1
|
Adachi K, Nogami J, Hashizume D, Tauchi D, Hasegawa M, Tanaka K. Enantio- and Diastereoselective Synthesis and Spiral-Stair-Like Single Helix Assembly of Figure-Eight Cyclophenylenes. Angew Chem Int Ed Engl 2025; 64:e202502764. [PMID: 40104859 DOI: 10.1002/anie.202502764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/20/2025]
Abstract
Helix assemblies of chiral molecules can transfer microscopic unimolecular chirality to macroscopic supramolecular chirality, enhancing various chiral properties. In addition to the commonly observed spiral-column-like helix assembly, a small number of spiral-stair-like helix assemblies have also been reported in aromatic nanocarbons with multiple chirality-related irregularities. However, they require separation of diastereomers and/or enantiomers or do not have stable chirality. Here, we report the enantio- and diastereoselective synthesis of figure-eight [10]cyclophenylenes with stable helical chirality by the rhodium-catalyzed four consecutive intramolecular [2 + 2 + 2] cycloadditions of dodecaynes with two flexible biphenyl units. The chiral figure-eight [10]cyclophenylene with ethyl and methyl side chains exhibits the spiral-stair-like single helix assembly in the crystal due to CH-π and CH-O interactions and good CPL properties in solution. Experimental verification of the enantio- and diastereodetermining steps of four consecutive [2 + 2 + 2] cycloadditions is also reported.
Collapse
Affiliation(s)
- Kohei Adachi
- Department of Chemical Science and Engineering, Institute of Science Tokyo, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daiki Tauchi
- Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masashi Hasegawa
- Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Institute of Science Tokyo, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
2
|
Lv L, Ning Z, Zhang Y, Meng Y, Tang B. Unraveling the Mechanism of Circularly Polarized Thermally Activated Delayed Fluorescence (CP-TADF) in Chiral Two-Coordinated Cu(I) Emitters: A Comprehensive Theoretical Exploration. Inorg Chem 2025; 64:6497-6509. [PMID: 40116930 DOI: 10.1021/acs.inorgchem.4c05316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The circularly polarized thermally activated delayed fluorescence (CP-TADF) processes of four pairs of Cu(I)-based chiral enantiomers were calculated by employing the path integral approach to dynamics. The calculated results reveal that the introduction of different substituents at various positions on the planar chiral CzP units significantly impacts on the dissymmetry factor gCPL of CP luminescence (CPL). Substituting the sixth position hydrogen on the chiral CzP unit with -CN or -Cl groups increases the gCPL factor to 2.1 × 10-3 and 2.2 × 10-3 in Sp-MAC-Cu-CNCzP-1 and Sp-MAC-Cu-ClCzP, respectively. This is due to a small electric transition dipole moment |μ| and a relatively large magnetic transition dipole moment |m|. The small |μ| results from the CT excitation with spatially separated highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) transitions in the S1 state, leading to a small ΔE(S1 - T1) and more efficient TADF. Interestingly, the seventh-substituted MAC-Cu-CNCzP-2 complex exhibits a substantial increase in the ΔE(S1 - T1) of 0.346 eV, which consequently leads to a significant decrease in the kRISC rate, down to 3.32 × 103 s-1, indicating that further efficient reverse intersystem crossing (RISC) processes are failed. Thus, to design efficient CP-TADF molecules, the key lies in regulating and balancing the factors affecting both TADF and CPL properties.
Collapse
Affiliation(s)
- LingLing Lv
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China
- Key Laboratory of Advanced Optoelectronic Functional Materials of Gansu Province, Tianshui Normal University, Tianshui, Gansu 741001, China
| | - ZiYe Ning
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China
| | - YanYing Zhang
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China
| | - YiZe Meng
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China
| | - BoWen Tang
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China
| |
Collapse
|
3
|
Takaishi K, Taniuchi I, Miyashita S, Yabushita K, Ema T. A Binaphthyl Macrocycle Exhibiting Circularly Polarized Luminescence: On-off Switch Triggered by Molecular Recognition. Chemistry 2025; 31:e202500736. [PMID: 40079920 DOI: 10.1002/chem.202500736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
A series of D4-symmetric (S)-1,1'-binaphthyl cyclic tetramers were synthesized. The signs and intensities of circularly polarized luminescence (CPL) of the tetramers depend on the substituents, which were caused by differences of the binaphthyl dihedral angles in the excited state. The chiral dye with hydroxy groups did not exhibit CPL. However, this dye exhibited turned-on CPL upon addition of amino acids such as l-phenylalanine in an enantioselective and positive allosteric manner, and the glum value reached +7.3 × 10-3. The CPL was repeatedly switched on and off by changing temperature. The turn-on CPL was caused by the guest molecules expanding the binaphthyl dihedral angles with multiple hydrogen bonds. (+)-Andersen sulfinate also induced enantioselective turn-on CPL.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Itsuki Taniuchi
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Sho Miyashita
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Kei Yabushita
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
4
|
White LEM, Gianga TM, Pradaux-Caggiano F, Faverio C, Taddeucci A, Rzepa HS, Jonhannesen C, Hatcher LE, Siligardi G, Carbery DR, Pantoș GD. Enantiopure synthesis of [5]helicene based molecular lemniscates and their use in chiroptical materials. Nat Commun 2025; 16:2837. [PMID: 40121190 PMCID: PMC11929746 DOI: 10.1038/s41467-025-58162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
The ability to synthesise lemniscular molecules to allow for the study and application of their chiroptical properties is a notable technical challenge. Herein, we report the design and synthesis of enantiomers of a [5]helicenoid derived molecular lemniscate, in which two homochiral helicenes are linked via the formation of two azine motifs. We demonstrate that these molecules, and their helicenoid constituents, are also excellent chiral dopants that induce dissymmetry in the ground and excited states of the achiral emissive polymer F8BT, leading to high CPL activity. The ability to control the handedness of the helicenoid dopants via enantiopure synthesis affords control of the sign of CP emission. This manipulation of circularly polarised light is of great interest for optoelectronic technologies.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Taddeucci
- B23 Beamline, Diamond Light Source Ltd., Didcot, UK
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Henry S Rzepa
- Department of Chemistry, Imperial College London MSRH, London, UK
| | | | | | | | | | - G Dan Pantoș
- Department of Chemistry, University of Bath, Bath, UK.
| |
Collapse
|
5
|
Hashikawa Y, Fujimura K, Ueda Y, Fukaya N, Kawabata T, Murata Y. Chiroptical Response of Carbon Nanocages Enhanced by Achiral Guests. Angew Chem Int Ed Engl 2025; 64:e202421859. [PMID: 39603987 DOI: 10.1002/anie.202421859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Opening up [60]fullerene makes itself inherently chiral without loss of congenital π-conjugation. An immoderately large aperture on [60]fullerene, however, renders the molecule less rigid and therefore it would reduce dissymmetry factors. Herein, we examined supramolecular technique in geometrical reinforcement of chiral open-[60]fullerenes by encasing achiral guests such as Ar, CO2, and CH3CN. At a lowest-energy transition, we confirmed a guest-dependency on chiroptical responses with increasing a dissymmetry factor by nearly twice to three times. It should be noted that the guests play a negligible role in electronic structures of the carbon cages. Instead, they are engaged in preclusion of an orifice shrinking not to reduce chiroptical response.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Koki Fujimura
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yoshihiro Ueda
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Norihisa Fukaya
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Takeo Kawabata
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
6
|
Zhou Q, Yuan W, Li Y, Han Y, Bao L, Fan W, Jiao L, Zhao Y, Ni Y, Zou Y, Yang HB, Wu J. [5]Helicene Based π-Conjugated Macrocycles with Persistent Figure-Eight and Möbius Shapes: Efficient Synthesis, Chiral Resolution and Bright Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025; 64:e202417749. [PMID: 39431291 DOI: 10.1002/anie.202417749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/22/2024]
Abstract
π-Conjugated chiral shape-persistent molecular nanocarbons hold great potential as chiroptical materials, though their synthesis remains a considerable challenge. Here, we present a simple approach using Suzuki coupling of a [5]helicene building block with various aromatic units, enabling the one-pot synthesis of a series of chiral macrocycles with persistent figure-eight and Möbius shapes. Single-crystal structures of 7 compounds were solved, and 22 enantiomers were separated by preparative chiral HPLC. A notable pyrene-bridged figure-eight macrocycle, with its rigid, fully π-conjugated and overcrowded structure, exhibited pure excimer emission and outstanding circularly polarized luminescence (CPL) properties, including a large dissymmetric factor (|glum|=3.8×10-2) and significant CPL brightness (BCPL=710.5 M-1cm-1). This method provides a versatile synthetic platform for producing various chiral D2-symmetric figure-eight macrocycles and singly or triply twisted Möbius macrocycles with C2 and D3 symmetry, offering tunable chiroptical properties for CPL applications.
