1
|
Tyler JL, Trauner D, Glorius F. Reaction development: a student's checklist. Chem Soc Rev 2025; 54:3272-3292. [PMID: 39912730 DOI: 10.1039/d4cs01046a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
So you've discovered a reaction. But how do you turn this new discovery into a fully-fledged program that maximises the potential of your novel transformation? Herein, we provide a student's checklist to serve as a helpful guide for synthesis development, allowing you to thoroughly investigate the chemistry in question while ensuring that no key aspect of the project is overlooked. A wide variety of the most illuminating synthetic and spectroscopic techniques will be summarised, in conjunction with literature examples and our own insights, to provide sound justifications for their implementation towards the goal of developing new reactions.
Collapse
Affiliation(s)
- Jasper L Tyler
- University of Muenster, Institute for Organic Chemistry, Corrensstrasse 36, 48149 Muenster, Germany.
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
| | - Frank Glorius
- University of Muenster, Institute for Organic Chemistry, Corrensstrasse 36, 48149 Muenster, Germany.
| |
Collapse
|
2
|
Gao W, Raghavan P, Shprints R, Coley CW. Revealing the Relationship between Publication Bias and Chemical Reactivity with Contrastive Learning. J Am Chem Soc 2025. [PMID: 40023782 DOI: 10.1021/jacs.5c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
A synthetic method's substrate tolerance and generality are often showcased in a "substrate scope" table. However, substrate selection exhibits a frequently discussed publication bias: unsuccessful experiments or low-yielding results are rarely reported. In this work, we explore more deeply the relationship between such a publication bias and chemical reactivity beyond the simple analysis of yield distributions using a novel neural network training strategy, substrate scope contrastive learning. By treating reported substrates as positive samples and nonreported substrates as negative samples, our contrastive learning strategy teaches a model to group molecules within a numerical embedding space, based on historical trends in published substrate scope tables. Training on 20,798 aryl halides in the CAS Content CollectionTM, spanning thousands of publications from 2010 to 2015, we demonstrate that the learned embeddings exhibit a correlation with physical organic reactivity descriptors through both intuitive visualizations and quantitative regression analyses. Additionally, these embeddings are applicable to various reaction modeling tasks like yield prediction and regioselectivity prediction, underscoring the potential to use historical reaction data as a pretraining task. This work not only presents a chemistry-specific machine learning training strategy to learn from literature data in a new way but also represents a unique approach to uncover trends in chemical reactivity reflected by trends in substrate selection in publications.
Collapse
Affiliation(s)
- Wenhao Gao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Priyanka Raghavan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ron Shprints
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Laohapaisan P, Roy I, Nagib DA. Chiral pyrrolidines via an enantioselective Hofmann-Löffler-Freytag reaction. CHEM CATALYSIS 2024; 4:101149. [PMID: 39897703 PMCID: PMC11785401 DOI: 10.1016/j.checat.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Radical C-H aminations enable rapid access to the most common heterocycles in medicines (e.g. pyrrolidines), yet stereocontrol of these powerful transformations remains a challenge. Here, we report the discovery of the first enantio- and regio- selective C-H imination, which readily converts ketones to enantioenriched pyrrolidines. This enantioselective Hofmann-Löffler-Freytag reaction mechanism entails iminyl radical generation from an oxime by a chiral Cu catalyst that facilitates 1,5-H-atom transfer (HAT) to form a remote C-radical, regioselectively. The selective capture of this alkyl radical as an organocopper(III) complex then mediates highly stereoselective reductive elimination to unprotected pyrrolines. The broad steric and electronic scope of this remote C-H amination has been probed systematically, along with key mechanistic aspects of enantiodetermination, radical intermediacy, and atypical Cu(III) ligands that enable this uniquely selective C-N coupling. Importantly, either (1) reductions or (2) nucleophilic additions to these enantioenriched pyrrolines provide the most rapid syntheses of chiral pyrrolidines to date.
