1
|
Hu XY, Liu DY, Zhang CZ, Wen MM, Ren XX, Zhang SS, Liu XG. Synthesis of 2-glycosyl-quinazolines and 5-glycosyl-pyrazolo[1,2- a]cinnolines by Cp*Ir(III)-catalyzed C-H activation/cyclization. Chem Commun (Camb) 2025; 61:6142-6145. [PMID: 40152639 DOI: 10.1039/d5cc00265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
A novel strategy for the synthesis of 2-glycosyl-quinazolines and 5-glycosyl-pyrazolo[1,2-a]cinnolines has been established through an Ir-catalyzed C-H activation/annulation process. This approach features mild reaction conditions, exhibits good tolerance to diverse functional groups, and facilitates the stereoselective construction of heterocyclic C-glycosides. Significantly, this method is amenable to the late-stage modification of structurally intricate natural products, thus holding great potential in the field of organic synthesis and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Xin-Yue Hu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Deng-Yin Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Cong-Zhen Zhang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Miao-Miao Wen
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Xiao-Xi Ren
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China.
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Moussa Z, Ramanathan M, Alharmoozi SM, Alkaabi SAS, Al Aryani SHM, Ahmed SA, Al-Masri HT. Recent highlights in the synthesis and biological significance of pyrazole derivatives. Heliyon 2024; 10:e38894. [PMID: 39492900 PMCID: PMC11531639 DOI: 10.1016/j.heliyon.2024.e38894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Aza-heterocyclic scaffolds are privileged cores in the composition of their potential therapeutic profiles and versatile synthetic intermediates. Pyrazole is one of the frequently studied compounds of "azole" family and consists of nitrogen in a 1,2 linking sequence. These motifs possess a wide-spectrum of applications in the field of pharmaceuticals, agrochemicals, polymer chemistry, cosmetics, food industries and more. In addition, functionalized pyrazole derivatives are frequently used as ligands in coordination chemistry and metal-catalysed reactions. As exemplified by numerous recent reports, pyrazoles are highly promising pharmacophores with excellent therapeutic applications. Owing to their aromaticity, the ring structures have many reactive positions, where electrophilic, nucleophilic, alkylation and oxidative reactions might occur. The structural adroitness and diversity of pyrazole cores further emanated numerous fused bicyclic skeletons with various biological applications. In this review, we highlight the recent synthetic methods developed for the preparation of functionalized pyrazole derivatives (From 2017 to present). In addition, we have also covered the notable biological activities (anti-cancer, anti-inflammatory, anti-bacterial and anti-viral) of this ubiquitous core. Herein, we emphasised the synthesis of pyrazoles from variety of precursors such as, alkynes, α,β-unsaturated carbonyl compounds, diazo reagents, nitrile imines, diazonium salts, 1,3-dicarbonyl compounds and etc. Moreover, the recent synthetic methodologies focusing on the preparation of pyrazolines and pyrazolones and variously fused-pyrazoles are also included. Authors expect this review could significantly help the researchers in finding elegant novel tools to synthesize pyrazole skeletons and expand their biological evaluation.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Mani Ramanathan
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shaikha Mohammad Alharmoozi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shahad Ali Saeed Alkaabi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | | | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P. O. Box 130040, Mafraq, 25113, Jordan
| |
Collapse
|
3
|
Xie R, Xu J, Shi H, Xiao C, Wang N, Huang N, Yao H. Stereocontrolled Synthesis of Aryl C-Nucleosides under Ambient Conditions. Org Lett 2024; 26:5162-5166. [PMID: 38832704 DOI: 10.1021/acs.orglett.4c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A stereocontrolled synthesis of an aryl C-nucleoside has been developed using D-ribals and arylboronic acids catalyzed by palladium without additional ligands in common solvents under an open-air atmosphere at room temperature. This protocol features very mild conditions, simplicity in operation, exclusive β-stereoselectivity, broad substrate scopes, and good compatibility with reactive amino and hydroxyl groups. The functionalization of unsaturated C-nucleosides and the late-stage glycosylation of natural products/drugs demonstrated the high practicality of this strategy.