Collapse
Affiliation(s)
- Qifeng Zhou
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wei Yuan
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yunfei Li
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lintao Bao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Wei Fan
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Liuying Jiao
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371, Singapore
| | - Yong Ni
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ya Zou
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
7
|
Kovida K, Malinčík J, Cruz CM, Campaña AG, Šolomek T. Role of exciton delocalization in chiroptical properties of benzothiadiazole carbon nanohoops. Chem Sci 2025; 16:1405-1410. [PMID: 39713755 PMCID: PMC11659672 DOI: 10.1039/d4sc07333a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Development of chiral organic materials with a strong chiroptical response is crucial to advance technologies based on circularly polarized luminescence, enantioselective sensing, or unique optical signatures in anti-counterfeiting. The progress in the field is hampered by the lack of structure-property relationships that would help designing new chiral molecules. Here, we address this challenge by synthesis and investigation of two chiral macrocycles that integrate in their structure a pseudo-meta [2.2]paracyclophane with planar chirality and a highly fluorescent benzothiadiazole. Both compounds display remarkably red-shifted fluorescence with high quantum yields and large Stokes shifts. They differ in the extent of π-electron conjugation that allowed, for the first time, systematic examination of the effect of exciton delocalization on the absorption and luminescence of circularly polarized light. By a combination of steady-state spectroscopy and quantum chemical calculations, we constructed a unique structure-property relationship offering critical insights that will aid and abet the development of robust design guidelines for materials with strong electronic circular dichroism or circularly polarized luminescence of exceptional brightness.
Collapse
Affiliation(s)
- Kovida Kovida
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Juraj Malinčík
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovakia
| | - Carlos M Cruz
- Department of Organic Chemistry, University of Granada Avda Fuentenueva, s/n 18071 Granada Spain
| | - Araceli G Campaña
- Department of Organic Chemistry, University of Granada Avda Fuentenueva, s/n 18071 Granada Spain
| | - Tomáš Šolomek
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovakia
| |
Collapse
|
8
|
Hiroto S, Chujo M. Donor-Acceptor-Donor Dyads with Electron-Rich π-Extended Azahelicenes to Panchromatic Absorbing Dyes. Chem Asian J 2025; 20:e202400830. [PMID: 39215744 DOI: 10.1002/asia.202400830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Panchromatic dyes have been highly useful in the realm of optical devices. Here, we report that panchromatic dyes with heterohelicenes have been successfully synthesized using a donor-acceptor strategy. Our synthesis resulted in the creation of π-extended aza[5]helicene oligomers with butadiyne linkages, which displayed bathochromically shifted absorption and emission spectra. The solvent-dependent optical measurements revealed the intramolecular charge transfer characteristic of these molecules, and theoretical calculations described the biased molecular orbitals on the azahelicene units that generated the charge-transfer characteristic. Encouraged by these results, we also prepared donor-acceptor-donor dyads using azahelicenes and dimide derivatives, resulting in panchromatic absorbing characteristics covering the range from 250 nm to 800 nm. Theoretical calculations showed the presence of mixed charge-transfer transitions and localized transitions on the azahelicene units, which led to a broad light-absorbing property covering the near IR region. Additionally, we conducted measurements of circular dichroism and circularly polarized luminescence for the obtained products. The g-values were reduced by oligomerization, indicating that the lowest energy transitions were allowed in nature.
Collapse
Affiliation(s)
- Satoru Hiroto
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Moeko Chujo
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
9
|
Nishimoto E, Ikai T, Shinokubo H, Fukui N. Synthesis and Properties of Donor-Acceptor-Type Cyclobisbiphenylenecarbonyls. Chemistry 2024:e202404194. [PMID: 39739760 DOI: 10.1002/chem.202404194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
The scalable synthesis of figure-eight π-systems is challenging for the conventional bottom-up approach. We have recently reported that the oxidative inner-bond cleavage of commercially available dibenzo[g,p]chrysene efficiently furnishes a figure-eight π-acceptor, cyclobisbiphenylenecarbonyl (CBBC), in large quantity. Furthermore, its donor-acceptor-type derivative with four N-carbazolyl substituents at the meta-positions of the carbonyl groups exhibited thermally activated delayed fluorescence (TADF) and circularly polarized luminescence (CPL) with a high |gCPL| value of 1.0×10-2. Herein, we synthesized nine donor-acceptor-type CBBC derivatives by changing the donor substituents and their positions. Compared to previously reported carbazole-substituted CBBC, tetramethylcarbazole- and 9,10-dihydro-9,9-dimethylacridine-substituted derivatives exhibited enhanced emission quantum yields and accelerated reverse intersystem crossing. The functionalization of the para-positions of the carbonyl groups resulted in better tunability of emission colors rather than meta-functionalization, whose color variation ranges from light blue to red. The incorporation of bulky substituents at the meta-positions of the carbonyl groups induced the conformational change to a distorted ring structure. Investigation of the substituent effect on the chiroptical properties revealed that the introduction of less bulky donor units such as carbazole at the meta-positions of the carbonyl groups is effective in achieving high |gCPL| values.
Collapse
Affiliation(s)
- Emiko Nishimoto
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
10
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
11
|
Hara M, Toriumi N, Uchiyama M, Nozaki K. Synthesis, Structure, and Optical Property of [6]Cyclo-1,2-naphthylene. Chemistry 2024; 30:e202402323. [PMID: 39305152 DOI: 10.1002/chem.202402323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 11/01/2024]
Abstract
A one-pot procedure with cobalt-mediated oxidation of 2,2'-dilithio-1,1'-binaphthyl by ferrocenium salts afforded the chiral cyclic hexamer of naphthylene, [6]cyclo-1,2-naphthylene (1). The molecular structure of 1 was determined by single crystal X-ray crystallography and NMR analyses, revealing its cyclic structure with an approximate D3 symmetry. Compound 1 exhibits blue emission at 383 nm with high photoluminescence quantum yield of 97 %, which can be attributed to its rigid twelve-membered ring structure. Optical resolution of 1 by chiral HPLC allowed for the evaluation of its chiroptical properties. Each enantiomer exhibits circular dichroism with complex Cotton effects, which are grouped into three positive or three negative couplets. Circularly polarized luminescence is observed at 383 nm with an anisotropy factor |glum| on the order of 10-4. The high photoluminescence quantum yield and the CPL properties of 1 indicate its potential application as a CPL emitter.
