over recent years, signifying the importance of the synthetic area. This review is focused on the accumulation of synthetic methods based on the electrochemical functionalization of N-heterocycles developed over the recent decade. Literature reports on the C-/N-H-functionalization and functional modifications of N-heterocycles that are accessible through the available search engines are included in the review. Relevant mechanistic details in support of the reported reactions are discussed to present a clear picture of the reaction pathways. The review aims to provide a clear picture of the possible pathways of electron transfer, the electrochemical behavior of different N-heterocyclic cores, functionalization reagents, and the chemical processes that occur during the electrochemical functionalization/modification of N-heterocycles.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Sushobhan Chowdhury
- University School of Automation and Robotics, Guru Gobind Singh Indraprastha University, East Delhi Campus, Patel Street, Vishwas Nagar Extension, Shahdara, Delhi-110032, India.
| |
Collapse
|
5
|
Li HY, Yang XL, Shen S, Niu X. Visible Light-Induced 6π-Heterocyclization/Dehydroaromatization for Synthesis of Indoloquinolinone Skeletons. J Org Chem 2024; 89:14887-14897. [PMID: 39365141 DOI: 10.1021/acs.joc.4c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this work, we report a protocol for the synthesis of an indoloquinolinone skeleton using visible light-induced energy transfer. This method avoids the premodification of substrates and exhibits high yields. For gram-scale reactions, only 0.01 mol % (100 ppm) of photosensitizer is required for rapid conversion. Mechanistic studies revealed that this reaction differs from conventional 6π photocyclization reactions; undergoing a process involving 6π cyclization due to energy transfer and dehydrogenation due to product self-catalysis has been experienced.
Collapse
Affiliation(s)
- Hao-Yuan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
6
|
Won S, Park D, Jung Y, Kim H, Chung TD. A photoelectrocatalytic system as a reaction platform for selective radical-radical coupling. Chem Sci 2024:d4sc04570j. [PMID: 39323515 PMCID: PMC11420859 DOI: 10.1039/d4sc04570j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
The selection of electrode material is a critical factor that determines the selectivity of electrochemical organic reactions. However, the fundamental principles governing this relationship are still largely unexplored. Herein, we demonstrate a photoelectrocatalytic (PEC) system as a promising reaction platform for the selective radical-radical coupling reaction owing to the inherent charge-transfer properties of photoelectrocatalysis. As a model reaction, the radical trifluoromethylation of arenes is shown on hematite photoanodes without employing molecular catalysts. The PEC platform exhibited superior mono- to bis-trifluoromethylated product selectivity compared to conventional electrochemical methods utilizing conducting anodes. Electrochemical and density functional theory (DFT) computational studies revealed that controlling the kinetics of anodic oxidation of aromatic substrates is essential for increasing reaction selectivity. Only the PEC configuration could generate sufficiently high-energy charge carriers with controlled kinetics due to the generation of photovoltage and charge-carrier recombination, which are characteristic features of semiconductor photoelectrodes. This study opens a novel approach towards selective electrochemical organic reactions through understanding the intrinsic physicochemical properties of semiconducting materials.
Collapse
Affiliation(s)
- Sunghwan Won
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Dongmin Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yousung Jung
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37679 Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University Seoul 03722 Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Advanced Institutes of Convergence Technology Suwon-Si Gyeonggi-do 16229 Republic of Korea
| |
Collapse
|
7
|
Poh YR, Kawamata Y, Yuen-Zhou J. Physicochemical Principles of AC Electrosynthesis: Reversible Reactions. J Am Chem Soc 2024; 146:24978-24988. [PMID: 39214628 DOI: 10.1021/jacs.4c06664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Electrolysis integrates renewable energy into chemical manufacturing and is key to sustainable chemistry. Controlling the waveform beyond direct current (DC) addresses the long-standing obstacle of chemoselectivity, yet it also expands the parameter set to optimize, creating a demand for theoretical predictions. Here, we report the first analytical theory for predicting chemoselectivity in an alternating current (AC) electrosynthesis. The mechanism is a selective reversal of the unwanted redox reaction during periods of opposite polarity, reflected in the final reaction outcome as a time-averaged effect. In the ideal scenario of all redox reactions being reversible, square AC waveform biases the outcome toward more overoxidation/over-reduction, whereas sine AC waveform exhibits the opposite effect. However, in a more realistic scenario of some redox reactions being quasi-reversible, sine AC may behave mostly like square AC. These predictions are in numerical agreement with model experiments employing acetophenone and align qualitatively with the literature precedent. Collectively, this study provides theoretical proof for a growing trend that promotes changing waveforms to overcome limitations challenging to address by varying canonical electrochemical parameters.
