1
|
Yang SY, Ying TT, Zhou TH, Guan YT, Xu XL, Wang H, Wei B. The Myxobacterial Genus Archangium: A Prolific and Underexploited Source of Bioactive Secondary Metabolites. J Med Chem 2025; 68:2183-2197. [PMID: 39895639 DOI: 10.1021/acs.jmedchem.4c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The genus Archangium, a cryptic group of myxobacteria, is a rich source of diverse secondary metabolites. This study reviews the chemical structures and discovery history of 55 secondary metabolites, analyzing the relationship between the chemical structures of these compounds and their bioactivity profiles through molecular networking. Notably, 63.6% of the compounds exhibit potent antimicrobial (MIC < 1 μg/mL) and/or cytotoxic activities (IC50 < 1 μg/mL). Advances in the biosynthetic gene clusters and biosynthetic pathways of seven classes of identified compounds are also presented. Finally, genomic mining approaches are applied to analyze the potential for Archangium strains to synthesize analogs of identified bioactive natural products, uncovering that 98.7% of their secondary metabolic potential remains unexplored. This study highlights the vast potential of Archangium bacteria in synthesizing clade-specific novel secondary metabolites, particularly ribosomally synthesized and post-translationally modified peptide natural products, offering valuable insights for the targeted discovery and biosynthesis of new natural products from this genus.
Collapse
Affiliation(s)
- Shu-Yu Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ti-Ti Ying
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tian-Hui Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Tian Guan
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xu-Liang Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
- Binjiang Institute of Artificial Intelligence, ZJUT, Hangzhou 310051, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang Key Laboratory of Green, Low-Carbon, and Efficient Development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China
- Binjiang Institute of Artificial Intelligence, ZJUT, Hangzhou 310051, China
| |
Collapse
|
2
|
Li Y, Hu JQ, Feng WH, Wu C, Gao L. Early Intervention in Herpes Simplex Virus-1 Replication in Vitro with Allenic Macrolide Archangiumide. Int J Mol Sci 2025; 26:1537. [PMID: 40004002 PMCID: PMC11855526 DOI: 10.3390/ijms26041537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Archangiumide is a unique macrolide natural product that features an endocyclic allene functionality, rendering it a prototype of a new class of secondary metabolites of microbial origin. However, its biological and/or pharmaceutical roles remain obscure. In this study, we have unveiled an antiviral potency of archangiumide that was effective against herpes simplex virus (HSV-1) replication. We found that archangiumide did not affect host cell viability, nor pathogen infectivity, but suppressed HSV-1 early replication, in terms of early replication genes, such as ICP0, ICP4, etc. Further scrutinizing the underlined master regulator, we found that HSV-1 VP16 protein expression was inhibited by archangiumide, as well as VP16 nuclear translocation. As VP16 is a coactivator of transcription, archangiumide harnessed the master regulator of HSV-1 early replication. Together, here we provide evidence that allene macrolide archangiumide possesses robust antiviral functions that may be valuable for a novel viral infection intervention, as macrolides are generally safe drugs for prolonged treatments.
Collapse
Affiliation(s)
- You Li
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, Ministry of Agriculture Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wen-Hai Feng
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, Ministry of Agriculture Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medcine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Di X, Li P, Xiahou Y, Wei H, Zhi S, Liu L. Recent Advances in Discovery, Structure, Bioactivity, and Biosynthesis of trans-AT Polyketides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21318-21343. [PMID: 39302874 DOI: 10.1021/acs.jafc.4c03750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are among the most complex enzymes, which are responsible for generating a wide range of natural products, identified as trans-AT polyketides. These polyketides have received significant attention in drug development due to their structural diversity and potent bioactivities. With approximately 300 synthesized molecules discovered so far, trans-AT PKSs are found widespread in bacteria. Their biosynthesis pathways exhibit considerable genetic diversity, leading to the emergence of numerous enzymes with novel mechanisms, serving as a valuable resource for genetic engineering aimed at modifying small molecules' structures and creating new engineered enzymes. Despite the systematic discussions on trans-AT polyketides and their biosynthesis in earlier studies, the continuous advancements in tools, methods, compound identification, and biosynthetic pathways require a fresh update on accumulated knowledge. This review seeks to provide a comprehensive discussion for the 27 types of trans-AT polyketides discovered within the last seven years, detailing their sources, structures, biological activities, and biosynthetic pathways. By reviewing this new knowledge, a more profound understanding of the trans-AT polyketide family can be achieved.