Collapse
Affiliation(s)
- Rui Xie
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Jing Xu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Haolin Shi
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Chenyu Xiao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| |
Collapse
|
4
|
Motter J, Benckendorff CMM, Westarp S, Sunde-Brown P, Neubauer P, Kurreck A, Miller GJ. Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology. Nat Prod Rep 2024; 41:873-884. [PMID: 38197414 PMCID: PMC11188666 DOI: 10.1039/d3np00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 01/11/2024]
Abstract
Covering: 2019 to 2023Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.
Collapse
Affiliation(s)
- Jonas Motter
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
| | - Caecilie M M Benckendorff
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Sarah Westarp
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany.
| | - Peter Sunde-Brown
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany.
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
5
|
Mukhin EM, Savateev KV, Rusinov VL. Approaches to the synthesis of heterocyclic C-nucleosides. Russ Chem Bull 2023; 72:425-481. [PMID: 37073401 PMCID: PMC10092924 DOI: 10.1007/s11172-023-3810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 09/02/2023] [Indexed: 04/20/2023]
Abstract
This review is focused on the synthetic strategies to heterocyclic C-nucleosides and covers the literature from 2011 to 2021. The main attention is paid to the following three approaches: the direct C-C coupling of a carbohydrate moiety with a preformed aglycon unit, the construction of a (pseudo)sugar residue on a pre-formed aglycon, and the construction of an aglycon on a pre-formed (pseudo)sugar. In each Section, the literature data are categorized in terms of the size of aglycon from simple to complex, the advantages and drawbacks of the reviewed approaches are discussed.
Collapse
Affiliation(s)
- E. M. Mukhin
- Ural Federal University named after the First President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation
| | - K. V. Savateev
- Ural Federal University named after the First President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation
| | - V. L. Rusinov
- Ural Federal University named after the First President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation
| |
Collapse
|
6
|
Zerbib S, Khouili M, Catto M, Bouissane L. Sydnone: Synthesis, Reactivity and Biological Activities. Curr Med Chem 2023; 30:1122-1144. [PMID: 35726409 DOI: 10.2174/0929867329666220620123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/07/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Sydnones are among the most well-known mesoionic compounds. Since their synthesis in 1935 by Earl and Mecknay, numerous researches have shown that the chemical behavior, physical and biological properties of sydnones make them the most useful compounds in organic chemistry. Sydnones undergo thermal 1,3-dipolar cycloaddition reaction with dipolarophiles (alkynes or alkenes) to give exclusively derivatives containing a pyrazole moiety exhibiting numerous applications, such as pharmaceuticals and agrochemicals. However, the sydnone cycloaddition reaction with alkynes requires harsh conditions, like high temperatures and long reaction times, giving poor regioselectivity to the resulting products. To overcome these constraints, new reactions named CuSAC (Copper- Catalyzed Sydnone-Alkyne Cycloaddition) and SPSAC (Strain-Promoted Sydnone- Alkyne Cycloaddition) have been developed, leading to pyrazoles with interesting constant kinetics.
Collapse
Affiliation(s)
- Souad Zerbib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| | - Mostafa Khouili
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
| |
Collapse
|
7
|
Li W, Girt GC, Radadiya A, Stewart JJP, Richards NGJ, Naismith JH. Experimental and computational snapshots of C-C bond formation in a C-nucleoside synthase. Open Biol 2023; 13:220287. [PMID: 36629016 PMCID: PMC9832568 DOI: 10.1098/rsob.220287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
The biosynthetic enzyme, ForT, catalyses the formation of a C-C bond between 4-amino-1H-pyrazoledicarboxylic acid and MgPRPP to produce a C-nucleoside precursor of formycin A. The transformation catalysed by ForT is of chemical interest because it is one of only a few examples in which C-C bond formation takes place via an electrophilic substitution of a small, aromatic heterocycle. In addition, ForT is capable of discriminating between the aminopyrazoledicarboxylic acid and an analogue in which the amine is replaced by a hydroxyl group; a remarkable feat given the steric and electronic similarities of the two molecules. Here we report biophysical measurements, structural biology and quantum chemical calculations that provide a detailed molecular picture of ForT-catalysed C-C bond formation and the conformational changes that are coupled to catalysis. Our findings set the scene for employing engineered ForT variants in the biocatalytic production of novel, anti-viral C-nucleoside and C-nucleotide analogues.