Collapse
Affiliation(s)
| | | | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
4
|
Holder L, Yuce E, Oriomah G, Jenkins AP, Reynisson J, Winter A, Cosgrove SC. Accessing Active Fragments for Drug Discovery Utilising Nitroreductase Biocatalysis. Chembiochem 2024; 25:e202400428. [PMID: 38940076 DOI: 10.1002/cbic.202400428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Biocatalysis has played a limited role in the early stages of drug discovery. This is often attributed to the limited substrate scope of enzymes not affording access to vast areas of novel chemical space. Here, we have shown a promiscuous nitroreductase enzyme (NR-55) can be used to produce a panel of functionalised anilines from a diverse panel of aryl nitro starting materials. After screening on analytical scale, we show that sixteen substrates could be scaled to 1 mmol scale, with several poly-functional anilines afforded with ease under the standard conditions. The aniline products were also screened for activity against several cell lines of interest, with modest activity observed for one compound. This study demonstrates the potential for nitroreductase biocatalysis to provide access to functional fragments under benign conditions.
Collapse
Affiliation(s)
- Lauren Holder
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Eda Yuce
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Gabriel Oriomah
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Aimee-Page Jenkins
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jóhannes Reynisson
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
- School of Pharmacy, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Anja Winter
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Sebastian C Cosgrove
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| |
Collapse
|
5
|
Rana D, Pflüger PM, Hölter NP, Tan G, Glorius F. Standardizing Substrate Selection: A Strategy toward Unbiased Evaluation of Reaction Generality. ACS CENTRAL SCIENCE 2024; 10:899-906. [PMID: 38680564 PMCID: PMC11046462 DOI: 10.1021/acscentsci.3c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
With over 10,000 new reaction protocols arising every year, only a handful of these procedures transition from academia to application. A major reason for this gap stems from the lack of comprehensive knowledge about a reaction's scope, i.e., to which substrates the protocol can or cannot be applied. Even though chemists invest substantial effort to assess the scope of new protocols, the resulting scope tables involve significant biases, reducing their expressiveness. Herein we report a standardized substrate selection strategy designed to mitigate these biases and evaluate the applicability, as well as the limits, of any chemical reaction. Unsupervised learning is utilized to map the chemical space of industrially relevant molecules. Subsequently, potential substrate candidates are projected onto this universal map, enabling the selection of a structurally diverse set of substrates with optimal relevance and coverage. By testing our methodology on different chemical reactions, we were able to demonstrate its effectiveness in finding general reactivity trends by using a few highly representative examples. The developed methodology empowers chemists to showcase the unbiased applicability of novel methodologies, facilitating their practical applications. We hope that this work will trigger interdisciplinary discussions about biases in synthetic chemistry, leading to improved data quality.
Collapse
Affiliation(s)
- Debanjan Rana
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Philipp M. Pflüger
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Niklas P. Hölter
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Guangying Tan
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Universität Münster,
Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
6
|
Webb EW, Cheng K, Winton WP, Klein BJ, Bowden GD, Horikawa M, Liu SW, Wright JS, Verhoog S, Kalyani D, Wismer M, Krska SW, Sanford MS, Scott PJ. Development of High-Throughput Experimentation Approaches for Rapid Radiochemical Exploration. J Am Chem Soc 2024; 146:10581-10590. [PMID: 38580459 PMCID: PMC11099536 DOI: 10.1021/jacs.3c14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Positron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis. However, to date, HTE has rarely been applied to radiochemistry. This is largely because of the short lifetime of common radioisotopes, which presents major challenges for efficient parallel reaction setup and analysis using standard equipment and workflows. Herein, we demonstrate an effective HTE workflow and apply it to the optimization of copper-mediated radiofluorination of pharmaceutically relevant boronate ester substrates. The workflow utilizes commercial equipment and allows for rapid analysis of reactions for optimizing reactions, exploring chemical space using pharmaceutically relevant aryl boronates for radiofluorinations, and constructing large radiochemistry data sets.
