1
|
Mubashra S, Rafiq A, Aslam S, Rasool N, Ahmad M. Recent synthetic strategies for N-arylation of pyrrolidines: a potential template for biologically active molecules. Mol Divers 2025; 29:1851-1893. [PMID: 39048884 DOI: 10.1007/s11030-024-10924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The chemistry of nitrogen-containing heterocyclic compounds has been a multifaceted area of research for an extended period due to their varied therapeutic and biological significance. N-Aryl pyrrolidine formed by condensation of aryl group with nitrogen atom of pyrrolidine is present in a wide array of compounds. Various significant activities shown by N-arylated pyrrolidine include anti-Alzheimer, antihypoxic, anticancer, plant activator, analgesic effect, and hepatitis C inhibitor. This review summarizes different synthetic approaches, e.g., transition-metal catalyzed and transition-metal-free synthesis, decarboxylation reaction, reductive amination, nucleophilic cyclization, Ullmann-Goldberg amidation, Buchwald-Hartwig reaction, Chan-Evans-Lam coupling, addition to benzyne, multistep reaction, green synthesis, rearrangement reaction, and multicomponent reaction, to afford the derivatives of N-aryl pyrrolidine. It encompasses synthetic strategies documented from 2015 to 2023.
Collapse
Affiliation(s)
- Saeeda Mubashra
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Sharma AK, Kumar M, Chand S, Singh KN. Tandem Synthesis of Polysubstituted Pyrroles via Cu(I)-Catalyzed Cyclization of Ketene N,S-Acetals with β-Ketodinitriles. J Org Chem 2025; 90:3981-3988. [PMID: 40067741 DOI: 10.1021/acs.joc.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A new approach to multifunctionalized pyrroles has been explored by the tandem cyclization of α-oxoketene-N,S-acetals with β-ketodinitriles using Cu(MeCN)4BF4 and Ag2CO3 in toluene under reflux conditions. The reaction involves C-C/C-N bond creation, and is assumed to proceed via enamine formation, intramolecular cyclization, and rearrangement. The potential of the methodology has also been demonstrated for a gram-scale reaction as well as for some useful organic transformations. The reaction offers a practical pathway to achieve polysubstituted pyrroles with broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Anup Kumar Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mahesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shiv Chand
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Zuo L, Yu F, Zhao S, Wang W, Wang S. Copper-Catalyzed, Intramolecular Amination of Unactivated C(sp 3)-H Bonds through Radical Relay. J Org Chem 2024; 89:13077-13084. [PMID: 39208327 DOI: 10.1021/acs.joc.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although copper-catalyzed amination of activated C(sp3)-H bonds through radical relay has been developed, amination of unactivated C(sp3)-H bonds is rare. Herein, copper-catalyzed intramolecular amination of remote unactivated C(sp3)-H bonds is reported. The reaction is conducted in a mild and effective manner with moderate to good yields, demonstrating broad tolerance toward various functional groups and exhibiting complete regio- and chemoselectivities. This innovation supplies novel synthetic pathways for the construction of saturated nitrogenated heterocycles.
Collapse
Affiliation(s)
- Liyan Zuo
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Fan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shuai Zhao
- Qingdao Zhongda Agritech Co., Ltd., Building 1, No. 368 Hedong Road, High-tech Zone, Qingdao, Shandong 266100, P. R. China
| | - Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
4
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
5
|
Chen Z, Song G, Qi L, Gunasekar R, Aïssa C, Robertson C, Steiner A, Xue D, Xiao J. Reductive Transamination of Pyridinium Salts to N-Aryl Piperidines. J Org Chem 2024; 89:9352-9359. [PMID: 38872240 PMCID: PMC11232014 DOI: 10.1021/acs.joc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Saturated N-heterocycles are found in numerous bioactive natural products and are prevalent in pharmaceuticals and agrochemicals. While there are many methods for their synthesis, each has its limitations, such as scope and functional group tolerance. Herein, we describe a rhodium-catalyzed transfer hydrogenation of pyridinium salts to access N-(hetero)aryl piperidines. The reaction proceeds via a reductive transamination process, involving the initial formation of a dihydropyridine intermediate via reduction of the pyridinium ion with HCOOH, which is intercepted by water and then hydrolyzed. Subsequent reductive amination with an exogenous (hetero)aryl amine affords an N-(hetero)aryl piperidine. This reductive transamination method thus allows for access of N-(hetero)aryl piperidines from readily available pyridine derivatives, expanding the toolbox of dearomatization and skeletal editing.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Geyang Song
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education
and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Leiming Qi
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | | | - Christophe Aïssa
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Craig Robertson
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Alexander Steiner
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Dong Xue
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education
and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jianliang Xiao
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
6
|
Li YB, Wang YL, Gao Q, Dai JC, Jin RX, Wang XS. Photoredox Catalyzed Synthesis of gem-Difluoroalkenes and Monofluorinated Cyclooctenes via 1,5-HAT Process. Org Lett 2024; 26:4548-4553. [PMID: 38757610 DOI: 10.1021/acs.orglett.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
gem-Difluoroalkenes and monofluorinated cycloalkenes have emerged as basic structural units in a variety of bioactive molecules and natural products. Thus, developing straightforward and efficient methods for synthesizing fluorinated alkene compounds is of considerable significance. Herein, we disclose a visible-light-induced defluorination of 2-trifluoromethyl-1-alkene via a 1,5-HAT process using N-alkoxyphtalimides as both radical precursor and potential nucleophile. The mild and stepwise reaction leads to a variety of structurally diverse gem-difluoroalkenes and monofluorinated cyclooctenes with high efficiency, respectively.