Collapse
Affiliation(s)
- Yong Rui Poh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
De Bon F, Fantin M, Pereira VA, Lourenço Bernardino TJ, Serra AC, Matyjaszewski K, Coelho JFJ. Electrochemically Mediated Atom Transfer Radical Polymerization Driven by Alternating Current. Angew Chem Int Ed Engl 2024; 63:e202406484. [PMID: 38647172 DOI: 10.1002/anie.202406484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Alternating current (AC) and pulsed electrolysis are gaining traction in electro(organic) synthesis due to their advantageous characteristics. We employed AC electrolysis in electrochemically mediated Atom Transfer Radical Polymerization (eATRP) to facilitate the regeneration of the activator CuI complex on Cu0 electrodes. Additionally, Cu0 served as a slow supplemental activator and reducing agent (SARA ATRP), enabling the activation of alkyl halides and the regeneration of the CuI activator through a comproportionation reaction. We harnessed the distinct properties of Cu0 dual regeneration, both chemical and electrochemical, by employing sinusoidal, triangular, and square-wave AC electrolysis alongside some of the most active ATRP catalysts available. Compared to linear waveform (DC electrolysis) or SARA ATRP (without electrolysis), pulsed and AC electrolysis facilitated slightly faster and more controlled polymerizations of acrylates. The same AC electrolysis conditions could successfully polymerize eleven different monomers across different mediums, from water to bulk. Moreover, it proved effective across a spectrum of catalyst activity, from low-activity Cu/2,2-bipyridine to highly active Cu complexes with substituted tripodal amine ligands. Chain extension experiments confirmed the high chain-end fidelity of the produced polymers, yielding functional and high molecular-weight block copolymers. SEM analysis indicated the robustness of the Cu0 electrodes, sustaining at least 15 consecutive polymerizations.
Collapse
Affiliation(s)
- Francesco De Bon
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131, Padova, Italy
| | - Vanessa A Pereira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Teresa J Lourenço Bernardino
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Armenio C Serra
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, 15213, Pittsburgh, PA, USA
| | - Jorge F J Coelho
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199, Coimbra, Portugal
| |
Collapse
|
9
|
Zeng L, Yang Q, Wang J, Wang X, Wang P, Wang S, Lv S, Muhammad S, Liu Y, Yi H, Lei A. Programmed alternating current optimization of Cu-catalyzed C-H bond transformations. Science 2024; 385:216-223. [PMID: 38991063 DOI: 10.1126/science.ado0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024]
Abstract
Direct current (DC) electrosynthesis, which has undergone optimization over the past century, plays a pivotal role in a variety of industrial processes. Alternating current (AC) electrosynthesis, characterized by polarity reversal and periodic fluctuations, may be advantageous for multiple chemical reactions, but apparatus, principles, and application scenarios remain underdeveloped. In this work, we introduce a protocol for programmed AC (pAC) electrosynthesis that systematically adjusts currents, frequencies, and duty ratios. The application of representative pAC waveforms facilitates copper-catalyzed carbon-hydrogen bond cleavage in cross-coupling and difunctionalization reactions that exhibit suboptimal performance under DC and chemical oxidation conditions. Moreover, observing catalyst dynamic variation under diverse waveform applications provides mechanistic insight.
Collapse
Affiliation(s)
- Li Zeng
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qinghong Yang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jianxing Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xin Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Pengjie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shide Lv
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shabbir Muhammad
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yichang Liu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hong Yi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
10
|
Surendran A, Pereverzev AY, Roithová J. Intricacies of Mass Transport during Electrocatalysis: A Journey through Iron Porphyrin-Catalyzed Oxygen Reduction. J Am Chem Soc 2024; 146:15619-15626. [PMID: 38778765 PMCID: PMC11157527 DOI: 10.1021/jacs.4c04989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical steps are increasingly attractive for green chemistry. Understanding reactions at the electrode-solution interface, governed by kinetics and mass transport, is crucial. Traditional insights into these mechanisms are limited, but our study bridges this gap through an integrated approach combining voltammetry, electrochemical impedance spectroscopy, and electrospray ionization mass spectrometry. This technique offers real-time monitoring of the chemical processes at the electrode-solution interface, tracking changes in intermediates and products during reactions. Applied to the electrochemical reduction of oxygen catalyzed by the iron(II) tetraphenyl porphyrin complex, it successfully reveals various reaction intermediates and degradation pathways under different kinetic regimes. Our findings illuminate complex electrocatalytic processes and propose new ways for studying reactions in alternating current and voltage-pulse electrosynthesis. This advancement enhances our capacity to optimize electrochemical reactions for more sustainable chemical processes.
Collapse
Affiliation(s)
- Adarsh
Koovakattil Surendran
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Aleksandr Y. Pereverzev
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
11
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
12
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
13
|
Behera N, Rodrigo S, Hazra A, Maity R, Luo L. Revisiting Alternating Current Electrolysis for Organic Synthesis. CURRENT OPINION IN ELECTROCHEMISTRY 2024; 43:101439. [PMID: 38450312 PMCID: PMC10914348 DOI: 10.1016/j.coelec.2023.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
This review summarizes the recent advancements in alternating current (AC)-driven electroorganic synthesis since 2021 and discusses the reactivities AC electrolysis provides to achieve new and unique organic transformations.
