1
|
Zhan Q, Liu F, Sun B, Tang W, Cheng MJ, Jiang RW, Zhang QW, Wu ZL, Ye WC, Wang L. Xanthochrysanthones A-C, Novel Lobster-Shape Cinnamoyltriketone Dimers with Antiviral Activities from Xanthostemon chrysanthus. Chemistry 2025:e202500819. [PMID: 40275765 DOI: 10.1002/chem.202500819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Three pairs of enantiomeric cinnamoyltriketone dimers, (+)- and (-)-xanthochrysanthones A-C [(+)- and (-)-1-3)], were recognized and obtained from Xanthostemon chrysanthus by employing the building blocks-based molecular network (BBMN) strategy. Compounds 1-3 featured two new types of lobster-shape carbon skeletons with unprecedented spiro[cyclohexane-1,2'-xanthene] or benzo[7,8]oxocino[4,5-b]chromene tetracyclic ring systems. Their structures with absolute configurations were established by comprehensive spectroscopic analyses, X-ray crystallography, and ECD calculations. Compounds 1-3 represent the first example of phloroglucinol derivatives that are biogenetically constructed by a De Mayo reaction followed by Michael addition. Additionally, compounds 1-3 exhibited significant antiviral activity against respiratory syncytial virus (RSV). Time-of-addition assays indicated that compound 3 specifically acts on the early stages of the virus replication process in RSV.
Collapse
Affiliation(s)
- Qiong Zhan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Fen Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Biao Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Min-Jing Cheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Ren-Wang Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, 999078, P.R. China
| | - Zhen-Long Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Lei Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P.R. China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| |
Collapse
|
2
|
Kim J, Won Choi J, Jeong Kim H, Kim B, Kim Y, Hwejin Lee E, Kim R, Kim J, Park J, Jeong Y, Park JH, Duk Park K. Phloroglucinol Derivatives Exert Anti-Inflammatory Effects and Attenuate Cognitive Impairment in LPS-Induced Mouse Model. ChemMedChem 2024; 19:e202400056. [PMID: 38757206 DOI: 10.1002/cmdc.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Neuroinflammation is an inflammatory immune response that arises in the central nervous system. It is one of the primary causes of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Phloroglucinol (PG) is a natural product contained in extracts of plant, algae and microbe and has been reported to have antioxidant and anti-inflammatory properties. In this study, we synthesized PG derivatives to enhance antioxidant and anti-inflammatory activity. Among PG derivatives, 6 a suppressed pro-oxidative and inflammatory molecule nitric oxide (NO) production more effectively than PG. Moreover, 6 a dose-dependently reduced the expression of proinflammatory cytokines such as IL-6, IL-1β, TNF-α, and NO producing enzyme iNOS in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Additionally, we confirmed that 6 a alleviated cognitive impairment and glial activation in mouse model of LPS-induced neuroinflammation. These findings suggest that novel PG derivative, 6 a, is a potential treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jushin Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Ji Won Choi
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
| | - Byungeun Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Yoowon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Elijah Hwejin Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Rium Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Jaehwan Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Jiwoo Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Yeeun Jeong
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Jong-Hyun Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 02792, Seoul, Republic of Korea
| |
Collapse
|
3
|
Park S, Lim YJ, Kim HS, Shin HJ, Kim JS, Lee JN, Lee JH, Bae S. Phloroglucinol Enhances Anagen Signaling and Alleviates H 2O 2-Induced Oxidative Stress in Human Dermal Papilla Cells. J Microbiol Biotechnol 2024; 34:812-827. [PMID: 38480001 DOI: 10.4014/jmb.2311.11047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 05/16/2024]
Abstract
Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of β-Catenin. Since several anagen-inductive genes are regulated by β-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated β-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3β/β-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated β-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Jae Shin
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji-Seon Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Nam Lee
- Department of Cosmetology, Graduate School of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Daus M, Hayton JB, Holland DC, Voravuthikunchai SP, Carroll AR, Chakthong S. Camaldulensals A-C, the First Meroterpenoids Possessing Two Spatially Separated Formyl Phloroglucinols Conjugated to a Terpene Core from the Leaves of Eucalyptus camaldulensis Dehnh. JOURNAL OF NATURAL PRODUCTS 2023; 86:1994-2005. [PMID: 37578330 DOI: 10.1021/acs.jnatprod.3c00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Three new bis-formyl phloroglucinol-meroterpenoids (1-3), three new euglobal type formyl phloroglucinol-meroterpenoids (4-6), and one new dimeric formyl phloroglucinol (7) were isolated from the leaves of Eucalyptus camaldulensis. Camaldulensal A (1) is the first bis-isovaleryl-formyl-phloroglucinol-sesquiterpenoid. It features a novel 6/6/10/3/6/6 fused ring system and contains six stereogenic centers. Camaldulensals B (2) and C (3) are the first bis-isovaleryl-formyl-phloroglucinols, each conjugated to a monoterpene. Formyl phloroglucinol compounds (FPCs) containing two spatially separated formyl phloroglucinols conjugated to a terpene core such as 1-3 have not been reported previously. The structures of these compounds were elucidated by spectroscopic methods and computational analysis. Camaldulensals B (2) and C (3) exhibited significant antibacterial activity against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Structure activity relationships are discussed in relation to previously reported antibacterial activities of other molecules from the FPC structure class.