Collapse
Affiliation(s)
- Xue Di
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Peng Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yinuo Xiahou
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huamao Wei
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
4
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
5
|
Zhu LL, Yang Q, Wang DG, Niu L, Pan Z, Li S, Li YZ, Zhang W, Wu C. Deciphering the Biosynthesis and Physiological Function of 5-Methylated Pyrazinones Produced by Myxobacteria. ACS CENTRAL SCIENCE 2024; 10:555-568. [PMID: 38559311 PMCID: PMC10979478 DOI: 10.1021/acscentsci.3c01363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Myxobacteria are a prolific source of secondary metabolites with sheer chemical complexity, intriguing biosynthetic enzymology, and diverse biological activities. In this study, we report the discovery, biosynthesis, biomimetic total synthesis, physiological function, structure-activity relationship, and self-resistance mechanism of the 5-methylated pyrazinone coralinone from a myxobacterium Corallococcus exiguus SDU70. A single NRPS/PKS gene corA was genetically and biochemically demonstrated to orchestrate coralinone, wherein the integral PKS part is responsible for installing the 5-methyl group. Intriguingly, coralinone exacerbated cellular aggregation of myxobacteria grown in liquid cultures by enhancing the secretion of extracellular matrix, and the 5-methylation is indispensable for the alleged activity. We provided an evolutionary landscape of the corA-associated biosynthetic gene clusters (BGCs) distributed in the myxobacterial realm, revealing the divergent evolution for the diversity-oriented biosynthesis of 5-alkyated pyrazinones. This phylogenetic contextualization provoked us to identify corB located in the proximity of corA as a self-resistance gene. CorB was experimentally verified to be a protease that hydrolyzes extracellular proteins to antagonize the agglutination-inducing effect of coralinone. Overall, we anticipate these findings will provide new insights into the chemical ecology of myxobacteria and lay foundations for the maximal excavation of these largely underexplored resources.
Collapse
Affiliation(s)
| | | | | | - Luo Niu
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Shengying Li
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology,
Institute of Microbial Technology, Shandong
University, 266237 Qingdao, P.R. China
| |
Collapse
|
6
|
Sutro JL, Fürstner A. Total Synthesis of the Allenic Macrolide (+)-Archangiumide. J Am Chem Soc 2024; 146:2345-2350. [PMID: 38241031 PMCID: PMC10835656 DOI: 10.1021/jacs.3c13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Archangiumide is the first known macrolide natural product comprising an endocyclic allene. For the ring strain that this linear substructure might entail, it was planned to unveil the allene at a very late stage of the projected total synthesis; in actual fact, this was achieved as the last step of the longest linear sequence by using an otherwise globally deprotected substrate. This unconventional timing was made possible by a gold catalyzed rearrangement of a macrocyclic propargyl benzyl ether derivative that uses a -PMB group as latent hydride source to unveil the signature cycloallene; the protecting group therefore gains a strategic role beyond its mere safeguarding function. Although the gold catalyzed reaction per se is stereoablative, the macrocyclic frame of the target was found to impose high selectivity and a stereoconvergent character on the transformation. The required substrate was formed by ring closing alkyne metathesis (RCAM) with the aid of a new air-stable molybdenum alkylidyne catalyst.