Collapse
Affiliation(s)
- E. William Webb
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Kevin Cheng
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Wade P. Winton
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Brandon J.C. Klein
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, Tuebingen 72074, Germany
| | - Mami Horikawa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - S. Wendy Liu
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jay S. Wright
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Stefan Verhoog
- Translational Imaging, Merck and Co., Inc., West Point, PA 19486, United States
| | - Dipannita Kalyani
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Michael Wismer
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Shane W. Krska
- Discovery Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ 07065, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J.H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Schrader ML, Schäfer FR, Schäfers F, Glorius F. Bridging the information gap in organic chemical reactions. Nat Chem 2024; 16:491-498. [PMID: 38548884 DOI: 10.1038/s41557-024-01470-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/02/2024] [Indexed: 04/07/2024]
Abstract
The varying quality of scientific reports is a well-recognized problem and often results from a lack of standardization and transparency in scientific publications. This situation ultimately leads to prominent complications such as reproducibility issues and the slow uptake of newly developed synthetic methods for pharmaceutical and agrochemical applications. In recent years, various impactful approaches have been advocated to bridge information gaps and to improve the quality of experimental protocols in synthetic organic publications. Here we provide a critical overview of these strategies and present the reader with a versatile set of tools to augment their standard procedures. We formulate eight principles to improve data management in scientific publications relating to data standardization, reproducibility and evaluation, and encourage scientists to go beyond current publication standards. We are aware that this is a substantial effort, but we are convinced that the resulting improved data situation will greatly benefit the progress of chemistry.
Collapse
Affiliation(s)
- Malte L Schrader
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix R Schäfer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix Schäfers
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
8
|
Zalessky I, Wootton JM, Tam JKF, Spurling DE, Glover-Humphreys WC, Donald JR, Orukotan WE, Duff LC, Knapper BJ, Whitwood AC, Tanner TFN, Miah AH, Lynam JM, Unsworth WP. A Modular Strategy for the Synthesis of Macrocycles and Medium-Sized Rings via Cyclization/Ring Expansion Cascade Reactions. J Am Chem Soc 2024; 146:5702-5711. [PMID: 38372651 PMCID: PMC10910531 DOI: 10.1021/jacs.4c00659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Macrocycles and medium-sized rings are important in many scientific fields and technologies but are hard to make using current methods, especially on a large scale. Outlined herein is a strategy by which functionalized macrocycles and medium-sized rings can be prepared using cyclization/ring expansion (CRE) cascade reactions, without resorting to high dilution conditions. CRE cascade reactions are designed to operate exclusively via kinetically favorable 5-7-membered ring cyclization steps; this means that the problems typically associated with classical end-to-end macrocyclization reactions are avoided. A modular synthetic approach has been developed to facilitate the simple assembly of the requisite linear precursors, which can then be converted into an extremely broad range of functionalized macrocycles and medium-sized rings using one of nine CRE protocols.
Collapse
Affiliation(s)
- Illya Zalessky
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Jack M. Wootton
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Jerry K. F. Tam
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | | | | - James R. Donald
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Will E. Orukotan
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Lee C. Duff
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | - Ben J. Knapper
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | | | | | | - Jason M. Lynam
- Department
of Chemistry, University of York, York, YO10 5DD U.K.
| | | |
Collapse
|
9
|
Wang JY, Stevens JM, Kariofillis SK, Tom MJ, Golden DL, Li J, Tabora JE, Parasram M, Shields BJ, Primer DN, Hao B, Del Valle D, DiSomma S, Furman A, Zipp GG, Melnikov S, Paulson J, Doyle AG. Identifying general reaction conditions by bandit optimization. Nature 2024; 626:1025-1033. [PMID: 38418912 DOI: 10.1038/s41586-024-07021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries1-6. Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models7-10 to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C-H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space.