Collapse
Affiliation(s)
- Nibedita Behera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sachini Rodrigo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Atanu Hazra
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Rajendra Maity
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
14
|
Atkins AP, Chaturvedi AK, Tate JA, Lennox AJJ. Pulsed electrolysis: enhancing primary benzylic C(sp 3)-H nucleophilic fluorination. Org Chem Front 2024; 11:802-808. [PMID: 38298566 PMCID: PMC10825853 DOI: 10.1039/d3qo01865b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/09/2023] [Indexed: 02/02/2024]
Abstract
Electrosynthesis is an efficient and powerful tool for the generation of elusive reactive intermediates. The application of alternative electrolysis waveforms provides a new level of control for dynamic redox environments. Herein, we demonstrate that pulsed electrolysis provides a favourable environment for the generation and fluorination of highly unstable primary benzylic cations from C(sp3)-H bonds. By introduction of a toff period, we propose this waveform modulates the electrical double layer to improve mass transport and limit over-oxidation.
Collapse
Affiliation(s)
- Alexander P Atkins
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Atul K Chaturvedi
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| | - Joseph A Tate
- Jealott's Hill International Research Centre, Syngenta Jealott's Hill Bracknell RG426EY UK
| | - Alastair J J Lennox
- School of Chemistry, University of Bristol Cantock's Close BS8 1TS Bristol UK
| |
Collapse
|
15
|
Zeng L, Wang J, Wang D, Yi H, Lei A. Comprehensive Comparisons between Directing and Alternating Current Electrolysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202309620. [PMID: 37606535 DOI: 10.1002/anie.202309620] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Organic electrosynthesis has consistently aroused significant interest within both academic and industrial spheres. Despite the considerable progress achieved in this field, the majority of electrochemical transformations have been conducted through the utilization of direct-current (DC) electricity. In contrast, the application of alternating current (AC), characterized by its polarity-alternating nature, remains in its infancy within the sphere of organic synthesis, primarily due to the absence of a comprehensive theoretical framework. This minireview offers an overview of recent advancements in AC-driven organic transformations and seeks to elucidate the differences between DC and AC electrolytic methodologies by probing into their underlying physical principles. These differences encompass the ability of AC to preclude the deposition of metal catalysts, the precision in modulating oxidation and reduction intensities, and the mitigation of mass transfer processes.
Collapse
Affiliation(s)
- Li Zeng
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jianxing Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Daoxin Wang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
16
|
Tsuruta T, Spinnato D, Moon HW, Leutzsch M, Cornella J. Bi-Catalyzed Trifluoromethylation of C(sp 2)-H Bonds under Light. J Am Chem Soc 2023; 145:25538-25544. [PMID: 37963280 PMCID: PMC10690797 DOI: 10.1021/jacs.3c10333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
We disclose a Bi-catalyzed C-H trifluoromethylation of (hetero)arenes using CF3SO2Cl under light irradiation. The catalytic method permits the direct functionalization of various heterocycles bearing distinct functional groups. The structural and computational studies suggest that the process occurs through an open-shell redox manifold at bismuth, comprising three unusual elementary steps for a main group element. The catalytic cycle starts with rapid oxidative addition of CF3SO2Cl to a low-valent Bi(I) catalyst, followed by a light-induced homolysis of Bi(III)-O bond to generate a trifluoromethyl radical upon extrusion of SO2, and is closed with a hydrogen-atom transfer to a Bi(II) radical intermediate.
Collapse
Affiliation(s)
- Takuya Tsuruta
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Davide Spinnato
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Hye Won Moon
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| |
Collapse
|
17
|
Rodrigo S, Hazra A, Mahajan JP, Nguyen HM, Luo L. Overcoming the Potential Window-Limited Functional Group Compatibility by Alternating Current Electrolysis. J Am Chem Soc 2023; 145:21851-21859. [PMID: 37747918 PMCID: PMC10774024 DOI: 10.1021/jacs.3c05802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The functional group compatibility of an electrosynthetic method is typically limited by its potential reaction window. Here, we report that alternating current (AC) electrolysis can overcome such potential window-limited functional group compatibility. Using alkene heterodifunctionalization as a model system, we design and demonstrate a series of AC-driven reactions that add two functional groups sequentially and separately under the cathodic and anodic pulses, including chloro- and bromotrilfuoromethylation as well as chlorosulfonylation. We discovered that the oscillating redox environment during AC electrolysis allows the regeneration of the redox-active functional groups after their oxidation or reduction in the preceding step. As a result, even though redox labile functional groups such as pyrrole, quinone, and aryl thioether fall in the reaction potential window, they are tolerated under AC electrolysis conditions, leading to synthetically useful yields. The cyclic voltammetric study has confirmed that the product yield is limited by the extent of starting material regeneration during the redox cycling. Our findings open a new avenue for improving functional group compatibility in electrosynthesis and show the possibility of predicting the product yield under AC electrolysis from voltammogram features.