Collapse
Affiliation(s)
- Wenbo Li
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Georgina C. Girt
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| | - Ashish Radadiya
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | | | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| | - James H. Naismith
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
8
|
Chen Y, Renson S, Monbaliu JM. On Demand Flow Platform for the Generation of Anhydrous Dinitrogen Trioxide and Its Further Use in N-Nitrosative Reactions. Angew Chem Int Ed Engl 2022; 61:e202210146. [PMID: 35971898 PMCID: PMC9825874 DOI: 10.1002/anie.202210146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 01/11/2023]
Abstract
Dinitrogen trioxide (N2 O3 ) is a powerful and efficient nitrosating agent that comes with an unprecedented atom economy. However, the synthetic application of N2 O3 is still underdeveloped mostly due to its inherent instability and the lack of reliable protocols for its preparation. This paper presents an open-source setup and procedure for the on-demand generation of anhydrous N2 O3 solution (up to 1 M), which can be further used for reactions under batch and flow conditions. The accuracy and stability of N2 O3 concentration are guaranteed with the absence of head-space in the setup and with the synchronization of the gas flows. The reliability of this protocol is demonstrated by >30 worked examples in the nitrosative synthesis of heterocycles-a library of structurally diverse benzotriazoles and sydnones. Kinetic and mechanistic aspects of the N-nitrosative steps are also explored.
Collapse
Affiliation(s)
- Yuesu Chen
- Center for Integrated Technology and Organic Synthesis (CiTOS)MolSys Research Unit, University of LiègeB6a, Room 3/19, Allée du Six Août 134000LiègeSart TilmanBelgium
| | - Sébastien Renson
- Center for Integrated Technology and Organic Synthesis (CiTOS)MolSys Research Unit, University of LiègeB6a, Room 3/19, Allée du Six Août 134000LiègeSart TilmanBelgium
| | - Jean‐Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis (CiTOS)MolSys Research Unit, University of LiègeB6a, Room 3/19, Allée du Six Août 134000LiègeSart TilmanBelgium
| |
Collapse
|
9
|
Chen Y, Renson S, Monbaliu JCM. On Demand Flow Platform for the Generation of Anhydrous Dinitrogen Trioxide and Its Further Use in N‐Nitrosative Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuesu Chen
- University of Liege: Universite de Liege Center for Integrated Technology and Organic Synthesis BELGIUM
| | - Sébastien Renson
- University of Liege: Universite de Liege Center for Integrated Technology and Organic Synthesis BELGIUM
| | - Jean-Christophe M. Monbaliu
- University of Liège Chemistry Center for Integrated Technology and Organic SynthesisAllée du six Aout 13, Sart-Tilman 4000 Liège BELGIUM
| |
Collapse
|
10
|
Thadathil DA, Varghese A, Ahamed CVS, Krishnakumar K, Varma SS, Lankalapalli RS, Radhakrishnan KV. Enzyme based bioelectrocatalysis over laccase immobilized poly-thiophene supported carbon fiber paper for the oxidation of D-ribofuranose to D-ribonolactone. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Zhang M, Kong L, Gong R, Iorio M, Donadio S, Deng Z, Sosio M, Chen W. Biosynthesis of C-nucleoside antibiotics in actinobacteria: recent advances and future developments. Microb Cell Fact 2022; 21:2. [PMID: 34983520 PMCID: PMC8724604 DOI: 10.1186/s12934-021-01722-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Epidemic diseases and antibiotic resistance are urgent threats to global health, and human is confronted with an unprecedented dilemma to conquer them by expediting development of new natural product related drugs. C-nucleoside antibiotics, a remarkable group of microbial natural products with diverse biological activities, feature a heterocycle base linked with a ribosyl moiety via an unusual C-glycosidic bond, and have played significant roles in healthcare and for plant protection. Elucidating how nature biosynthesizes such a group of antibiotics has provided the basis for engineered biosynthesis as well as targeted genome mining of more C-nucleoside antibiotics towards improved properties. In this review, we mainly summarize the recent advances on the biosynthesis of C-nucleoside antibiotics, and we also tentatively discuss the future developments on rationally accessing C-nucleoside diversities in a more efficient and economical way via synthetic biology strategies.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liyuan Kong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rong Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | | | | | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