Collapse
Affiliation(s)
- Yuan-Bo Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu-Lin Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qian Gao
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jing-Cheng Dai
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruo-Xing Jin
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Ye W, Xiong H, Wang M, Chang J, Yu W. Iodine-Mediated δ-Amination of sp 3 C-H Bonds. J Org Chem 2024; 89:3481-3490. [PMID: 38381857 DOI: 10.1021/acs.joc.3c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We present a direct δ-amination reaction of sp3 C-H bonds, employing molecular iodine (I2) as the sole oxidant under transition-metal-free conditions. This remote C-H functionalization approach is operationally simple and provides facile, efficient access to pyrrolidines and related heterocyclic derivatives from readily accessible substrates.
Collapse
Affiliation(s)
- Wenjun Ye
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Hanyu Xiong
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Manman Wang
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Frolov NA, Vereshchagin AN. Piperidine Derivatives: Recent Advances in Synthesis and Pharmacological Applications. Int J Mol Sci 2023; 24:2937. [PMID: 36769260 PMCID: PMC9917539 DOI: 10.3390/ijms24032937] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Piperidines are among the most important synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. Their derivatives are present in more than twenty classes of pharmaceuticals, as well as alkaloids. The current review summarizes recent scientific literature on intra- and intermolecular reactions leading to the formation of various piperidine derivatives: substituted piperidines, spiropiperidines, condensed piperidines, and piperidinones. Moreover, the pharmaceutical applications of synthetic and natural piperidines were covered, as well as the latest scientific advances in the discovery and biological evaluation of potential drugs containing piperidine moiety. This review is designed to help both novice researchers taking their first steps in this field and experienced scientists looking for suitable substrates for the synthesis of biologically active piperidines.
Collapse
Affiliation(s)
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
9
|
Bhaskaran RP, Nayak KH, Sreelekha MK, Babu BP. Progress in copper-catalysed/mediated intramolecular dehydrogenative coupling. Org Biomol Chem 2023; 21:237-251. [PMID: 36448561 DOI: 10.1039/d2ob01796b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transition metal-catalysed C-H functionalization reactions are one of the most efficient synthetic methodologies to construct carbon-carbon and carbon-heteroatom bonds. The initial developments in the field were largely dominated by expensive transition metal catalysts. However, in the past decade, the focus of the catalyst shifted to first-row transition metals and copper catalysis contributed significantly. Abundant, cost-effective, and less toxic copper catalysts are an ideal green alternative to palladium and similar metals. The intramolecular dehydrogenative coupling itself developed as a prominent area of focus as the strategy straightaway affords complex polycyclic scaffolds in one pot. Regioselective activation of inert C-H bonds were made possible with copper catalysts and interestingly, oxygen served as the terminal oxidant in most of the cases. In the present review the focus is on the intramolecular dehydrogenative coupling reactions between carbon-hydrogen and heteroatom-hydrogen bonds to afford carbon-carbon and carbon-hetero atom bonds, catalysed/mediated by copper salts. Though the intermolecular dehydrogenative coupling reactions of copper have already been reviewed more than once, to the best of our knowledge this is the first comprehensive account of copper-based intramolecular dehydrogenative coupling.
Collapse
Affiliation(s)
- Rasmi P Bhaskaran
- Department of Chemistry National Institute of Technology Karnataka Surathkal, Mangalore, India - 575025.
| | - Kalinga H Nayak
- Department of Chemistry National Institute of Technology Karnataka Surathkal, Mangalore, India - 575025.
| | - Mariswamy K Sreelekha
- Department of Chemistry National Institute of Technology Karnataka Surathkal, Mangalore, India - 575025.
| | - Beneesh P Babu
- Department of Chemistry National Institute of Technology Karnataka Surathkal, Mangalore, India - 575025.
| |
Collapse
|
10
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
11
|
Nozawa-Kumada K, Ono K, Kurosu S, Shigeno M, Kondo Y. Copper-catalyzed aerobic benzylic C(sp 3)-H lactonization of 2-alkylbenzamides via N-centered radicals. Org Biomol Chem 2022; 20:5948-5952. [PMID: 35262165 DOI: 10.1039/d2ob00281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe the copper-catalyzed aerobic C(sp3)-H functionalization of 2-alkylbenzamides for the synthesis of benzolactones. This reaction proceeds via 1,5-hydrogen atom transfer of N-centered radicals directly generated by N-H bond cleavage and does not require the synthesis of pre-functionalized N-centered radical precursors or the use of strong stoichiometric oxidants.