Collapse
Affiliation(s)
- Sachini Rodrigo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Atanu Hazra
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jyoti P Mahajan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
18
|
Wan Q, Chen K, Dong X, Ruan X, Yi H, Chen S. Elucidating the Underlying Reactivities of Alternating Current Electrosynthesis by Time-Resolved Mapping of Short-Lived Reactive Intermediates. Angew Chem Int Ed Engl 2023; 62:e202306460. [PMID: 37593930 DOI: 10.1002/anie.202306460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Alternating current (AC) electrolysis is an emerging field in synthetic chemistry, however its mechanistic studies are challenged by the effective characterization of the elusive intermediate processes. Herein, we develop an operando electrochemical mass spectrometry platform that allows time-resolved mapping of stepwise electrosynthetic reactive intermediates in both direct current and alternating current modes. By dissecting the key intermediate processes of electrochemical functionalization of arylamines, the unique reactivities of AC electrosynthesis, including minimizing the over-oxidation/reduction through the inverse process, and enabling effective reaction of short-lived intermediates generated by oxidation and reduction in paired electrolysis, were evidenced and verified. Notably, the controlled kinetics of reactive N-centered radical intermediates in multistep sequential AC electrosynthesis to minimize the competing reactions was discovered. Overall, this work provides direct evidence for the mechanism of AC electrolysis, and clarifies the underlying reasons for its high efficiency, which will benefit the rational design of AC electrosynthetic reactions.
Collapse
Affiliation(s)
- Qiongqiong Wan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Kaixiang Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xin Dong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xianqin Ruan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Suming Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
19
|
He M, Wu Y, Li R, Wang Y, Liu C, Zhang B. Aqueous pulsed electrochemistry promotes C-N bond formation via a one-pot cascade approach. Nat Commun 2023; 14:5088. [PMID: 37607922 PMCID: PMC10444869 DOI: 10.1038/s41467-023-40892-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Electrocatalytic C - N bond formation from inorganic nitrogen wastes is an emerging sustainable method for synthesizing organic amines but is limited in reaction scope. Integrating heterogeneous and homogeneous catalysis for one-pot reactions to construct C - N bonds is highly desirable. Herein, we report an aqueous pulsed electrochemistry-mediated transformation of nitrite and arylboronic acids to arylamines with high yields. The overall process involves nitrite electroreduction to ammonia over a Cu nanocoral cathode and subsequent coupling of NH3 with arylboronic acids catalyzed by in situ dissolved Cu(II) under a switched anodic potential. This pulsed protocol also promotes the migration of nucleophilic ArB(OH)3- and causes the consumption of OH- near the cathode surface, accelerating C - N formation and suppressing phenol byproducts. Cu(II) can be recycled via facile electroplating. The wide substrate scope, ready synthesis of 15N-labelled arylamines, and methodological expansion to cycloaddition and Click reactions highlight the great promise.
Collapse
Affiliation(s)
- Meng He
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Yongmeng Wu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
| | - Rui Li
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Yuting Wang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Cuibo Liu
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
20
|
Hioki Y, Costantini M, Griffin J, Harper KC, Merini MP, Nissl B, Kawamata Y, Baran PS. Overcoming the limitations of Kolbe coupling with waveform-controlled electrosynthesis. Science 2023; 380:81-87. [PMID: 37023204 DOI: 10.1126/science.adf4762] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/14/2023] [Indexed: 04/08/2023]
Abstract
The Kolbe reaction forms carbon-carbon bonds through electrochemical decarboxylative coupling. Despite more than a century of study, the reaction has seen limited applications owing to extremely poor chemoselectivity and reliance on precious metal electrodes. In this work, we present a simple solution to this long-standing challenge: Switching the potential waveform from classical direct current to rapid alternating polarity renders various functional groups compatible and enables the reaction on sustainable carbon-based electrodes (amorphous carbon). This breakthrough enabled access to valuable molecules that range from useful unnatural amino acids to promising polymer building blocks from readily available carboxylic acids, including biomass-derived acids. Preliminary mechanistic studies implicate the role of waveform in modulating the local pH around the electrodes and the crucial role of acetone as an unconventional reaction solvent for Kolbe reaction.
Collapse
Affiliation(s)
- Yuta Hioki
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
- Science and Innovation Center, Mitsubishi Chemical Corporation, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| | | | - Jeremy Griffin
- Abbvie Process Research and Development, North Chicago, IL 60064, USA
| | - Kaid C Harper
- Abbvie Process Research and Development, North Chicago, IL 60064, USA
| | | | - Benedikt Nissl
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Cen N, Wang H, Zhou Y, Gong R, Sui D, Chen W. Catalyst-free electrochemical trifluoromethylation of coumarins using CF 3SO 2NHNHBoc as the CF 3 source. Org Biomol Chem 2023; 21:1883-1887. [PMID: 36786673 DOI: 10.1039/d2ob01925f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient electrochemical trifluoromethylation of coumarins using CF3SO2NHNHBoc as the source of the trifluoromethyl group was developed. Under catalyst-free and external oxidant-free electrolysis conditions, a range of 3-trifluoromethyl coumarins were obtained in moderate to good yields. The method could be easily scaled up with moderate efficiency.