12
|
Panda S, Poudel TN, Hegde P, Aldrich CC. Innovative Strategies for the Construction of Diverse 1'-Modified C-Nucleoside Derivatives. J Org Chem 2021; 86:16625-16640. [PMID: 34756029 DOI: 10.1021/acs.joc.1c01920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified C-nucleosides have proven to be enormously successful as chemical probes to understand fundamental biological processes and as small-molecule drugs for cancer and infectious diseases. Historically, the modification of the glycosyl unit has focused on the 2'-, 3'-, and 4'-positions as well as the ribofuranosyl ring oxygen. By contrast, the 1'-position has rarely been studied due to the labile nature of the anomeric position. However, the improved chemical stability of C-nucleosides allows the modification of the 1'-position with substituents not found in conventional N-nucleosides. Herein, we disclose new chemistry for the installation of diverse substituents at the 1'-position of C-nucleosides, including alkyl, alkenyl, difluoromethyl, and fluoromethyl substituents, using the 4-amino-7-(1'-hydroxy-d-ribofuranosyl)pyrrolo[2,1-f][1,2,4]triazine scaffold as a representative purine nucleoside mimetic.
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tej Narayan Poudel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Ortiz PD, Castillo-Rodriguez J, Tapia J, Zarate X, Vallejos GA, Roa V, Molins E, Bustos C, Schott E. A novel series of pyrazole derivatives toward biological applications: experimental and conceptual DFT characterization. Mol Divers 2021; 26:2443-2457. [PMID: 34724138 DOI: 10.1007/s11030-021-10342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022]
Abstract
A new series of 13 pyrazole-derivative compounds with potential antifungal activity were synthetized with good yields. The series have the (E)-2-((1-(R)-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)phenol general structure and were characterized by means of X-ray diffraction, UV-Vis, FTIR, 1H-NMR, 13C-NMR, and two-dimensional NMR experiments. This experimental characterization was complemented by DFT simulations. A deep insight regarding molecular reactivity was accomplished employing a conceptual DFT approach. In this sense, dual descriptors were calculated at HF and DFT level of theory and GGV spin-density Fukui functions. The main reactive region within the molecules was mapped through isosurface and condensed representations. Finally, chemical descriptors that have previously shown to be close related to biological activity were compared within the series. Thus, higher values of chemical potential ω and electrophilicity χ obtained for compounds 10, 9, 8, 6 and 7, in this order, suggest that these molecules are the better candidates as biological agents.
Collapse
Affiliation(s)
- Pedro D Ortiz
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux, 2801, Santiago, Chile
| | - Judith Castillo-Rodriguez
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
| | - Jorge Tapia
- Departamento de Ciencias Quı́micas y Biológicas, Universidad Bernardo O'Higgins, Facultad de Salud, General Gana, 1702, Santiago, Chile
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux, 2801, Santiago, Chile.
| | - Gabriel A Vallejos
- Instituto de Ciencias Químicas, Universidad Austral de Chile, Las Encinas 220, Campus Isla Teja, Valdivia, Chile
| | - Vanesa Roa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Carlos Bustos
- Instituto de Ciencias Químicas, Universidad Austral de Chile, Las Encinas 220, Campus Isla Teja, Valdivia, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
| |
Collapse
|