Collapse
Affiliation(s)
- Masaki Hara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
12
|
Yoshina R, Hirano J, Nishimoto E, Sakamoto Y, Tajima K, Minabe S, Uyanik M, Ishihara K, Ikai T, Yashima E, Omine T, Ishiwari F, Saeki A, Kim J, Oh J, Kim D, Liu G, Yasuda T, Shinokubo H, Fukui N. Inner-Bond-Cleavage Approach to Figure-Eight Macrocycles from Planar Aromatic Hydrocarbons. J Am Chem Soc 2024; 146:29383-29390. [PMID: 39315432 PMCID: PMC11528406 DOI: 10.1021/jacs.4c07985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Figure-eight-shaped nonplanar π-systems adopt distinctive chiral D2-symmetric structures, which are ideal for realizing efficient circularly polarized luminescence (CPL). However, the short-step and enantioselective synthesis of figure-eight π-systems represents a considerable challenge for the conventional bottom-up synthetic strategy. Herein, we report that the oxidative cleavage of the internal double bond of a commercially available polycyclic aromatic hydrocarbon, i.e., dibenzo[g,p]chrysene (DBC), catalytically affords a figure-eight electron-accepting macrocycle, i.e., cyclobisbiphenylenecarbonyl (CBBC), with high scalability (up to 3.3 g) and excellent enantioselectivity (94% ee). This inner-bond-cleavage approach also applies to larger PAHs, affording highly distorted molecular frameworks that comprise two figure-eight subunits. Furthermore, we demonstrate that the peripheral functionalization of CBBC with carbazole afforded donor-acceptor-type emitter, which shows thermally activated delayed fluorescence and emits CPL with a g value of 1.0 × 10-2. This g value is ten times higher than those of previously reported chiral TADF-active emitters for circularly polarized organic light-emitting diodes. These results demonstrate that oxidative inner-bond cleavage is a powerful synthetic strategy for creating innovative materials that incorporate molecules with figure-eight structures.
Collapse
Affiliation(s)
- Reiji Yoshina
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Junichiro Hirano
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Emiko Nishimoto
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yuki Sakamoto
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Keita Tajima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shunsuke Minabe
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Muhammet Uyanik
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Kazuaki Ishihara
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Tomoyuki Ikai
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO, Japan Science and Technology Agency
(JST), Kawaguchi, Saitama 332-0012, Japan
| | - Eiji Yashima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Takuya Omine
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumitaka Ishiwari
- PRESTO, Japan Science and Technology Agency
(JST), Kawaguchi, Saitama 332-0012, Japan
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinseok Kim
- Spectroscopy
Laboratory for Functional π-Electronic Systems and Department
of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Juwon Oh
- Department
of Chemistry, Soonchunhyang University, Asan, Chungnam 31538, Republic
of Korea
| | - Dongho Kim
- Spectroscopy
Laboratory for Functional π-Electronic Systems and Department
of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Guanting Liu
- Institute
for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuma Yasuda
- Institute
for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Shinokubo
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO, Japan Science and Technology Agency
(JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
13
|
Liu ZF, Liu XX, Zhang H, Zeng L, Niu LY, Chen PZ, Fang WH, Peng X, Cui G, Yang QZ. Intense Circularly Polarized Luminescence Induced by Chiral Supramolecular Assembly: The Importance of Intermolecular Electronic Coupling. Angew Chem Int Ed Engl 2024; 63:e202407135. [PMID: 39018249 DOI: 10.1002/anie.202407135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron β-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by single-crystal XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθμ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xin-Xin Liu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Han Zhang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lan Zeng
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Peng-Zhong Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ganglong Cui
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
14
|
Wang Y, Liao Q, Feng Y, Wang Y, Li Y, Meng Q. Synthesis and resolution of multi-chiral carbonyl-N embedded hetero[7]helicenes for efficient circularly polarized luminescence. Chem Commun (Camb) 2024; 60:8292-8295. [PMID: 39022919 DOI: 10.1039/d4cc02747g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Novel carbonyl-N embedded hetero[7]helicene diastereomers incorporating axially chiral binaphthyl were facilely synthesized and separated. The separated homochiral hetero[7]helicenes exhibit intense green photoluminescence and circularly polarized luminescence (CPL) with luminescence dissymmetry factors (glum) of 1.4 × 10-3 due to the intrinsic helical multiple-resonance skeleton.
Collapse
Affiliation(s)
- Yuxiang Wang
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China.
| | - Qi Liao
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China.
| | - Yabin Feng
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China.
| | - Yiran Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China.
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, P. R. China.
| | - Qi Meng
- School of Petrochemical Engineering, Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, Jiangsu 213164, P. R. China.
| |
Collapse
|
15
|
Maeda C, Yasutomo I, Ema T. Cyclic Azahelicene Dimers Showing Bright Circularly Polarized Luminescence and Selective Fluoride Recognition. Angew Chem Int Ed Engl 2024; 63:e202404149. [PMID: 38725174 DOI: 10.1002/anie.202404149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 06/21/2024]
Abstract
Although helicenes are promising molecules, the synthetic difficulty and tediousness have often been problems, and only small amounts of optically pure helicenes have been obtained by using chiral HPLC in most cases. Herein, aza[7]helicenes or closed-aza[7]helicenes with (1R)-menthyl substituents were selectively synthesized via the intramolecular Scholl reaction, and the diastereomeric pairs were separated by silica gel column chromatography. The optically pure helicenes were further transformed into the corresponding cyclic dimers, and the chiroptical properties were investigated. The rigid π-frameworks of the dimers led to the high molar extinction coefficients and fluorescence quantum yields, while the twisted helicene moieties induced clear Cotton effects and CPL in the visible region, and the high CPL brightness (BCPL) was achieved. Furthermore, the cyclic dimers were found to have the macrocyclic cavity with the two NH groups suitable for the selective binding of a fluoride anion, which induced significantly redshifted fluorescence and CPL in the red region.
Collapse
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Issa Yasutomo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
16
|
Jiang Q, Tang H, Peng Y, Hu Z, Zeng W. Helical polycyclic hydrocarbons with open-shell singlet ground states and ambipolar redox behaviors. Chem Sci 2024; 15:10519-10528. [PMID: 38994409 PMCID: PMC11234857 DOI: 10.1039/d4sc02116a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Organic π-conjugated polycyclic hydrocarbons (PHs) with an open-shell diradical character are attracting increasing interest due to their promising applications in organic electronics and spintronics. However, most of the open-shell PHs synthesized thus far are based on planar π-conjugated molecules. Herein, we report the synthesis and characterization of two new quinodimethane-embedded expanded helicenes H1 and H2. The helical structures of both molecules were revealed using X-ray crystallographic analysis. It was elucidated in detailed experimental and theoretical studies that they possess an open-shell singlet biradical structure in the ground state and show a small energy gap and amphoteric redox behavior. Both compounds can also be easily oxidized or reduced into relatively stable charged species. The dianions of H1 and H2 exhibit similar electronic structures to the respective isoelectronic structures of their all-benzenoid helical analogues according to NMR measurements and theoretical calculations. Moreover, the structures of the dication and dianion of H2 were identified by X-ray crystallographic analysis, revealing the effect of electron transfer on their backbones and aromaticity. This study thus opens up new avenues for both helical polycyclic π-systems and diradicaloids.