Collapse
Affiliation(s)
- Nannan Cen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Han Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - YiCheng Zhou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Ruoqu Gong
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Dandan Sui
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Wenbo Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China. .,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
22
|
Karl TA, Seidl M, König B. Energy Harvesting: Synthetic Use of Recovered Energy in Electrochemical Late‐Stage Functionalization. ChemElectroChem 2023. [DOI: 10.1002/celc.202201097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tobias A. Karl
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| | - Max Seidl
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| |
Collapse
|
23
|
Bortnikov EO, Smith BS, Volochnyuk DM, Semenov SN. Stirring-Free Scalable Electrosynthesis Enabled by Alternating Current. Chemistry 2023; 29:e202203825. [PMID: 36594259 DOI: 10.1002/chem.202203825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Alternating current (AC) electrolysis is receiving increased interest as a versatile tool for mild and selective electrochemical transformations. This work demonstrates that AC can enable the concept of a stirring-free electrochemical reactor where the periodic switch of electrode polarity, inherent to AC, provides uniform electrolysis across the whole volume of the reactor. Such design implies a straightforward approach for scaling up electrosynthesis. This was demonstrated on the range of electrochemical transformations performed in three different RVC-packed reactors on up to a 50-mmol scale. Redox-neutral, oxidative, and reductive processes were successfully implemented using the suggested design and the applicable frequency ranges were further investigated for different types of reactions. The advantages of the AC-enabled design - such as the absence of stirring and a maximized surface area of the electrodes - provide the possibility for its universal application both for small-scale screening experimentation and large-scale preparative electrosynthesis without significant optimization needed in between.
Collapse
Affiliation(s)
- Evgeniy O Bortnikov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, 550 E. Orange Street, Tempe, Arizona, 85281, USA
| | | | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel
| |
Collapse
|
24
|
Zhang FX, Lin JH, Xiao JC. Difluoromethylsulfonyl Imidazolium Salt for Difluoromethylation of Alkenes. Org Lett 2022; 24:7611-7616. [PMID: 36201292 DOI: 10.1021/acs.orglett.2c03073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe the design and synthesis of a difluoromethylsulfonyl imidazolium salt, which can act as a radical difluoromethylation reagent to achieve the challenging amino- and oxy-difluoromethylation of alkenes. Notably, the three steps for the synthesis of the imidazolium salt do not require any tedious distillation or column chromatography purification process, and the amino- and oxy-difluoromethylation paths are simply determined by the selection of reaction solvents.
Collapse
Affiliation(s)
- Feng-Xu Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| |
Collapse
|
25
|
Hilt G, Jamshidi M, Fastie C. Applications of Alternating Current/Alternating Potential Electrolysis in Organic Synthesis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractThis review summarises the rarely used method of alternating current electrolysis for the synthesis of organic products. Different waveforms have been investigated which opens the possibility for further influence the outcome of the electrolysis by variation of the frequency as well as the highest peak current. In recent years alternating current electrolysis has been applied in increasingly more complex transformations. Especially the functionalisation of (hetero)arenes, functional group manipulation, metathesis reactions, and transition-metal-catalysed cross-coupling reactions were reported in recent years and the results of these and some other investigations are summarized in this review article.1 Introduction1.1 Waveforms1.2 Objectives1.3 Early Examples of the Optimisation of Alternating Current Electrolysis2 Recent Applications of Alternating Current Electrolysis for Organic Synthesis2.1 Substitution Reaction on Arenes2.2 Nitrogen–Sulfur Bond Formation and Sulfur–Sulfur Bond Metathesis2.3 Oxidation and Reduction2.4 Cross-Coupling Reactions2.5 Frequency Optimisation3 Conclusion
Collapse
|
26
|
Liu W, Yuan S, Jin M, Xian M. Biocatalytic synthesis of 2-fluoro-3-hydroxypropionic acid. Front Bioeng Biotechnol 2022; 10:969012. [PMID: 36061447 PMCID: PMC9428585 DOI: 10.3389/fbioe.2022.969012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Fluorine has become an important element for the design of synthetic molecules for use in medicine, agriculture, and materials. The introduction of fluorine atoms into organic compound molecules can often give these compounds new functions and make them have better performance. Despite the many advantages provided by fluorine for tuning key molecular properties, it is rarely found in natural metabolism. We seek to expand the molecular space available for discovery through the development of new biosynthetic strategies that cross synthetic with natural compounds. Towards this goal, 2-fluoro-3-hydroxypropionic acid (2-F-3-HP) was first synthesized using E. coli coexpressing methylmalonyl CoA synthase (MatBrp), methylmalonyl CoA reductase (MCR) and malonate transmembrane protein (MadLM). The concentration of 2-F-3-HP reached 50.0 mg/L by whole-cell transformation after 24 h. 2-F-3-HP can be used as the substrate to synthesize other fluorides, such as poly (2-fluoro-3-hydroxypropionic acid) (FP3HP). Being entirely biocatalytic, our procedure provides considerable advantages in terms of environmental and safety impacts over reported chemical methods.