Collapse
Affiliation(s)
- Jack L. Sutro
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
7
|
Wang H, Wang N, Tan Y, Mi Q, Mao Y, Zhao C, Tian X, Liu W, Huang L. Paenibacillus polymyxa YLC1: a promising antagonistic strain for biocontrol of Pseudomonas syringae pv. actinidiae, causing kiwifruit bacterial canker. PEST MANAGEMENT SCIENCE 2023; 79:4357-4366. [PMID: 37417001 DOI: 10.1002/ps.7633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Kiwifruit bacterial canker (KBC) caused by Pseudomonas syringae pv. actinidiae (Psa) is the main limiting factor in the kiwifruit industry. This study aimed to identify bacterial strains with antagonistic activity against Psa, analyze antagonistically active substances and provide a new basis for the biological control of KBC. RESULTS A total of 142 microorganisms were isolated from the rhizosphere soil of asymptomatic kiwifruit. Among them, an antagonistic bacterial strain was identified as Paenibacillus polymyxa YLC1 by 16S rRNA sequencing. KBC control by strain YLC1 (85.4%) was comparable to copper hydroxide treatment (81.8%) under laboratory conditions and field testing. Active substances of strain YLC1 were identified by genetic sequence analysis using antiSMASH. Six biosynthetic active compound gene clusters were identified as encoding ester peptide synthesis, such as polymyxins. An active fraction was purified and identified as polymyxin B1 using chromatography, hydrogen nuclear magnetic resonance (NMR), and liquid chromatography-mass spectrometry. In addition, polymyxin B1 also was found significantly to suppress the expression of T3SS-related genes, but did not affect the growth of Psa at low concentrations. CONCLUSION In this study, a biocontrol strain P. polymyxa YLC1 obtained from kiwifruit rhizosphere soil exhibited excellent control effects on KBC in vitro and in field tests. Its active compound was identified as polymyxin B1, which inhibits a variety of pathogenic bacteria. We conclude that P. polymyxa YLC1 is a biocontrol strain with excellent prospects for development and application. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Nana Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Life Science, Northwest A&F University, Yangling, People's Republic of China
| | - Yunxiao Tan
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Qianqian Mi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Yiru Mao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Chao Zhao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Xiangrong Tian
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Wei Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Lili Huang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
8
|
Yue X, Sheng D, Zhuo L, Li YZ. Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism. ENGINEERING MICROBIOLOGY 2023; 3:100075. [PMID: 39629250 PMCID: PMC11610982 DOI: 10.1016/j.engmic.2023.100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 12/07/2024]
Abstract
Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis. The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their manipulation. After more than half a century of research, a series of genetic techniques for myxobacteria have been developed, rendering these mysterious bacteria manipulable. Here, we review the advances in genetic manipulation of myxobacteria, with a particular focus on the exploitation of secondary metabolism. We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploitation of untapped secondary metabolism.
Collapse
Affiliation(s)
- Xinjing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Duohong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Wang DG, Wang CY, Hu JQ, Wang JJ, Liu WC, Zhang WJ, Du XR, Wang H, Zhu LL, Sui HY, Li YZ, Wu C. Constructing a Myxobacterial Natural Product Database to Facilitate NMR-Based Metabolomics Bioprospecting of Myxobacteria. Anal Chem 2023; 95:5256-5266. [PMID: 36917632 DOI: 10.1021/acs.analchem.2c05145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Myxobacteria are fascinating prokaryotes featuring a potent capacity for producing a wealth of bioactive molecules with intricate chemical topology as well as intriguing enzymology, and thus it is critical to developing an efficient pipeline for bioprospecting. Herein, we construct the database MyxoDB, the first public compendium solely dedicated to myxobacteria, which enabled us to provide an overview of the structural diversity and taxonomic distribution of known myxobacterial natural products. Moreover, we demonstrated that the cutting-edge NMR-based metabolomics was effective to differentiate the biosynthetic priority of myxobacteria, whereby MyxoDB could greatly streamline the dereplication of multifarious known compounds and accordingly speed up the discovery of new compounds. This led to the rapid identification of a class of linear di-lipopeptides (archangimins) and a rare rearranged sterol (corasterol) that were endowed with unique chemical architectures and/or biosynthetic enzymology. We also showcased that NMR-based metabolomics, MyxoDB, and genomics can also work concertedly to accelerate the targeted discovery of a polyketidic compound pyxipyrrolone C. All in all, this study sets the stage for the discovery of many more novel natural products from underexplored myxobacterial resources.