Collapse
Affiliation(s)
- Qing Jiang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Hui Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Yuchen Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Zhenni Hu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Wangdong Zeng
- School of Materials Science and Engineering, Hunan University of Science and Technology Xiangtan 411201 China
| |
Collapse
|
17
|
Artigas A, Carissan Y, Hagebaum-Reignier D, Bock H, Durola F, Coquerel Y. Aromaticity in Semi-Condensed Figure-Eight Molecules. Chemistry 2024; 30:e202401016. [PMID: 38642001 DOI: 10.1002/chem.202401016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/22/2024]
Abstract
Electron delocalization and aromaticity was comparatively evaluated in recently synthesized figure-eight molecules made of two condensed U-shaped polycyclic aromatic hydrocarbon moieties connected either by two single bonds or by two para-phenylene groups. The selected examples include molecules that incorporate eight-membered and sixteen-membered rings, as well as a doubly [5]helicene-bridged (1,4)cyclophane. We probe whether some electron delocalization could occur through the stereogenic single bonds in these molecules: Is aromaticity purely (semi-)local, or possibly also global in these molecules? It was concluded that the situation can go from a purely (semi-)local character when the dihedral angle at the connecting single bonds is large, such as in biphenyl, to a predominantly (semi-)local character with a minor global contribution when the dihedral angle is small, such as in the para-phenylene connectors of the [5] helicene-bridged cyclophane.
Collapse
Affiliation(s)
- Albert Artigas
- Facultat de Ciències, Universitat de Girona, Campus Montilivi, Carrer de Maria Aurèlia Capmany i Farnès 69, 17003, Girona, Catalunya, Spain
| | - Yannick Carissan
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | | | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS, 115 av. Schweitzer, 33600, Pessac, France
| | - Fabien Durola
- Centre de Recherche Paul Pascal, CNRS, 115 av. Schweitzer, 33600, Pessac, France
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| |
Collapse
|
18
|
Hirano J, Miyoshi S, Yashima E, Ikai T, Shinokubo H, Fukui N. Synthesis of sterically congested double helicene by alkyne cycloisomerization. Chem Commun (Camb) 2024; 60:6035-6038. [PMID: 38775051 DOI: 10.1039/d4cc01573h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Alkyne cycloisomerization of 2,7,10,15-tetra(ortho-alkynylphenyl)benzo[g,p]chrysene containing bulky 4-alkoxy-2,6-dimethylphenyl groups at the alkyne terminals selectively proceeded at the sterically crowded bay-region. The obtained double helicene adopts a distorted structure with a high racemization barrier due to the intramolecular steric repulsion.
Collapse
Affiliation(s)
- Junichiro Hirano
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Sayaka Miyoshi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
19
|
Ikeshita M, Ma SC, Muller G, Naota T. Linker-dependent control of the chiroptical properties of polymethylene-vaulted trans-bis[(β-iminomethyl)naphthoxy]platinum(II) complexes. Dalton Trans 2024; 53:7775-7787. [PMID: 38619916 DOI: 10.1039/d4dt00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The effects of polymethylene bridges on the chiroptical properties of trans-bis[(β-iminomethyl)naphthoxy]platinum(II) platforms were examined both experimentally and theoretically using newly designed planar chiral Pt analogues (1) having three-dimensional superstructures. A series of optically pure polymethylene-vaulted Pt complexes (R)- and (S)-1 were synthesized and characterized with regard to the chiroptical behaviour of the trans-bis[(β-iminomethyl)naphthoxy]platinum(II) platforms. These complexes were found to exhibit structure-dependent chiroptical characteristics in solution, such that the absolute values of specific rotation, the circular dichroism dissymmetry factor (gabs) and the circularly polarized luminescence dissymmetry factor (glum) all increased upon shortening the polymethylene bridges. Density functional theory and time dependent density functional theory calculations were used to analyse vaulted and non-vaulted complexes, which demonstrated that the present linker-dependent chiroptical properties resulted from constraint-induced changes in the square planar Pt coordination centres rather than from chiral distortion along the coordination platforms.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan.
| | - Shing Cho Ma
- Department of Chemistry, San José State University, One Washington Square, San José, California 95192-0101, USA.
| | - Gilles Muller
- Department of Chemistry, San José State University, One Washington Square, San José, California 95192-0101, USA.
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
20
|
Zhang T, Zhang Y, He Z, Yang T, Hu X, Zhu T, Zhang Y, Tang Y, Jiao J. Recent Advances of Chiral Isolated and Small Organic Molecules: Structure and Properties for Circularly Polarized Luminescence. Chem Asian J 2024; 19:e202400049. [PMID: 38450996 DOI: 10.1002/asia.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
This paper explores recent advancements in the field of circularly polarized luminescence (CPL) exhibited by small and isolated organic molecules. The development and application of small CPL molecule are systematically reviewed through eight different chiral skeleton sections. Investigating the intricate interplay between molecular structure and CPL properties, the paper aims at providing and enlighting novel strategies for CPL-based applications.
Collapse
Affiliation(s)
- Tingwei Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yue Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zhiyuan He
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Tingjun Yang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xu Hu
- School of Chemistry and Chemical Engineering at, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Tengfei Zhu
- Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanfeng Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuhai Tang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
21
|
Salem MSH, Sharma R, Suzuki S, Imai Y, Arisawa M, Takizawa S. Impact of helical elongation of symmetric oxa[n]helicenes on their structural, photophysical, and chiroptical characteristics. Chirality 2024; 36:e23673. [PMID: 38698568 DOI: 10.1002/chir.23673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
The adjustment of the main helical scaffold in helicenes is a fundamental strategy for modulating their optical features, thereby enhancing their potential for diverse applications. This work explores the influence of helical elongation (n = 5-9) on the structural, photophysical, and chiroptical features of symmetric oxa[n]helicenes. Crystal structure analyses revealed structural variations with helical extension, impacting torsion angles, helical pitch, and packing arrangements. Through theoretical investigations using density functional theory (DFT) calculations, the impact of helical extension on aromaticity, planarity distortion, and heightened chiral stability were discussed. Photophysical features were studied through spectrophotometric analysis, with insights gained through time-dependent DFT (TD-DFT) calculations. Following optical resolution via chiral high-performance liquid chromatography (HPLC), the chiroptical properties of both enantiomers of oxa[7]helicene and oxa[9]helicene were investigated. A slight variation in the main helical scaffold of oxa[n]helicenes from [7] to [9] induced an approximately three-fold increase in dissymmetry factors with the biggest values of|glum| of oxa[9]helicene (2.2 × 10-3) compared to|glum|of oxa[7]helicene (0.8 × 10-3), findings discussed and supported by TD-DFT calculations.
Collapse
Grants
- 24K17681 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 21A204 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 21H05217 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 22K06502 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- Japan Society for the Promotion of Science (JSPS)
- JPMJCR20R1 Core Research for Evolutionary Science and Technology (JST CREST)
- Hoansha Foundation
Collapse
Affiliation(s)
- Mohamed S H Salem
- SANKEN, Osaka University, Osaka, Japan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Rubal Sharma
- SANKEN, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Seika Suzuki
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka, Higashi-Osaka, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka, Higashi-Osaka, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
22
|
Nakazono R, Hu W, Hirose T, Amaya T. Synthesis and Characterization of a Cyclic Trimer of a Chiral Spirosilabifluorene. Chemistry 2024:e202401343. [PMID: 38676431 DOI: 10.1002/chem.202401343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/28/2024]
Abstract
A chiral shape-persistent macrocyclic compound (Si-[3]), designed by the C/Si substitution in the spiro-atom of spirobifluorene in the cyclic trimer (C-[3]), has been successfully synthesized in this study. The C/Si substitution made the spiro-conjugation and energy levels of HOMO and LUMO decrease. Due to the silicon substitution, the macrocyclic compound Si-[3] was able to be degraded by fluoride ions, but its reaction rate was slower than that of the unsubstituted spirosilabifluorene, showing the chemical stability of Si-[3]. Furthermore, the chiroptical properties of Si-[3] with D3-symmetric macrocyclic structure were investigated, and (P,P,P)-Si-[3] showed a high emission quantum yield (Φf=80 %) and moderate dissymmetry factor of circularly polarized luminescence (CPL) (glum,exp=-1.2×10-3). According to the time-dependent density-functional theory (TD-DFT) calculations using polarizable continuum model (PCM), the bright CPL from Si-[3] was explained by a planarization of one bisilafluorenyl moiety at the excited state, which is responsible for the almost fully-allowed radiative transition with a short emission lifetime of τf=1.89 ns.