Collapse
Affiliation(s)
- Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Kanako Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Satoshi Kurosu
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Masanori Shigeno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
12
|
Ghosh T, Chatterjee J, Bhakta S. Gold-Catalyzed Hydroarylation Reactions: A Comprehensive Overview. Org Biomol Chem 2022; 20:7151-7187. [DOI: 10.1039/d2ob00960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydroarylation of alkynes, alkene, and, allene is a cost-effective and efficient way to incorporate unsaturated moieties into aromatic substrates. This review focuses on gold-catalyzed hydroarylation, which produces aromatic alkenes,...
Collapse
|
13
|
Zhong LJ, Lv GF, Ouyang XH, Li Y, Li JH. Copper-Catalyzed Fluoroamide-Directed Remote Benzylic C-H Olefination: Facile Access to Internal Alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00822j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general, site-selective copper-catalyzed fluoroamide-directed remote benzylic C-H olefination of N-fluoroamides with terminal alkenes for producing internal alkenes is disclosed. This protocol proceeds via a hybrid Cu-radical mechanism, which synergistically...
Collapse
|
14
|
Zhong LJ, Xiong ZQ, Ouyang XH, Li Y, Song RJ, Sun Q, Lu X, Li JH. Intermolecular 1,2-Difunctionalization of Alkenes Enabled by Fluoroamide-Directed Remote Benzyl C(sp 3)-H Functionalization. J Am Chem Soc 2021; 144:339-348. [PMID: 34935377 DOI: 10.1021/jacs.1c10053] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A copper-catalyzed remote benzylic C-H functionalization strategy enabling 1,2-difunctionalization of alkenes with 2-methylbenzeneamides and nucleophiles, including alcohols, indoles, pyrroles, and the intrinsic amino groups, is reported, which is characterized by its redox-neutral conditions, exquisite site-selectivity, broad substrate scope, and wide utilizations of late-stage modifying bioactive molecules. This reaction proceeds through nitrogen-centered radical generation, hydrogen atom transfer, benzylic radical addition across the alkenes, single-electron oxidation, and carbocation electrophilic course cascades. While using external nucleophiles manipulates three-component alkene alkylalkoxylation and alkyl-heteroarylation with 2-methylbenzeneamides to access dialkyl ethers, 3-alkylindoles, and 3-alkylpyrroles, omitting the external nucleophiles results in two-component alkylamidation ([5+2] annulation) of alkenes with 2-methylbenzeneamides to benzo-[f][1,2]thiazepine 1,1-dioxides.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface & Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
15
|
|
16
|
Lazib Y, Retailleau P, Saget T, Darses B, Dauban P. Asymmetric Synthesis of Enantiopure Pyrrolidines by C(sp 3 )-H Amination of Hydrocarbons. Angew Chem Int Ed Engl 2021; 60:21708-21712. [PMID: 34329511 DOI: 10.1002/anie.202107898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/07/2022]
Abstract
The asymmetric synthesis of enantiopure pyrrolidines is reported via a streamlined strategy relying on two sequential C-H functionalizations of simple hydrocarbons. The first step is a regio- and stereoselective catalytic nitrene C-H insertion. Then, a subsequent diastereoselective cyclization involving a 1,5-hydrogen atom transfer (HAT) from a N-centered radical leads to the formation of pyrrolidines that can then be converted to their free NH-derivatives.
Collapse
Affiliation(s)
- Yanis Lazib
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Tanguy Saget
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Benjamin Darses
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Av. de la Terrasse, 91198, Gif-sur-Yvette, France.,Université Grenoble Alpes, Département de Chimie Moléculaire, CNRS UMR-5250, 38058, Grenoble, France
| | - Philippe Dauban
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Av. de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Lazib Y, Retailleau P, Saget T, Darses B, Dauban P. Asymmetric Synthesis of Enantiopure Pyrrolidines by C(sp
3
)−H Amination of Hydrocarbons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanis Lazib
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 Av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Pascal Retailleau
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 Av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Tanguy Saget
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 Av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Benjamin Darses
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 Av. de la Terrasse 91198 Gif-sur-Yvette France
- Université Grenoble Alpes Département de Chimie Moléculaire CNRS UMR-5250 38058 Grenoble France
| | - Philippe Dauban
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 Av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
18
|
Lin Y, Li D, Zhang J, Tang Z, Liu L, Huang T, Li C, Chen T. I 2/NaH 2PO 2-mediated deoxyamination of cyclic ethers for the synthesis of N-aryl-substituted azacycles. NEW J CHEM 2021. [DOI: 10.1039/d1nj04752c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a protocol for efficient synthesis of N-aryl-substituted azacycles from aryl amines and cyclic ethers using I2/NaH2PO2 as the mediator.
Collapse
Affiliation(s)
- Ying Lin
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Dongyang Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Jingjing Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Zhi Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| |
Collapse
|
19
|
Abstract
An organocatalytic site-selective electrochemical method for the benzylic C–H amination of alkylarenes with azoles through hydrogen evolution has been developed.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Laiqiang Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|