Collapse
Affiliation(s)
- Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, China
- *Correspondence: Mo Xian, ; Wei Liu,
| | - Shan Yuan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Jin
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, China
- *Correspondence: Mo Xian, ; Wei Liu,
| |
Collapse
|
27
|
Baguia H, Evano G. Direct Perfluoroalkylation of C−H Bonds in (Hetero)arenes. Chemistry 2022; 28:e202200975. [DOI: 10.1002/chem.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
28
|
Zhang W, Deng X, Zhang FX, Lin JH, Xiao JC, Liang SH. Synthesis and 18F Labeling of Alkenyl Sulfonyl Fluorides via an Unconventional Elimination Pathway. Org Lett 2022; 24:4992-4997. [PMID: 35771975 DOI: 10.1021/acs.orglett.2c02091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A successful Cu-catalyzed addition of both Cl and SO2OCF2H groups into alkenes allows us to discover the unusual reactivity of the SO2OCF2H group. As opposed to common sulfonic esters (RSO2-O-R'), in which the R' group is highly electrophilic, the SO2 moiety demonstrates higher electrophilicity in RSO2-OCF2H. The unexpected reactivity is further developed not only as a synthetic tool for well-functionalized alkenyl sulfonyl fluorides but also for the first 18F labeling of alkenyl sulfonyl fluorides.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, White 427, Boston, Massachusetts 02114, United States.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Feng-Xu Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, White 427, Boston, Massachusetts 02114, United States
| |
Collapse
|
29
|
Yu L, Du A, Yang L, Hu Y, Xie W. Quantifying Hot Electron Energy Contributions in Plasmonic Photocatalysis Using Electrochemical Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2022; 13:5495-5500. [PMID: 35695751 DOI: 10.1021/acs.jpclett.2c01213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the challenge in measuring hot electron energy under reaction conditions, very few studies focus on experimental determination of hot carrier energy. Here, we adjust the energy state of free electrons in Au nanoparticles to quantify the hot electron energy in plasmonic photocatalysis. Reactant molecules with different reduction potentials such as 4-nitrothiophenol (4-NTP), 4-iodothiophenol (4-ITP), etc. are chosen as molecular probes to investigate the reducing ability of hot electrons. By comparing the voltage required to achieve the same conversion of photo- and electro-reaction pathways, we calibrate the maximum energy efficiency of hot electrons in 4-NTP reduction to be 0.32 eV, which is much lower than the excitation photon energy of 1.96 eV. Our work provides insight into the energy distribution of hot electrons and will be helpful for rational design of highly efficient plasmon-mediated chemical reactions.
Collapse
Affiliation(s)
- Linfeng Yu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Aoxuan Du
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Ling Yang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yanfang Hu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Wei Xie
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
30
|
Gunasekera D, Mahajan JP, Wanzi Y, Rodrigo S, Liu W, Tan T, Luo L. Controlling One- or Two-Electron Oxidation for Selective Amine Functionalization by Alternating Current Frequency. J Am Chem Soc 2022; 144:9874-9882. [PMID: 35622985 PMCID: PMC9199481 DOI: 10.1021/jacs.2c02605] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we report a unique electrosynthetic method that enables the selective one-electron oxidation of tertiary amines to generate α-amino radical intermediates over two-electron oxidation to iminium cations, providing easy access to arylation products by simply applying an optimal alternating current (AC) frequency. More importantly, we have discovered an electrochemical descriptor from cyclic voltammetry studies to predict the optimal AC frequency for various amine substrates, circumventing the time-consuming trial-and-error methods for optimizing reaction conditions. This new development in AC electrolysis provides an alternative strategy to solving challenging chemoselectivity problems in synthetic organic chemistry.
Collapse
Affiliation(s)
- Disni Gunasekera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jyoti P Mahajan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Yanick Wanzi
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sachini Rodrigo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Wei Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
31
|
Wang D, Jiang T, Wan H, Chen Z, Qi J, Yang A, Huang Z, Yuan Y, Lei A. Alternating Current Electrolysis Enabled Formal C-O/O-H Cross-Metathesis of 4-Alkoxy Anilines with Alcohols. Angew Chem Int Ed Engl 2022; 61:e202201543. [PMID: 35201639 DOI: 10.1002/anie.202201543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/17/2022]
Abstract
While multiple bond metathesis reactions, for example olefin metathesis, have seen considerable recent progress, direct metathesis of traditionally inert C-O single bonds is extremely rare and particularly challenging. Undoubtedly, metathesis reaction of C-O bonds is one of the most ideal routes for the value-added upgrading of molecules involving C-O bonds. Reported here is a new protocol to achieve the formal C-O/O-H cross-metathesis via alternating current electrolysis. Featuring mild reaction conditions, the protocol allows readily available 4-alkoxy anilines and alcohols to be converted into a wide range of valuable products in highly regioselective and chemoselective manner. Moreover, the present strategy can be used in the late-stage modification of pharmaceuticals as well as biologically active compounds, which demonstrated the potential application.