Collapse
Affiliation(s)
- Rina Nakazono
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Weizhe Hu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Toru Amaya
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| |
Collapse
|
23
|
Takaishi K, Yoshinami F, Sato Y, Ema T. Temperature-Induced Sign Inversion of Circularly Polarized Luminescence of Binaphthyl-Bridged Tetrathiapyrenophanes. Chemistry 2024:e202400866. [PMID: 38567834 DOI: 10.1002/chem.202400866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 04/30/2024]
Abstract
D2-symmetric (R)-binaphthyl-bridged pyrenophanes containing thioether bonds were synthesized. The pyrenophanes exhibited the temperature-induced sign inversion of circularly polarized luminescence (CPL) while maintaining the emission wavelength and reversibility. The Δglum value reached 0.02, and the FL quenching by heat was negligible. The sign inversion of CPL originates from the inversion of intramolecular excimer chirality associated with excitation dynamics. The two pyrenes form a kinetically trapped left-handed twist excimer at low temperatures, while they form a thermodynamically favored right-handed twist excimer at high temperatures. The thioether linkers can impart flexibility suitable for the inversion of chirality of the excimers.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Fumiya Yoshinami
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Yoshihiro Sato
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
24
|
Honda T, Ogata D, Tsurui M, Yoshida S, Sato S, Muraoka T, Kitagawa Y, Hasegawa Y, Yuasa J, Oguri H. Rapid Synthesis of Chiral Figure-Eight Macrocycles Using a Preorganized Natural Product-Based Scaffold. Angew Chem Int Ed Engl 2024; 63:e202318548. [PMID: 38169344 DOI: 10.1002/anie.202318548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Chiral D2 -symmetric figure-eight shaped macrocycles are promising scaffolds for amplifying the chiroptical properties of π-conjugated systems. By harnessing the inherent and adaptable conformational dynamics of a chiral C2 -symmetric bispyrrolidinoindoline (BPI) manifold, we developed an enantio-divergent modular synthetic platform to rapidly generate a diverse range of chiral macrocycles, spanning from 14- to 66-membered rings, eliminating the need for optical resolution. Notably, a 32-membered figure-eight macrocycle showed excellent circularly polarized luminescence (CPL: |glum |=1.1×10-2 ) complemented by a robust emission quantum yield (Φfl =0.74), to achieve outstanding CPL brightness (BCPL : ϵ×Φfl ×|glum |/2=480). Using quadruple Sonogashira couplings, this versatile synthetic platform enables precise adjustments of the angle, distance, and length among intersecting π-conjugated chromophores. Our synthetic strategy offers a streamlined and systematic approach to significantly enhance BCPL values for a variety of chiral D2 -symmetric figure-eight macrocycles.
Collapse
Affiliation(s)
- Tasuku Honda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daiji Ogata
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Tsurui
- Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Satoshi Yoshida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, FS CREATION, Mitsui LINK Lab Kashiwanoha 1, 6-6-2, Kashiwa, Chiba 227-0882, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, FS CREATION, Mitsui LINK Lab Kashiwanoha 1, 6-6-2, Kashiwa, Chiba 227-0882, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 183-8538, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hiroki Oguri
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Orozco-Ic M, Soriano-Agueda L, Escayola S, Sundholm D, Merino G, Matito E. Understanding Aromaticity in [5]Helicene-Bridged Cyclophanes: A Comprehensive Study. J Org Chem 2024; 89:2459-2466. [PMID: 38236016 DOI: 10.1021/acs.joc.3c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study explores the aromaticity of doubly [5]helicene-bridged (1,4)cyclophane and triply [5]helicene-bridged (1,3,5)cyclophane via calculations of the magnetic response and of electronic aromaticity indices. The primary objective is to assess the π-electron delocalization to determine whether they sustain global ring currents associated with π aromaticity. The molecules show local ring currents in the presence of an external magnetic field. The ring currents flow diatropically in the stacked six-membered rings and in the helicene arms. However, these π currents are not interconnected due to the discontinuity of the π delocalization at the C-C single bonds connecting the central six-membered rings to the helicene arms. Electronic indices suggest that the helicene-arm systems have significantly smaller electron delocalization than benzene. The reduction in the delocalization does not compromise their ability to exhibit ring currents in the presence of an external magnetic field. The analysis provides further evidence that the magnetic criteria yield a different degree of aromaticity for the helicene arms than obtained in the calculation of the electronic aromaticity indices. However, both approaches confirm that the studied molecules are not globally aromatic.
Collapse
Affiliation(s)
- Mesías Orozco-Ic
- Donostia International Physics Center (DIPC), Donostia, 20018 Euskadi, Spain
| | - Luis Soriano-Agueda
- Donostia International Physics Center (DIPC), Donostia, 20018 Euskadi, Spain
| | - Sílvia Escayola
- Donostia International Physics Center (DIPC), Donostia, 20018 Euskadi, Spain
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany, 69, Girona, 17003 Catalonia, Spain
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, FIN-00014 Helsinki, Finland
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310 Mérida, Yuc., México
| | - Eduard Matito
- Donostia International Physics Center (DIPC), Donostia, 20018 Euskadi, Spain
| |
Collapse
|
26
|
Wang Y, Cui L, Wang Y, Li F, Li Y, Meng Q. Chiral TPE Foldamers in Macrocycles: Aggregation Enhanced Emission and Circularly Polarized Luminescence. Chemistry 2023; 29:e202302373. [PMID: 37648675 DOI: 10.1002/chem.202302373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Chiral macrocycles with circularly polarized luminescence (CPL) have attracted increasing attention due to the rigid structure, symmetrical chiral geometry and large luminescence dissymmetry factors (glum ). However, most chiral macrocycles are more emissive in solutions but have weakened fluorescence quantum yields (ΦF ) in aggregates, limiting their further application. In this paper, chiral macrocycle R/S-PhTPE was synthesized by combining chiral macrocycle architectonics with Z-o-phenyltetraphenylethylene (PhTPE) foldamer. Enhanced solution state emission and characteristic aggregation enhanced emission (AEE) effect can be observed for R/S-PhTPE due to the folded PhTPE conformation. Macrocycle immobilization and folded conformation endow PhTPE moiety with stable helical conformation. Most importantly, R/S-PhTPE exhibits opposite CPL signals compared with common chiral TPEs, demonstrating the evident impact of folded conformation. This work reports the first and deep insights into the chiroptical properties of chiral PhTPE foldamers, and will provide a new strategy to tune ΦF and CPL signals of AIE active chiral macrocycles.