Collapse
Affiliation(s)
- Jason Y Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jason M Stevens
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
| | - Stavros K Kariofillis
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Mai-Jan Tom
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dung L Golden
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
| | - Jun Li
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Jose E Tabora
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Marvin Parasram
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, New York University, New York, NY, USA
| | - Benjamin J Shields
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Molecular Structure and Design, Bristol Myers Squibb, Cambridge, MA, USA
| | - David N Primer
- Chemical Process Development, Bristol Myers Squibb, Summit, NJ, USA
- Loxo Oncology at Lilly, Louisville, CO, USA
| | - Bo Hao
- Janssen Research and Development, Spring House, PA, USA
| | - David Del Valle
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Stacey DiSomma
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Ariel Furman
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - G Greg Zipp
- Discovery Synthesis, Bristol Myers Squibb, Princeton, NJ, USA
| | | | - James Paulson
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Raghavan P, Haas BC, Ruos ME, Schleinitz J, Doyle AG, Reisman SE, Sigman MS, Coley CW. Dataset Design for Building Models of Chemical Reactivity. ACS CENTRAL SCIENCE 2023; 9:2196-2204. [PMID: 38161380 PMCID: PMC10755851 DOI: 10.1021/acscentsci.3c01163] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Models can codify our understanding of chemical reactivity and serve a useful purpose in the development of new synthetic processes via, for example, evaluating hypothetical reaction conditions or in silico substrate tolerance. Perhaps the most determining factor is the composition of the training data and whether it is sufficient to train a model that can make accurate predictions over the full domain of interest. Here, we discuss the design of reaction datasets in ways that are conducive to data-driven modeling, emphasizing the idea that training set diversity and model generalizability rely on the choice of molecular or reaction representation. We additionally discuss the experimental constraints associated with generating common types of chemistry datasets and how these considerations should influence dataset design and model building.
Collapse
Affiliation(s)
- Priyanka Raghavan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Brittany C. Haas
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Madeline E. Ruos
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jules Schleinitz
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Abigail G. Doyle
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sarah E. Reisman
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Connor W. Coley
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Williams WL, Gutiérrez-Valencia NE, Doyle AG. Branched-Selective Cross-Electrophile Coupling of 2-Alkyl Aziridines and (Hetero)aryl Iodides Using Ti/Ni Catalysis. J Am Chem Soc 2023; 145:24175-24183. [PMID: 37888947 DOI: 10.1021/jacs.3c08301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The arylation of 2-alkyl aziridines by nucleophilic ring-opening or transition-metal-catalyzed cross-coupling enables facile access to biologically relevant β-phenethylamine derivatives. However, both approaches largely favor C-C bond formation at the less-substituted carbon of the aziridine, thus enabling access to only linear products. Consequently, despite the attractive bond disconnection that it poses, the synthesis of branched arylated products from 2-alkyl aziridines has remained inaccessible. Herein, we address this long-standing challenge and report the first branched-selective cross-coupling of 2-alkyl aziridines with aryl iodides. This unique selectivity is enabled by a Ti/Ni dual-catalytic system. We demonstrate the robustness of the method by a twofold approach: an additive screening campaign to probe functional group tolerance and a feature-driven substrate scope to study the effect of the local steric and electronic profile of each coupling partner on reactivity. Furthermore, the diversity of this feature-driven substrate scope enabled the generation of predictive reactivity models that guided mechanistic understanding. Mechanistic studies demonstrated that the branched selectivity arises from a TiIII-induced radical ring-opening of the aziridine.
Collapse
Affiliation(s)
- Wendy L Williams
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neyci E Gutiérrez-Valencia
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Sterle M, Huš M, Lozinšek M, Zega A, Cotman AE. Hydrogen-Bonding Ability of Noyori-Ikariya Catalysts Enables Stereoselective Access to CF 3-Substituted syn-1,2-Diols via Dynamic Kinetic Resolution. ACS Catal 2023; 13:6242-6248. [PMID: 37180962 PMCID: PMC10167654 DOI: 10.1021/acscatal.3c00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Stereopure CF3-substituted syn-1,2-diols were prepared via the reductive dynamic kinetic resolution of the corresponding racemic α-hydroxyketones in HCO2H/Et3N. (Het)aryl, benzyl, vinyl, and alkyl ketones are tolerated, delivering products with ≥95% ee and ≥87:13 syn/anti. This methodology offers rapid access to stereopure bioactive molecules. Furthermore, DFT calculations for three types of Noyori-Ikariya ruthenium catalysts were performed to show their general ability of directing stereoselectivity via the hydrogen bond acceptor SO2 region and CH/π interactions.