Collapse
Affiliation(s)
- Daoxin Wang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Tengfei Jiang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Hao Wan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Ziyue Chen
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Junchao Qi
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Anqi Yang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Zhiliang Huang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Yong Yuan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China.,College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
32
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
33
|
Claraz A, Masson G. Recent Advances in C(sp 3)-C(sp 3) and C(sp 3)-C(sp 2) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses. ACS ORGANIC & INORGANIC AU 2022; 2:126-147. [PMID: 36855458 PMCID: PMC9954344 DOI: 10.1021/acsorginorgau.1c00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The formation of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds is one of the major research goals of synthetic chemists. Electrochemistry is commonly considered to be an appealing means to drive redox reactions in a safe and sustainable fashion and has been utilized for C-C bond-forming reactions. Compared to anodic oxidative methods, which have been extensively explored, cathodic processes are much less investigated, whereas it can pave the way to alternative retrosynthetic disconnections of target molecules and to the discovery of new transformations. This review provides an overview on the recent achievements in the construction of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds via cathodic reactions since 2017. It includes electrochemical reductions and convergent paired electrolyses.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| |
Collapse
|
34
|
Hayashi K, Griffin J, Harper KC, Kawamata Y, Baran PS. Chemoselective (Hetero)Arene Electroreduction Enabled by Rapid Alternating Polarity. J Am Chem Soc 2022; 144:5762-5768. [PMID: 35347984 PMCID: PMC9216236 DOI: 10.1021/jacs.2c02102] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional chemical and even electrochemical Birch-type reductions suffer from a lack of chemoselectivity due to a reliance on alkali metals or harshly reducing conditions. This study reveals that a simpler avenue is available for such reductions by simply altering the waveform of current delivery, namely rapid alternating polarity (rAP). The developed method solves these issues, proceeding in a protic solvent, and can be easily scaled up without any metal additives or stringently anhydrous conditions.
Collapse
Affiliation(s)
- Kyohei Hayashi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jeremy Griffin
- Abbvie Process Research and Development, 1401 North Sheridan Road, North Chicago, Illinois 60064, United States
| | - Kaid C Harper
- Abbvie Process Research and Development, 1401 North Sheridan Road, North Chicago, Illinois 60064, United States
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
35
|
Sato E, Niki Y, Mitsudo K, Suga S. Electro-oxidative Trimerization of 1,2-Dimethoxybenzene: Reductive Workup Strategy and Alternating Current Electrolysis to Peel off the Precipitated Radical Cation Ion Pair. CHEM LETT 2022. [DOI: 10.1246/cl.220112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530, Japan
| | - Yuta Niki
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku Okayama 700-8530, Japan
| |
Collapse
|
36
|
Wang D, Jiang T, Wan H, Chen Z, Qi J, Yang A, Huang Z, Yuan Y, Lei A. Alternating Current Electrolysis Enabled Formal C−O/O−H Cross‐Metathesis of 4‐Alkoxy Anilines with Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daoxin Wang
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 P. R. China
| | - Tengfei Jiang
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 P. R. China
| | - Hao Wan
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 P. R. China
| | - Ziyue Chen
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 P. R. China
| | - Junchao Qi
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 P. R. China
| | - Anqi Yang
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 P. R. China
| | - Zhiliang Huang
- College of Chemistry and Molecular Sciences The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Yong Yuan
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang 330022 P. R. China
- College of Chemistry and Molecular Sciences The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
37
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
38
|
Wang J, Zhou W, Li J, Ding Y, Gao J. Recent Advances and Performance Enhancement Mechanisms of Pulsed Electrocatalysis. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Xiao F, Lin JH, Hao F, Zheng X, Guo Y, Xiao JC. Visible light mediated C-H trifluoromethylation of (hetero)arenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00067a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol on visible light mediated C-H trifluoromethylation of unactivated (hetero)arenes under blue LED irradiation has been developed. The reaction enables the rapid construction of a range of CF3-containing (hetero)arenes...
Collapse
|
40
|
Chen N, Lei J, Wang Z, Liu Y, Sun K, Tang S. Construction of Fluoro-containing Heterocycles Mediated by Free Radicals. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Zhong J, Ding C, Kim H, McCallum T, Ye K. Alternating current electrolysis: a photoredox catalysis mimic and beyond. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
42
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
43
|
Bock L, Schultheiß SK, Maschauer S, Lasch R, Gradl S, Prante O, Zard SZ, Heinrich MR. Synthesis of 2‐(Chlorodifluoromethyl)indoles for Nucleophilic Halogen Exchange with [
18
F]Fluoride. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Leonard Bock
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Stefanie K. Schultheiß
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Schwabachanlage 12 91054 Erlangen Germany
| | - Roman Lasch
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Susanne Gradl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Schwabachanlage 12 91054 Erlangen Germany
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique associé au CNRS Ecole Polytechnique 91128 Palaiseau France
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| |
Collapse
|
44
|
Liu M, Luo ZX, Li T, Xiong DC, Ye XS. Electrochemical Trifluoromethylation of Glycals. J Org Chem 2021; 86:16187-16194. [PMID: 34435785 DOI: 10.1021/acs.joc.1c01318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbohydrates play essential roles in various physiological and pathological processes. Trifluoromethylated compounds have wide applications in the field of medicinal chemistry. Herein, we report a practical and efficient trifluoromethylation of glycals by an electrochemical approach using CF3SO2Na as the trifluoromethyl source and MnBr2 as the redox mediator. A variety of trifluoromethylated glycals bearing different protective groups are obtained in 60-90% yields with high regioselectivity. The successful capture of a CF3 radical indicates that a radical mechanism is involved in this reaction.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhao-Xiang Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
45
|
Kang JC, Li ZH, Chen C, Dong LK, Zhang SY. Paired Electrolysis Enabled Ni-Catalyzed Unconventional Cascade Reductive Thiolation Using Sulfinates. J Org Chem 2021; 86:15326-15334. [PMID: 34633802 DOI: 10.1021/acs.joc.1c01891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein, we have reported a nickel-catalyzed cascade reductive thiolation of aryl halides with sulfinates driven by paired electrolysis. This protocol uses sulfinates as the sulfur source, and various thioethers could be synthesized under mild conditions. By mechanism exploration, we find that a cascade chemical step is allowed on the electrode interface and could alter the reaction pathway in paired electrolysis, whose findings could help the discovery of novel cascade reactions with unique reactivity.