Collapse
Affiliation(s)
- Yuxiang Wang
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, No. 21, Gehu Rd., Wujin Dist., Changzhou, 213164, China
| | - Liwen Cui
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, No. 21, Gehu Rd., Wujin Dist., Changzhou, 213164, China
| | - Yiran Wang
- School of Chemistry and Chemical Engineering, Linyi University, North Industrial Ave., Lanshan Dist., Linyi, 276000, China
| | - Fei Li
- College of Engineering, China Pharmaceutical University, No. 639, Longmian Ave., Jiangning Dist., Nanjing, 211109, China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering, Linyi University, North Industrial Ave., Lanshan Dist., Linyi, 276000, China
| | - Qi Meng
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, No. 21, Gehu Rd., Wujin Dist., Changzhou, 213164, China
| |
Collapse
|
27
|
Ikeshita M, Hara N, Imai Y, Naota T. Chiroptical Response Control of Planar and Axially Chiral Polymethylene-Vaulted Platinum(II) Complexes Bearing 1,1'-Binaphthyl Frameworks. Inorg Chem 2023; 62:13964-13976. [PMID: 37581577 DOI: 10.1021/acs.inorgchem.3c01935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In this study, the synthesis, structure, and chiroptical response control of planar chiral polymethylene-vaulted trans-bis[(β-iminomethyl)aryloxy]platinum(II) complexes bearing axially chiral 1,1'-binaphthyl ligands are described. A series of enantiopure polymethylene (n = 4-10)-vaulted complexes were prepared in 6 steps using commercially available (R)- or (S)-BINOL as the starting material without an optical resolution process. The trans-coordination and three-dimensional vaulted structures of the platinum complexes were elucidated from X-ray diffraction (XRD) studies. The complexes were found to show structural dependence of chiroptical responses in the dilute solution state such that the absolute values of [α]D, dissymmetry factors gabs in circular dichroism (CD), and glum in circularly polarized luminescence (CPL) increased upon shortening the length of the polymethylene bridges. The enhanced chiroptical responses were theoretically investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, and the results are discussed in terms of the molecular structures and transition dipole moments of the ground states. The structural dependence of the chiroptical responses was ascribed to the distortion of the coordination platforms caused by restriction of the vaulting methylene linkers.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan
| | - Nobuyuki Hara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
28
|
Nowak K, Morawski O, Zinna F, Pescitelli G, Di Bari L, Górecki M, Grzybowski M. Strong Chiroptical Effects in the Absorption and Emission of Macrocycles Based on the 2,5-Diaminoterephthalate Minimal Fluorophore. Chemistry 2023; 29:e202300932. [PMID: 37194186 DOI: 10.1002/chem.202300932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Chiral fluorescent macrocycles consisting of two to four units of dimethyl 2,5-diaminoterephthalate can be readily synthesized in a one-pot manner from inexpensive building blocks. Depending on the concentration, either a paracyclophane-like dimer with closely stacked benzene rings or a triangular trimer is the main product of the reaction. The macrocycles exhibit fluorescence in solution as well as in the solid state with maxima that are red-shifted with decreasing size of the macrocyclic ring and are observed at wavelengths from 590 (tetramer in solution) to 700 nm (dimer in the solid state). Chirality dictates the differential absorption and emission of circularly polarized light by these molecules. The ECD and CPL effects are particularly strong for the trimer, which is characterized by relatively large dissymmetry factors gabs =±2.8×10-3 at 531 nm and glum =±2.3×10-3 at 580 nm in n-hexane, being at the same time highly luminescent (Φfl =13.7 %). Despite the small chromophore, the circularly polarized brightness BCPL of 2.3 dm3 mol-1 cm-1 is comparable to values reported for other classes of established CPL emitters in the visible region, such as expanded helicenes or larger π-conjugated systems.
Collapse
Affiliation(s)
- Krzysztof Nowak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Olaf Morawski
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warsaw, Poland
| | - Francesco Zinna
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marek Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
29
|
Zhao F, Zhao J, Liu H, Wang Y, Duan J, Li C, Di J, Zhang N, Zheng X, Chen P. Synthesis of π-Conjugated Chiral Organoborane Macrocycles with Blue to Near-Infrared Emissions and the Diradical Character of Cations. J Am Chem Soc 2023; 145:10092-10103. [PMID: 37125835 DOI: 10.1021/jacs.3c00306] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly emissive π-conjugated macrocycles with tunable circularly polarized luminescence (CPL) have sparked theoretical and synthetic interests in recent years. Herein, we report a synthetic approach to obtain new chiral organoborane macrocycles (CMC1, CMC2, and CMC3) that are built on the structurally chiral [5]helicenes and highly luminescent triarylborane/amine moieties embedded into the cyclic systems. These rarely accessible B/N-doped main-group chiral macrocycles show a unique topology dependence of the optoelectronic and chiroptical properties. CMC1 and CMC2 show a higher luminescence dissymmetry factor (glum) together with an enhanced CPL brightness (BCPL) as compared with CMC3. Electronic effects were also tuned and resulted in bathochromic shifts of their emission and CPL responses from blue for CMC1 to the near-infrared (NIR) region for CMC3. Furthermore, chemical oxidations of the N donor sites in CMC1 gave rise to a highly stable radical cation (CMC1·+SbF6-) and diradical dication species (CMC12·2+2SbF6-) that serve as a rare example of a positively charged open-shell chiral macrocycle.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
30
|
Olea Ulloa C, Guajardo-Maturana R, Muñoz-Castro A. On the Cation-π capabilities of infinitene (∞). Evaluation of bonding and circular dichroism properties for Infinitene-Ag(I)n (n = 1–4) complexes from relativistic DFT calculations. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Cei M, Di Bari L, Zinna F. Circularly polarized luminescence of helicenes: A data-informed insight. Chirality 2023; 35:192-210. [PMID: 36707940 DOI: 10.1002/chir.23535] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Helicenes are an interesting scaffold for chiroptical properties and in particular circularly polarized luminescence (CPL). In this short review, we collect the luminescence (glum ) and absorption (gabs ) dissymmetry factors associated to the first Cotton effect of the electronic circular dichroism (ECD) spectrum. Considering the data for 170 [n]-helicenes (n = 4-11), overall we found reasonable correlations between glum and gabs . Despite a few notable exceptions, this would confirm a similarity in the stereochemistry of the ground and emitting excited states for most helicenes. These results may be useful in rationalizing chiroptical data and help chemists in designing new helicene structures with the desired CPL properties.
Collapse
Affiliation(s)
- Matteo Cei
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Katoono R, Tanioka T. A Dualistic Arrangement of a Chiral [1]Rotaxane Based on the Assembly of Two Rings and Two Rods. J Org Chem 2023; 88:4606-4618. [PMID: 36972424 DOI: 10.1021/acs.joc.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
We demonstrate the synthesis and chiroptical properties of doubled molecules of a chiral [1]rotaxane, based on the assembly of an achiral ring of a phenylacetylene macrocycle (6PAM) and a p-phenylene ethynylene rod. Two molecules of [1]rotaxane constituted the doubled molecule through the ring fusion of 6PAMs to a 10PAM, which assured stationary occupation relative to each optically active unit. The absorption properties of the 10PAM-based doubled molecule and 6PAM-based original unit were consistently characterized by the independent existence of m-phenylene ethynylene ring(s) and p-phenylene ethynylene rod(s). Thus, molar circular dichroism (CD) was directly compared between the doubled molecule (n = 2) and the original unit (n = 1) to show that molar CD was increased more than expected by an increase in the number of units, or by an increase in absorbance. Due to the invariance of the configuration and the relative occupation of two units arranged adjacent to each other in 10PAM, one more comparison was available with an isomeric molecule of two rings and two rods in a threaded-and-unthreaded form. The additional arrangement of an optically inactive unit in an unthreaded form also led to an increase in molar CD, compared to that of the original chiral unit in a threaded form.