Collapse
Affiliation(s)
- Maša Sterle
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matej Huš
- National
Institute of Chemistry, Department of Catalysis
and Chemical Reaction Engineering, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
- Association
for Technical Culture of Slovenia, Zaloška cesta 65, SI-1000 Ljubljana, Slovenia
- Institute
for the Protection of Cultural Heritage of Slovenia, Poljanska 40, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Andrej Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Maloney MP, Coley CW, Genheden S, Carson N, Helquist P, Norrby PO, Wiest O. Negative Data in Data Sets for Machine Learning Training. Org Lett 2023; 25:2945-2947. [PMID: 37126483 DOI: 10.1021/acs.orglett.3c01282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Michael P Maloney
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Connor W Coley
- Department of Chemical Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel Genheden
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Nessa Carson
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Per-Ola Norrby
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Maloney MP, Coley CW, Genheden S, Carson N, Helquist P, Norrby PO, Wiest O. Negative Data in Data Sets for Machine Learning Training. J Org Chem 2023; 88:5239-5241. [PMID: 37126471 DOI: 10.1021/acs.joc.3c00844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Michael P Maloney
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Connor W Coley
- Department of Chemical Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel Genheden
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Nessa Carson
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Per-Ola Norrby
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Yang Z, Zalessky I, Epton RG, Whitwood AC, Lynam JM, Unsworth WP. Ring Expansion Strategies for the Synthesis of Medium Sized Ring and Macrocyclic Sulfonamides. Angew Chem Int Ed Engl 2023; 62:e202217178. [PMID: 36716014 DOI: 10.1002/anie.202217178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Two new ring expansion strategies are reported for the synthesis of medium sized ring and macrocyclic sulfonamides. Both methods can be performed without using classical protecting groups, with the key ring expansion step initiated by nitro reduction and amine conjugate addition respectively. Each method can be used to make diversely functionalised cyclic sulfonamides in good to excellent yields, in a range of ring sizes. The ring size dependency of the synthetic reactions is in good agreement with the outcomes modelled by Density Functional Theory calculations.
Collapse
Affiliation(s)
- Zhongzhen Yang
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Illya Zalessky
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Ryan G Epton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Jason M Lynam
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
16
|
Sreenivasulu G, Raju CE, Palaci MS, Sridhar B, Karunakar GV. Synthesis of Isoquinoline-Derived Diene Esters and Quinolin-2(1 H)-ylidene-Substituted 1,5-Diones from Enynones and (Iso) Quinoline N-Oxides. Org Lett 2023; 25:115-119. [PMID: 36583558 DOI: 10.1021/acs.orglett.2c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient synthetic method was developed to access isoquinoline-derived diene esters from enynones and isoquinoline-N-oxides in an atom-economic manner. The isoquinoline-substituted diene esters were obtained in moderate to excellent yields via [3 + 2]-cycloaddition and isoxazole ring opening followed by a [1,5]-sigmatropic rearrangement reaction, which resulted in one C-C and two C-O bond formations. Further, quinolin-2(1H)-ylidene-substituted 1,5-diones were achieved by reaction of enynones with quinoline-N-oxides in very good to high yields.
Collapse
Affiliation(s)
- Gottam Sreenivasulu
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Chittala Emmaniel Raju
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Manda Shareni Palaci
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Galla V Karunakar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
17
|
Felten S, He CQ, Weisel M, Shevlin M, Emmert MH. Accessing Diverse Azole Carboxylic Acid Building Blocks via Mild C–H Carboxylation: Parallel, One-Pot Amide Couplings and Machine-Learning-Guided Substrate Scope Design. J Am Chem Soc 2022; 144:23115-23126. [DOI: 10.1021/jacs.2c10557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephanie Felten
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Cyndi Qixin He
- Computational and Structural Chemistry, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mark Weisel
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Michael Shevlin
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Marion H. Emmert
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|