Collapse
Affiliation(s)
- Mareena Daus
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Joshua B Hayton
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Darren C Holland
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Supayang P Voravuthikunchai
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Suda Chakthong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
5
|
Wei M, Huang L, Li Q, Qiao X, Zhao Z, Yin J, Fu A, Guo J, Hao X, Gu L, Wang J, Chen C, Zhu H, Zhang Y. Spectasterols, Aromatic Ergosterols with 6/6/6/5/5, 6/6/6/6, and 6/6/6/5 Ring Systems from Aspergillus spectabilis. JOURNAL OF NATURAL PRODUCTS 2023; 86:1385-1391. [PMID: 37294628 DOI: 10.1021/acs.jnatprod.2c01034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spectasterols A-E (1-5), aromatic ergosterols with unique ring systems, were isolated from Aspergillus spectabilis. Compounds 1 and 2 possess a 6/6/6/5/5 ring system with an additional cyclopentene, while 3 and 4 have an uncommon 6/6/6/6 ring system generated by the D-ring expansion via 1,2-alkyl shifts. Compound 3 exhibited cytotoxic activity (IC50 6.9 μM) and induced cell cycle arrest and apoptosis in HL60 cells. Compound 3 was anti-inflammatory; it decreased COX-2 levels at the transcription and protein levels and inhibited the nuclear translocation of NF-κB p65.
Collapse
Affiliation(s)
- Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Liping Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xinyi Qiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ziming Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Aimin Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jieru Guo
- Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xincai Hao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Engineering Technology Center for Comprehensive Utilization of Medicinal Plants, College of Pharmacy Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
6
|
Zeng H, Cheng M, Liu J, Hu C, Lin S, Cui R, Li H, Ye W, Wang L, Huang W. Pyrimirhodomyrtone inhibits Staphylococcus aureus by affecting the activity of NagA. Biochem Pharmacol 2023; 210:115455. [PMID: 36780990 DOI: 10.1016/j.bcp.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The epidemic of methicillin-resistant Staphylococcus aureus (MRSA) infections has created a critical health threat. The drug resistance of MRSA makes the development of drugs with new modes of action particularly urgent. In this study, we found that a natural product derivative pyrimirhodomyrtone (PRM) exerted antibacterial activity against S. aureus, including MRSA, both in vitro and in vivo. Genetic and biochemical studies revealed the interaction between PRM and N-acetylglucosamine-6-phosphate deacetylase (NagA) and the inhibitory effect of PRM on its deacetylation activity. We also found that PRM causes depolarization and destroys the integrity of the cell membrane. The elucidation of the antibacterial mechanism will inspire the subsequent development of new anti-MRSA drugs based on PRM.
Collapse
Affiliation(s)
- Huan Zeng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China; Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Minjing Cheng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China
| | - Jingyi Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Chunxia Hu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shilin Lin
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China
| | - Ruiqin Cui
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Haibo Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Wencai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China.
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, China.
| | - Wei Huang
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Department of Clinical Microbiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
7
|
Guzzo F, Buommino E, Landrum L, Russo R, Lembo F, Fiorentino A, D’Abrosca B. Phytochemical Investigation of Myrcianthes cisplatensis: Structural Characterization of New p-Coumaroyl Alkylphloroglucinols and Antimicrobial Evaluation against Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:1046. [PMID: 36903907 PMCID: PMC10005737 DOI: 10.3390/plants12051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Species of Myrtaceae Juss., the ninth largest family of flowering plants, are a valuable source of bioactive specialized metabolites. A leading position belongs to phloroglucinol derivatives, thanks to their unusual structural features and biological and pharmacological properties. Myrcianthes cisplatensis (Cambess.) O. Berg, a common tree on the banks of rivers and streams of Uruguay, southern Brazil, and northern Argentina, with aromatic leaves, is known as a diuretic, febrifuge, tonic, and good remedy for lung and bronchial diseases. Despite knowledge about traditional use, few data on its phytochemical properties have been reported in the literature. The methanol extract of M. cisplatensis, grown in Arizona, USA, was first partitioned between dichloromethane and water and then with ethyl acetate. The enriched fractions were evaluated using a broth microdilution assay against Staphylococcus aureus ATCC 29213 and 43300 (methicillin-resistant S. aureus (MRSA)). The potential antimicrobial activity seemed to increase in the dichloromethane extract, with a MIC value of 16 µg/mL against both strains. Following a bio-guided approach, chromatographic techniques allowed for isolating three coumarin derivatives, namely endoperoxide G3, catechin, and quercitrin, and four new p-coumaroyl alkylphloroglucinol glucosides, named p-coumaroylmyrciacommulone A-D. Their structures were characterized through spectroscopic techniques: 2D-NMR experiments (HSQC, HMBC, and HSQC-TOCSY) and spectrometric analyses (HR-MS). The antimicrobial assessment of pure compounds against S. aureus ATCC 29213 and ATCC 43300 demonstrated the best activity for p-coumaroylmyrciacommulone C and D with the growth inhibition of 50% at 32 µg/mL against both strains of S. aureus.
