1
|
Kondoh A, Yamaguchi S, Terada M. Phosphazene base-catalyzed telescopic three-component reaction involving 1,1-difunctionalization of electron-deficient alkenes. Chem Commun (Camb) 2024; 61:334-337. [PMID: 39635845 DOI: 10.1039/d4cc05169f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Phosphazene base, P2-tBu, efficiently catalyzed the telescopic three-component reaction of diethyl phosphite, cinnamonitrile derivatives, and N-Boc imines, providing β-aminophosphonates having a tetrasubstituted carbon in a highly diastereoselective manner. The reaction involves the little-known 1,1-difunctionalization of an electron-deficient alkene, offering a new format for the three-component reaction under Brønsted base catalysis.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Sho Yamaguchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
2
|
Kondoh A, Suzuki H, Hirozane T, Terada M. Catalytic Generation of Benzyl Anions from Aryl Ketones Utilizing [1,2]-Phospha-Brook Rearrangement and Their Application to Synthesis of Tertiary Benzylic Alcohols. Chemistry 2024; 30:e202402967. [PMID: 39215614 DOI: 10.1002/chem.202402967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
A synthetic method of tertiary alcohols was developed based on the formal umpolung addition of aryl ketones with electrophiles utilizing the [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. The addition reaction of α-hydroxyphosphonates, derived from alkyl aryl- and diaryl ketones, with electrophiles such as phenyl vinyl sulfone, afforded phosphates having a tertiary alkyl group, which were readily convertible to the corresponding tertiary benzylic alcohols. This operationally simple protocol provides efficient complementary access to tertiary alcohols that are difficult to synthesize by conventional methods.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hirochika Suzuki
- Department of Chemistry, Graduate, School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takayuki Hirozane
- Department of Chemistry, Graduate, School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate, School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
3
|
Shigeno M, Hayashi K, Sasamoto O, Hirasawa R, Korenaga T, Ishida S, Nozawa-Kumada K, Kondo Y. Catalytic Concerted S NAr Reactions of Fluoroarenes by an Organic Superbase. J Am Chem Soc 2024; 146:32452-32462. [PMID: 39513585 PMCID: PMC11613311 DOI: 10.1021/jacs.4c09042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
We herein propose that the catalytic concerted SNAr reaction is a powerful method to prepare functionalized aromatic scaffolds. Classic stepwise SNAr reactions involving addition/elimination processes require the use of electron-deficient aromatic halides to stabilize Meisenheimer intermediates, despite their widespread use in medicinal chemistry research. Recent efforts have been made to develop concerted SNAr reactions involving a single transition state, allowing the use of electron-rich substrates based on the use of stoichiometric amounts of strong bases or reactive nucleophiles. This study demonstrates that, without the use of such reagents, the organic superbase t-Bu-P4 efficiently catalyzes the concerted SNAr reactions of aryl fluorides regardless of their electronic nature. The key to establishing this system is the dual activation of aryl fluoride and anionic nucleophiles by the t-Bu-P4 catalyst. Furthermore, this catalysis allows excellent functional group tolerance, utilization of diverse nucleophiles, and late-stage functionalization of bioactive compound derivatives. These findings make possible diverse applications in chemical synthesis and pharmaceutical development.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
- JST,
PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Kazutoshi Hayashi
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Ozora Sasamoto
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Riku Hirasawa
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Toshinobu Korenaga
- Department
of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Ueda, Morioka 020-8551, Japan
- Soft-Path
Science and Engineering Research Center (SPERC), Iwate University, Ueda, Morioka 020-8551, Japan
| | - Shintaro Ishida
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
- Interdisciplinary
Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology
(AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Yoshinori Kondo
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Zou S, Zhang Y, Wu Q, Zhao T, Li Y, Liu B, Ma X. Metal-Free, Hindered, Regioselective Access to Multifunctional Groups Diarylamines via S N Ar Substitution of P-Nitroso Aromatic Methyl Ether by Arylamines. Chemistry 2024; 30:e202303421. [PMID: 38010239 DOI: 10.1002/chem.202303421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Multifunctional groups diarylamines, an innovative product, efficiently produced from arylamines and p-nitrosoanisole derivatives by intermolecular SN Ar under weak acid conditions. This SN Ar proceeds under mild reaction conditions, and more significantly, the substrates involved do not necessarily require strong electron-withdrawing groups. Moreover, this SN Ar is characterized by resistance to space crowding, tolerance to halogen and nitroso functional groups, and high regioselectivity. Mechanistic observations suggest that the SN Ar is the result of the transfer of the positive charge center of the protonated nitroso group to the p-methoxy group.