Collapse
Affiliation(s)
- De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wen-Chao Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wen-Juan Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xin-Ran Du
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Han Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Le-Le Zhu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hai-Yan Sui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Hu JQ, Zhang A, Wang H, Niu L, Wang QX, Zhu LL, Li YZ, Wu C. Discovery and Biosynthesis of Glycosylated Cycloheximide from a Millipede-Associated Actinomycete. JOURNAL OF NATURAL PRODUCTS 2023; 86:340-345. [PMID: 36693198 DOI: 10.1021/acs.jnatprod.2c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemical redundancy of microbial natural products (NPs) underscores the importance to exploit new resources of microorganisms. Insect-associated microbes are prolific but largely underexplored sources of diverse NPs. Herein, we discovered the new compound α-l-rhamnosyl-actiphenol (1) from a millipede-associated Streptomyces sp. ML6, which is the first glycosylated cycloheximide-class natural product. Interestingly, bioinformatics analysis of the ML6 genome revealed that the biosynthesis of 1 involves a cooperation between two gene clusters (chx and rml) located distantly on the genome of ML6. We also carried out in vitro enzymatic glycosylation of cycloheximide using an exotic promiscuous glycosyltransferase BsGT-1, which resulted in the production of an additional cycloheximide glycoside cycloheximide 7-O-β-d-glucoside (5). Although the antifungal and cytotoxic activities of the new compounds 1 and 5 were attenuated relative to those of cycloheximide, our work not only enriches the chemical repertoire of the cycloheximide family but also provides new insights into the structure-activity relationship optimization and ecological roles of cycloheximide.
Collapse
Affiliation(s)
- Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Ai Zhang
- Fetal Medicine Center, Qingdao Women and Children's Hospital, Qingdao University, 266071 Qingdao, People's Republic of China
| | - Han Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Luo Niu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Qing-Xia Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Le-Le Zhu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, People's Republic of China
| |
Collapse
|
11
|
de Medeiros LS, de Araújo Júnior MB, Peres EG, da Silva JCI, Bassicheto MC, Di Gioia G, Veiga TAM, Koolen HHF. Discovering New Natural Products Using Metabolomics-Based Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:185-224. [PMID: 37843810 DOI: 10.1007/978-3-031-41741-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The incessant search for new natural molecules with biological activities has forced researchers in the field of chemistry of natural products to seek different approaches for their prospection studies. In particular, researchers around the world are turning to approaches in metabolomics to avoid high rates of re-isolation of certain compounds, something recurrent in this branch of science. Thanks to the development of new technologies in the analytical instrumentation of spectroscopic and spectrometric techniques, as well as the advance in the computational processing modes of the results, metabolomics has been gaining more and more space in studies that involve the prospection of natural products. Thus, this chapter summarizes the precepts and good practices in the metabolomics of microbial natural products using mass spectrometry and nuclear magnetic resonance spectroscopy, and also summarizes several examples where this approach has been applied in the discovery of bioactive molecules.
Collapse
Affiliation(s)
- Lívia Soman de Medeiros
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil.