Collapse
Affiliation(s)
- Ryo Katoono
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takumi Tanioka
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
33
|
Olea Ulloa C, Muñoz-Castro A. Infinitene as two fused helicoidal trails of fused rings: evaluation of the magnetic behavior of [12]infinitene and anionic species displaying global aromaticity and antiaromaticity. Phys Chem Chem Phys 2023; 25:8190-8197. [PMID: 36880673 DOI: 10.1039/d2cp06039f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The unique formation of an infinity-shaped carbon backbone made exclusively from fused benzene rings has recently been achieved. The structure of [12]infinitene can be viewed as two fused [6]helicene structures with a central crossover section, depicting a global aromatic behavior along with the overall structure, with deshielding regions along both helicoidal axes. In addition, the 13C-NMR characteristics are discussed. The formation of a cumulative region involving the shielding regions from the aromatic rings is depicted along with the overall aesthetically pleasant structural backbone, which is enhanced at the crossover section. For the evaluated dianionic counterpart, the structure shows a deshielding region above the fused-ring trail and a helicoidal shielding region, ascribed to a global antiaromatic counterpart. The aromaticity is recovered and enhanced at the tetranionic state. Thus, the neutral and tetranionic states are able to build up a long-ranged shielding region, given by the global aromatic behavior, with an enhanced shielding region at the center of the crossover section displaying π-π stacked rings.
Collapse
Affiliation(s)
- Carolina Olea Ulloa
- Carrera de Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
34
|
Ikeshita M, He H, Kitahara M, Imai Y, Tsuno T. External environment sensitive circularly polarized luminescence properties of a chiral boron difluoride complex. RSC Adv 2022; 12:34790-34796. [PMID: 36540273 PMCID: PMC9724127 DOI: 10.1039/d2ra07386b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 08/23/2024] Open
Abstract
A chiral Schiff-base boron difluoride complex bearing a diethylamino group was synthesized. Its photophysical properties were investigated and compared with those of its non-substituted analogue. The complex was found to exhibit solvatofluorochromism with bluish-white emission in moderately polar solvents and intense blue emission in nonpolar solvent. Circularly polarized luminescence (CPL) properties were also examined and it was found that the absolute value of the luminescence dissymmetry factor (g lum) increases significantly in the KBr-dispersed pellet state compared to the solution state. Notably, CPL intensity of the complex enhanced approximately three times upon addition of CH3SO3H in CH2Cl2. Density functional theory (DFT) calculations were conducted to further understand the photophysical properties.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| | - Hongxi He
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| | - Maho Kitahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Takashi Tsuno
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| |
Collapse
|
35
|
Hasegawa M, Hasegawa C, Nagaya Y, Tsubaki K, Mazaki Y. Multiply Twisted Chiral Macrocycles Clamped by Tethered Binaphthyls Exhibiting High Circularly Polarized Luminescence Brightness. Chemistry 2022; 28:e202202218. [DOI: 10.1002/chem.202202218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Masashi Hasegawa
- Graduate School of Science Kitasato University Sagamihara Kanagawa 252-0373 Japan
| | - Chika Hasegawa
- Graduate School of Science Kitasato University Sagamihara Kanagawa 252-0373 Japan
| | - Yuki Nagaya
- Graduate School of Life and Environmental Sciences Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku Kyoto 606-8522 Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku Kyoto 606-8522 Japan
| | - Yasuhiro Mazaki
- Graduate School of Science Kitasato University Sagamihara Kanagawa 252-0373 Japan
| |
Collapse
|
36
|
Shimomura Y, Igawa K, Sasaki S, Sakakibara N, Goseki R, Konishi G. Flexible Alkylene Bridges as a Tool To Engineer Crystal Distyrylbenzene Structures Enabling Highly Fluorescent Monomeric Emission. Chemistry 2022; 28:e202201884. [PMID: 35817755 PMCID: PMC9544799 DOI: 10.1002/chem.202201884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshimichi Shimomura
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering Kyushu University 6-1 Kasuga-koen, Kasuga 816-8580 Fukuoka Japan
| | - Shunsuke Sasaki
- Université de Nantes CNRS Institut des Matériaux Jean Rouxel IMN F-44000 Nantes France
| | - Noritaka Sakakibara
- Department of Chemistry Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
| | - Raita Goseki
- Department of Applied Chemistry Kogakuin University Nakano-machi, Hachioji-shi 192-0015 Tokyo Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
- PRESTO “Element Strategy” Japan Science and Technology Agency (JST) Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
37
|
Kato K, Kurakake Y, Ohtani S, Fa S, Gon M, Tanaka K, Ogoshi T. Discrete Macrocycles with Fixed Chirality and Two Distinct Sides: Dipole‐Dependent Chiroptical Response. Angew Chem Int Ed Engl 2022; 61:e202209222. [DOI: 10.1002/anie.202209222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Yuta Kurakake
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Masayuki Gon
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
- WPI Nano Life Science Institute Kanazawa University Kakuma-machi Kanazawa, 920-1192 Japan
| |
Collapse
|
38
|
Malinčík J, Gaikwad S, Mora‐Fuentes JP, Boillat M, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Circularly Polarized Luminescence in a Möbius Helicene Carbon Nanohoop**. Angew Chem Int Ed Engl 2022; 61:e202208591. [PMID: 35856293 PMCID: PMC9543836 DOI: 10.1002/anie.202208591] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/13/2022]
Abstract
We present the first helicene carbon nanoohop that integrates a [6]helicene into [7]cycloparaphenylene. The [6]helicene endows the helicene carbon nanohoop with chiroptical properties and configurational stability typical for higher helicenes, while the radially conjugated seven para‐phenylenes largely determine the optoelectronic properties. The structure of the helicene carbon nanoohop was unambiguously characterized by NMR, MS and X‐ray analysis that revealed that it possesses a topology of a Möbius strip in the solid state and in solution. The chirality transfers from the [6]helicene to the para‐phenylenes and leads to a pronounced circular dichroism and bright circularly polarized luminescence, which is affected by the structural topology of the nanohoop.
Collapse
Affiliation(s)
- Juraj Malinčík
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovakia
| | - Sudhakar Gaikwad
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Juan P. Mora‐Fuentes
- Department of Organic Chemistry University of Granada Avda Fuentenueva, s/n 18 071 Granada Spain
| | - Marc‐Aurèle Boillat
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Daniel Häussinger
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada Avda Fuentenueva, s/n 18 071 Granada Spain
| | - Tomáš Šolomek
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
- Department of Chemistry Biochemistry and Pharamaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovakia
| |
Collapse
|
39
|
Li J, Peng X, Hou C, Shi S, Ma J, Qi Q, Lai W. Discriminating Chiral Supramolecular Motions by Circularly Polarized Luminescence. Chemistry 2022; 28:e202202336. [DOI: 10.1002/chem.202202336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Junfeng Li
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xuelei Peng
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Chenxi Hou
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shunan Shi
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiamian Ma
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Qi Qi
- School of Chemistry and Chemical Engineering Southeast University No.2 SEU Road Nanjing 211189 China
| | - Wen‐Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Northwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
40
|
Yang Y, Li N, Miao J, Cao X, Ying A, Pan K, Lv X, Ni F, Huang Z, Gong S, Yang C. Chiral Multi-Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 . Angew Chem Int Ed Engl 2022; 61:e202202227. [PMID: 35536020 DOI: 10.1002/anie.202202227] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Highly efficient circularly polarized luminescence (CPL) emitters with narrowband emission remain a formidable challenge for circularly polarized OLEDs (CP-OLEDs). Here, a promising strategy for developing chiral emitters concurrently featuring multi-resonance thermally activated delayed fluorescence (MR-TADF) and circularly polarized electroluminescence (CPEL) is demonstrated by the integration of molecular rigidity, central chirality and MR effect. A pair of chiral green emitters denoted as (R)-BN-MeIAc and (S)-BN-MeIAc is designed. Benefited by the rigid and quasi-planar MR-framework, the enantiomers not only display mirror-image CPL spectra, but also exhibit TADF properties with a high photoluminescence quantum yield of 96 %, a narrow FWHM of 30 nm, and a high horizontal dipole orientation of 90 % in the doped film. Consequently, the enantiomer-based CP-OLEDs achieved excellent external quantum efficiencies of 37.2 % with very low efficiency roll-off, representing the highest device efficiency of all the reported CP-OLEDs.