Collapse
Affiliation(s)
- Jun-Chen Kang
- School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Li-Kun Dong
- School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
46
|
Kawamata Y, Hayashi K, Carlson E, Shaji S, Waldmann D, Simmons BJ, Edwards JT, Zapf CW, Saito M, Baran PS. Chemoselective Electrosynthesis Using Rapid Alternating Polarity. J Am Chem Soc 2021; 143:16580-16588. [PMID: 34596395 PMCID: PMC8711284 DOI: 10.1021/jacs.1c06572] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Challenges in the selective manipulation of functional groups (chemoselectivity) in organic synthesis have historically been overcome either by using reagents/catalysts that tunably interact with a substrate or through modification to shield undesired sites of reactivity (protecting groups). Although electrochemistry offers precise redox control to achieve unique chemoselectivity, this approach often becomes challenging in the presence of multiple redox-active functionalities. Historically, electrosynthesis has been performed almost solely by using direct current (DC). In contrast, applying alternating current (AC) has been known to change reaction outcomes considerably on an analytical scale but has rarely been strategically exploited for use in complex preparative organic synthesis. Here we show how a square waveform employed to deliver electric current-rapid alternating polarity (rAP)-enables control over reaction outcomes in the chemoselective reduction of carbonyl compounds, one of the most widely used reaction manifolds. The reactivity observed cannot be recapitulated using DC electrolysis or chemical reagents. The synthetic value brought by this new method for controlling chemoselectivity is vividly demonstrated in the context of classical reactivity problems such as chiral auxiliary removal and cutting-edge medicinal chemistry topics such as the synthesis of PROTACs.
Collapse
Affiliation(s)
- Yu Kawamata
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kyohei Hayashi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ethan Carlson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shobin Shaji
- IKA Works, Inc., 3550 General Atomics Court, MS G02/321, San Diego, California 92121, United States
| | - Dirk Waldmann
- IKA Works, Inc., 3550 General Atomics Court, MS G02/321, San Diego, California 92121, United States
- IKA-Werke GmbH & Co. KG Janke & Kunkel-Straße 10, Staufen 79219, Germany
| | - Bryan J Simmons
- Bristol Myers Squibb, 10300 Campus Point Drive Suite 100, San Diego, California 92121, United States
| | - Jacob T Edwards
- Bristol Myers Squibb, 10300 Campus Point Drive Suite 100, San Diego, California 92121, United States
| | - Christoph W Zapf
- Bristol Myers Squibb, 10300 Campus Point Drive Suite 100, San Diego, California 92121, United States
| | - Masato Saito
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
47
|
Karthik PE, Jothi VR, Pitchaimuthu S, Yi S, Anantharaj S. Alternating Current Techniques for a Better Understanding of Photoelectrocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pitchiah E. Karthik
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Vasanth Rajendiran Jothi
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sudhagar Pitchaimuthu
- Research Centre for Carbon Solutions, Institute of Mechanical, Processing, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - SungChul Yi
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Department of Hydrogen and Fuel Cell Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sengeni Anantharaj
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
48
|
Zhao B, Prabagar B, Shi Z. Modern strategies for C–H functionalization of heteroarenes with alternative coupling partners. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Tang K, Chen Y, Guan J, Wang Z, Chen K, Xiang H, Yang H. Visible-light-promoted olefinic trifluoromethylation of enamides with CF 3SO 2Na. Org Biomol Chem 2021; 19:7475-7479. [PMID: 34612366 DOI: 10.1039/d1ob01410b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible-light-promoted olefinic C-H trifluoromethylation of enamides was developed by employing cheap and stable Langlois' reagent as the CF3 source. A series of β-CF3 enamides were obtained in moderate to good yields with high E-isomer selectivity under mild conditions. Preliminary mechanistic studies suggest that molecular oxygen acts as the terminal oxidant for this net oxidative process, and the E isomer selectivity could be well explained by a base-assisted deprotonation of the cation intermediate.
Collapse
Affiliation(s)
- Kai Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Fährmann J, Hilt G. Wechselstromelektrolyse als effizientes Instrument für die direkte elektrochemische Oxidation von Hydroxamsäuren für die Acyl‐Nitroso Diels‐Alder‐Reaktion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Fährmann
- Institut für Chemie Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Deutschland
| | - Gerhard Hilt
- Institut für Chemie Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Deutschland
| |
Collapse
|