| | - Moysés B de Araújo Júnior
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Eldrinei G Peres
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Milena Costa Bassicheto
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | - Giordanno Di Gioia
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | - Thiago André Moura Veiga
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | | |
Collapse
|
12
|
Sahayasheela VJ, Lankadasari MB, Dan VM, Dastager SG, Pandian GN, Sugiyama H. Artificial intelligence in microbial natural product drug discovery: current and emerging role. Nat Prod Rep 2022; 39:2215-2230. [PMID: 36017693 PMCID: PMC9931531 DOI: 10.1039/d2np00035k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: up to the end of 2022Microorganisms are exceptional sources of a wide array of unique natural products and play a significant role in drug discovery. During the golden era, several life-saving antibiotics and anticancer agents were isolated from microbes; moreover, they are still widely used. However, difficulties in the isolation methods and repeated discoveries of the same molecules have caused a setback in the past. Artificial intelligence (AI) has had a profound impact on various research fields, and its application allows the effective performance of data analyses and predictions. With the advances in omics, it is possible to obtain a wealth of information for the identification, isolation, and target prediction of secondary metabolites. In this review, we discuss drug discovery based on natural products from microorganisms with the help of AI and machine learning.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
| | - Manendra B Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Syed G Dastager
- NCIM Resource Centre, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune, Maharashtra, India
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2021. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:905-924. [PMID: 36111695 DOI: 10.1080/10286020.2022.2117169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The new natural products reported in 2021 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2021 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Hu WF, Niu L, Yue XJ, Zhu LL, Hu W, Li YZ, Wu C. Characterization of Constitutive Promoters for the Elicitation of Secondary Metabolites in Myxobacteria. ACS Synth Biol 2021; 10:2904-2909. [PMID: 34757714 DOI: 10.1021/acssynbio.1c00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genome mining has revealed that myxobacteria contain a myriad of cryptic biosynthetic gene clusters (BGCs). Here, we report the characterization of a panel of myxobacterial promoters with variable strength that are applicable in the engineering of BGCs in myxobacteria. The screened strongest constitutive promoter was used to efficiently enhance the expression of two complex BGCs governing the biosynthesis of myxochromide and DKxanthene in the model myxobacterium Myxococcus xanthus DK1622. We also showcased the combination of promoter engineering and MS2-based spectral networking as an effective strategy to shed light on the previously overlooked chemistry in the family of myxochromide-type lipopeptides. The enriched promoter library substantially expanded the synthetic biology toolkit available for myxobacteria.
Collapse
Affiliation(s)
- Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China
| | - Luo Niu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China
| | - Le-Le Zhu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China
| |
Collapse
|
15
|
Li Y, Zhuo L, Li X, Zhu Y, Wu S, Shen T, Hu W, Li YZ, Wu C. Myxadazoles, Myxobacterium-Derived Isoxazole-Benzimidazole Hybrids with Cardiovascular Activities. Angew Chem Int Ed Engl 2021; 60:21679-21684. [PMID: 34314077 DOI: 10.1002/anie.202106275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Indexed: 12/14/2022]
Abstract
There is a continuous need for novel microbial natural products to fill the drying-up drug development pipeline. Herein, we report myxadazoles from Myxococcus sp. SDU36, a family of novel chimeric small molecules that consist of N-ribityl 5,6-dimethylbenzimidazole and a linear fatty acid chain endowed with an isoxazole ring. The experiments of genome sequencing, gene insertion mutation, isotope labelling, and precursor feeding demonstrated that the fatty acid chain was encoded by a non-canonical PKS/NRPS gene cluster, whereas the origin of N-ribityl 5,6-dimethylbenzimidazole was related to the vitamin B12 metabolism. The convergence of these two distinct biosynthetic pathways through a C-N coupling led to the unique chemical framework of myxadazoles, which is an unprecedented hybridization mode in the paradigm of natural products. Myxadazoles exhibited potent vasculogenesis promotion effect and moderate antithrombotic activity, underscoring their potential usage for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yuelan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshi Dong Road, Jinan, 250103, P. R. China
| | - Yongqiang Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshi Dong Road, Jinan, 250103, P. R. China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, 250012, P. R. China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| |
Collapse
|
16
|
Li Y, Zhuo L, Li X, Zhu Y, Wu S, Shen T, Hu W, Li Y, Wu C. Myxadazoles, Myxobacterium‐Derived Isoxazole–Benzimidazole Hybrids with Cardiovascular Activities. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuelan Li
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Xiaobin Li
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) No. 28789 Jingshi Dong Road Jinan 250103 P. R. China
| | - Yongqiang Zhu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) No. 28789 Jingshi Dong Road Jinan 250103 P. R. China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Wei Hu
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Yue‐Zhong Li
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| |
Collapse
|
17
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2021. [DOI: 10.1039/d1np90013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as eurysoloid A from Eurysolen gracilis.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|