Collapse
Affiliation(s)
- Yiyu Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ao Ying
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Ke Pan
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shaolong Gong
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
41
|
Malinčík J, Gaikwad S, Mora-Fuentes JP, Boillat MA, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Circularly Polarized Luminescence in a Möbius Helicene Carbon Nanohoop. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juraj Malinčík
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Sudhakar Gaikwad
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Juan P. Mora-Fuentes
- University of Granada: Universidad de Granada Department of Organic Chemistry SPAIN
| | | | | | - Daniel Häussinger
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Araceli G. Campaña
- University of Granada: Universidad de Granada Department of Organic Chemistry SPAIN
| | - Tomáš Šolomek
- University of Bern: Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
42
|
Kato K, Kurakake Y, Ohtani S, Fa S, Gon M, Tanaka K, Ogoshi T. Discrete Macrocycles with Fixed Chirality and Two Distinct Sides: Dipole‐Dependent Chiroptical Response. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kenichi Kato
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering KatsuraNishikyo-ku 615-8510 Kyoto JAPAN
| | - Yuta Kurakake
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Shunsuke Ohtani
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Shixin Fa
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Masayuki Gon
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| | - Kazuo Tanaka
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| | - Tomoki Ogoshi
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| |
Collapse
|
43
|
Takaishi K, Murakami S, Yoshinami F, Ema T. Binaphthyl‐Bridged Pyrenophanes: Intense Circularly Polarized Luminescence Based on a
D
2
Symmetry Strategy. Angew Chem Int Ed Engl 2022; 61:e202204609. [DOI: 10.1002/anie.202204609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Sho Murakami
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Fumiya Yoshinami
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
44
|
Ikeshita M, Suzuki T, Matsudaira K, Kitahara M, Imai Y, Tsuno T. Multi-colour circularly polarized luminescence properties of chiral Schiff-base boron difluoride complexes. Phys Chem Chem Phys 2022; 24:15502-15510. [PMID: 35713179 DOI: 10.1039/d2cp01861f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of chiral Schiff-base boron difluoride complexes was synthesized and their photophysical properties were examined. These complexes showed multi-colour (blue, yellow and red) photoluminescence in solution and in the solid state with good emission quantum yield (Φ) depending on the π-systems of the ligands. The chiral complexes exhibited circularly polarized luminescence (CPL) with an absolute luminescence dissymmetry factor (glum) of up to the 1.3 × 10-3 in solution and 1.9 × 10-2 in the drop-cast film state. Density functional theory (DFT) and time-dependent (TD) DFT calculations were conducted to further understand the photophysical properties.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba, 275-8575, Japan.
| | - Takato Suzuki
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba, 275-8575, Japan.
| | - Kana Matsudaira
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Maho Kitahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Takashi Tsuno
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba, 275-8575, Japan.
| |
Collapse
|
45
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
46
|
Yang Y, Li N, Miao J, Cao X, Ying A, Pan K, Lv X, Ni F, Huang Z, Gong S, Yang C. Chiral Multi‐Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 %. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiyu Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Ao Ying
- Department of Chemistry Renmin Hospital of Wuhan University Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan 430072 China
| | - Ke Pan
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Shaolong Gong
- Department of Chemistry Renmin Hospital of Wuhan University Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan 430072 China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
47
|
Binaphthyl‐Bridged Pyrenophanes: Intense Circularly Polarized Luminescence Based on a D2 Symmetry Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Zhao F, Zhao J, Wang Y, Liu HT, Shang Q, Wang N, Yin X, Zheng X, Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10 -2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans 2022; 51:6226-6234. [PMID: 35362491 DOI: 10.1039/d2dt00677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constructing chiral luminescent systems with both large luminescence dissymmetry factor (glum) and high luminous efficiency has been considered a great challenge. We herein describe a highly efficient approach to sterically stabilize the helical configurations of carbo[5]helicenes for improved CPL properties in a series of π-donor and π-acceptor substituted [5]helicenes (1, 2, 3, 4 and 5). Enabled by the ortho-installation of methyl groups as well as the steric effects of triarylamine (Ar3N) and triarylborane (Ar3B) handles in meta-substituted [5]helicenes, their optical resolution into enantiomers has been accomplished using preparative chiral HPLC. The molecular chirality of [5]helicenes can be transferred to Ar3B and Ar3N as light emitters, which allowed further investigations of their chiroptics, including optical rotation, circular dichroism (CD) and circularly polarized luminescence (CPL). Remarkably, 4 has been demonstrated to display dramatically enhanced CPL performance with a much larger glum (>1.2 × 10-2) and an increased emission quantum efficiency (ΦS = 0.75) compared with the other analogues, as a result of the isomeric tuning of substitutions with differential steric and electronic effects. These experimentally observed CPL activities were rationalized by TD-DFT computations for the angle (θμ,m) between electric and magnetic transition dipole moments in the excited states. In addition, the conspicuous intramolecular donor-acceptor charge transfer led to thermal responses in the emissions of 2 and 4 over a broad temperature range.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | | | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
49
|
Gong J, Zhang X. Coordination-based circularly polarized luminescence emitters: Design strategy and application in sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214329] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Krzeszewski M, Ito H, Itami K. Infinitene: A Helically Twisted Figure-Eight [12]Circulene Topoisomer. J Am Chem Soc 2021; 144:862-871. [PMID: 34910487 DOI: 10.1021/jacs.1c10807] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New forms of molecular nanocarbon particularly looped polyarenes adopting various topologies contribute to the fundamental science and practical applications. Here we report the synthesis of an infinity-shaped polyarene, infinitene (1) (cyclo[c.c.c.c.c.c.e.e.e.e.e.e]dodecakisbenzene), comprising consecutively fused 12-benzene rings forming an enclosed loop with a strain energy of 60.2 kcal·mol-1. Infinitene (1) represents a topoisomer of still-hypothetical [12]circulene, and its scaffold can be formally visualized as the outcome of the "stitching" of two homochiral [6]helicene subunits by both their ends. The synthetic strategy encompasses transformation of a rationally designed dithiacyclophane to cyclophadiene through the Stevens rearrangement and pyrolysis of the corresponding S,S'-bis(oxide) followed by the photocyclization. The structure of 1 is a unique hybrid of helicene and circulene with a molecular formula of C48H24, which can be regarded as an isomer for kekulene, [6,6]carbon nanobelt ([6,6]CNB), and [12]cyclacene. Infinitene (1) is a bench-stable yellow solid with green fluorescence and soluble to common organic solvents. Its figure-eight molecular structure was unambiguously confirmed by X-ray crystallography. The scaffold of 1 is significantly compressed as manifested by a remarkably shortened distance (3.152-3.192 Å) between the centroids of two π-π stacked central benzene rings and the closest C···C distance of 2.920 Å. Fundamental photophysical properties of 1 were thoroughly elucidated by UV-vis absorption and fluorescence spectroscopic studies and density functional theory calculations. Its configurational stability enabled separation of the corresponding enantiomers (P,P) and (M,M) by a chiral HPLC. Circular dichroism (CD) and circularly polarized luminescence (CPL) measurements revealed that 1 has moderate |gCD| and |gCPL| values.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|