Collapse
Affiliation(s)
- Shuliang Zou
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| | - Yazhou Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4, Dongqing Road, Huaxi District, Guiyang, 550025, PR China
| | - Qin Wu
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| | - Tianming Zhao
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| | - Yutao Li
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| | - Bing Liu
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| | - Xianguo Ma
- School of Chemical Engineering, Guizhou Institute of Technology, Doctor Road, Dangwu Town, Gui'an New District, Guiyang, 550003, PR China
| |
Collapse
|
5
|
Li C, Qin Q, Guan A, Yang W, Zhao W. Transition-Metal Free C-C Bond Cross-Coupling of Aryl Ethers with Diarylmethanes. J Org Chem 2023. [PMID: 37196236 DOI: 10.1021/acs.joc.3c00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We describe a general and efficient transition-metal free C-C bond cross-coupling of (hetero)aryl ethers and diarylmethanes via C(sp2)-O bond cleavage. The coupling reactions mediated by KHMDS proceeded well with high efficiency, broad substrate scope, and good functional group tolerance. The robustness and practicability of this protocol also have been demonstrated by easy gram-scale preparation and diversified product derivatization.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qi Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Aocong Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
6
|
Shigeno M, Shishido Y, Soga A, Nozawa-Kumada K, Kondo Y. Defluorinative Transformation of (2,2,2-Trifluoroethyl)arenes Catalyzed by the Phosphazene Base t-Bu-P2. J Org Chem 2023; 88:1796-1802. [PMID: 36689669 DOI: 10.1021/acs.joc.2c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, we demonstrated that 1-tert-butyl-2,2,4,4,4-pentakis(dimethylamino)-2λ5,4λ5-catenadi(phosphazene) (t-Bu-P2) catalyzes the defluorinative functionalization reactions of (2,2,2-trifluoroethyl)arenes with alkanenitriles to produce monofluoroalkene products. The reaction proceeds through HF elimination from a (2,2,2-trifluoroethyl)arene to form a gem-difluorostyrene intermediate, which is followed by nucleophilic addition of an alkanenitrile and elimination of a fluoride anion. The catalysis is compatible with a variety of functional groups.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Amane Soga
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
7
|
Bell JD, Robb I, Murphy JA. Highly selective α-aryloxyalkyl C-H functionalisation of aryl alkyl ethers. Chem Sci 2022; 13:12921-12926. [PMID: 36519054 PMCID: PMC9645420 DOI: 10.1039/d2sc04463c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2024] Open
Abstract
We report highly selective photocatalytic functionalisations of alkyl groups in aryl alkyl ethers with a range of electron-poor alkenes using an acridinium catalyst with a phosphate base and irradiation with visible light (456 nm or 390 nm). Experiments indicate that the reaction operates via direct single-electron oxidation of the arene substrate ArOCHRR' to its radical cation by the excited state organic photocatalyst; this is followed by deprotonation of the ArOC-H in the radical cation to yield the radical ArOC˙RR'. This radical then attacks the electrophile to form an intermediate alkyl radical that is reduced to complete the photocatalytic cycle. The oxidation step is selective for activated arenes (ArOR) over their non-activated counterparts and the subsequent deprotonation of the methoxy group affords the α-aryloxyalkyl radical that leads to a wide range of functionalised products in good to excellent yield.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry 295 Cathedral Street Glasgow G1 1XL UK
| | - Iain Robb
- Department of Pure and Applied Chemistry 295 Cathedral Street Glasgow G1 1XL UK
| | - John A Murphy
- Department of Pure and Applied Chemistry 295 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
8
|
Mills LR, Patel P, Rousseaux SAL. Decyanation-(hetero)arylation of malononitriles to access α-(hetero)arylnitriles. Org Biomol Chem 2022; 20:5933-5937. [PMID: 35315852 DOI: 10.1039/d2ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quaternary α-(hetero)arylnitriles are desirable biologically relevant products, however the existing methods for their synthesis can be unselective or require the use of undesirable reagents, such as cyanide salts. Herein we report a one-pot method for transnitrilation-mediated decyanation-metalation of disubstituted malononitriles, followed by treatment with (hetero)aryl electrophiles to access quaternary α-(hetero)arylnitrile products. A number of products were prepared using this method (34 examples, 27-99% yield). This method highlights the usefulness of malononitriles as precursors for alkylnitrile-containing compounds.
Collapse
Affiliation(s)
- L Reginald Mills
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| | - Purvish Patel
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
9
|
Shigeno M, Hayashi K, Korenaga T, Nozawa-Kumada K, Kondo Y. Organic superbase t-Bu-P4-catalyzed demethylations of methoxyarenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00483f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The organic superbase t-Bu-P4 catalyzes the demethylation reactions of methoxyarenes in the presence of alkanethiol and hexamethyldisilazane.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Toshinobu Korenaga
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Ueda, Morioka, 020-8551, Japan
- Soft-Path Science and Engineering Research Center (SPERC), Iwate University, Ueda, Morioka, 020-8551, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
10
|
Luo J, Lin M, Wu L, Cai Z, He L, Du G. The organocatalytic synthesis of perfluorophenylsulfides via the thiolation of trimethyl(perfluorophenyl)silanes and thiosulfonates. Org Biomol Chem 2021; 19:9237-9241. [PMID: 34647948 DOI: 10.1039/d1ob01350e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The organic superbase t-Bu-P4-catalyzed direct thiolation of trimethyl(perfluorophenyl)silanes and thiosulfonates was developed. Yields of perfluorophenylsulfides of up to 97% under catalysis of 5 mol% t-Bu-P4 were achieved. This method was shown to provide an efficient way to construct the perfluorophenyl-sulfur bond under mild metal-free reaction conditions.
Collapse
Affiliation(s)
- Jinyun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.
| | - Muze Lin
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China
| | - Zhihua Cai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.
| | - Guangfen Du
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, China.
| |
Collapse
|
11
|
Shigeno M, Shishido Y, Hayashi K, Nozawa‐Kumada K, Kondo Y. KO‐
t
‐Bu Catalyzed Thiolation of
β
‐(Hetero)arylethyl Ethers via MeOH Elimination/hydrothiolation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Kanako Nozawa‐Kumada
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| |
Collapse
|
12
|
Yang SS, Ren YZ, Guo YY, Du GF, Cai ZH, He L. Organocatalytic aminocarbonylation of α,β-unsaturated ketones with N, N-dimethyl carbamoylsilane. NEW J CHEM 2021. [DOI: 10.1039/d1nj00782c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Schwesinger's superbase can efficiently activate the Si–CONMe2 bond and initiate the aminocarbonylation of α,β-unsaturated ketones and N,N-dimethyl carbamoylsilane.
Collapse
Affiliation(s)
- Shou-Shan Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Ying-Zheng Ren
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Yu-Yu Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Guang-Fen Du
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Zhi-Hua Cai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| |
Collapse
|