Collapse
Affiliation(s)
- Francesca Guzzo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Elisabetta Buommino
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Leslie Landrum
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4108, USA
| | - Rosita Russo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Brigida D’Abrosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
8
|
Gu JH, Liu JS, Lin JH, Liu F, Wu ZL, Zheng YR, Ye WC, Wang L. Five New Phenylpropanoyl Phloroglucinol Derivatives from Leptospermum scoparium. Chem Biodivers 2023; 20:e202201111. [PMID: 36546830 DOI: 10.1002/cbdv.202201111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Leptosperols C-G (1-5), five new phenylpropanoyl phloroglucinol derivatives were isolated from the leaves of Leptospermum scoparium. Compounds 1-3 are phenylpropanoyl phloroglucinol-sesquiterpene adducts with new carbon skeletons. Their structures with absolute configurations were elucidated by detailed spectroscopic analyses, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculation. Compounds 2 and 3 exhibited moderate anti-inflammatory activity in zebrafish acute inflammatory models.
Collapse
Affiliation(s)
- Ji-Hong Gu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Jun-Shan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jia-Hui Lin
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Fen Liu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhen-Long Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yuan-Ru Zheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
9
|
Guzzo F, Durán AG, Sanna C, Marasco R, Molfetta N, Buommino E, Fiorentino A, D’Abrosca B. Gallomyrtucommulones G and H, New Phloroglucinol Glycosides, from Bioactive Fractions of Myrtus communis against Staphylococcus Species. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207109. [PMID: 36296701 PMCID: PMC9612225 DOI: 10.3390/molecules27207109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Myrtaceae family is a continuous source of antimicrobial agents. In the search for novel antimicrobial agents against Staphylococcus species, bioactive fractions of Myrtus communis L., growing in the Sardinia island (Italy) have been investigated. Their phytochemical analysis led us to isolate and characterize four alkylphloroglucinol glycosides (1–4), three of them gallomyrtucommulones G–H (1,2), and myrtucommulonoside (4) isolated and characterized for the first time. The structures of the new and known compounds, endopreroxide G3 (5), myricetin-3-O-glycosides (6,7) were determined based on the spectroscopic evidence including 1D-/2D-NMR and HR-MS spectrometry. Enriched fractions as well as pure compounds were tested for their antimicrobial activity by broth micro-dilution assay against Staphylococcus epidermidis and S. aureus. Results reported herein demonstrated that gallomyrtucommulone G (1) showed a selective antimicrobial activity against both S. aureus strains (ATCC 29213 and 43300) until 16 μg/mL while gallomyrtucommulone D (3) showed the best growth inhibition value at 64 μg/mL.
Collapse
Affiliation(s)
- Francesca Guzzo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alexandra G. Durán
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, Campus de Excelencia Internacional (ceiA3), C/ República Saharaui n° 7, 11510 Puerto Real, Spain
| | - Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Rosangela Marasco
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Nicola Molfetta
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Elisabetta Buommino
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via Domenico Montesano 49, 80131 Napoli, Italy
- Correspondence: (E.B.); (B.D.)
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Brigida D’Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche–DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
- Correspondence: (E.B.); (B.D.)
| |
Collapse
|
10
|
Zhan Q, Wu YY, Liu F, Li NP, Zhou X, Wang CQ, Wu Y, Zhao W, Ye WC, Wang L. (+)- and (-)-Xanthostones A-D: Four Pairs of Enantiomeric Cinnamoyl-β-Triketone Derivatives from Xanthostemon chrysanthus. Chem Biodivers 2022; 19:e202200356. [PMID: 35581725 DOI: 10.1002/cbdv.202200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022]
Abstract
Four pairs of cinnamoyl-β-triketone derivative enantiomers, (+)- and (-)-xanthostones A-D ((+)- and (-)-1-4), were isolated from Xanthostemon chrysanthus. Compounds 1 and 2 feature a new rearranged cinnamoyl-phloroglucinol scaffold fused with a cinnamyl-β-triketone framework. Compounds 1, 3, and 4 are the first examples of natural products with a peculiar phenethyl-pyranone acid unit. Their structures with absolute configurations were determined by spectroscopic data, X-ray diffraction analysis and electronic circular dichroism (ECD) calculation. Interestingly, these novel compounds showed a tautomeric behavior in solution, which was revealed by NMR spectroscopy and density functional theory calculation. A plausible biosynthetic pathway toward xanthostones A-D was proposed. Additionally, the anti-inflammatory and antibacterial activities of xanthostones A-D were evaluated.
Collapse
Affiliation(s)
- Qiong Zhan
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan-Yi Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Fen Liu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ni-Ping Li
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xun Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Chao-Qun Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
11
|
Dethe DH, Dherange BD, Das S, Srivastava A. Bioinspired enantioselective total syntheses of antibacterial callistrilones enabled by double S N2' cascade. Chem Commun (Camb) 2022; 58:5474-5477. [PMID: 35416218 DOI: 10.1039/d2cc01398c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bioinspired, catalytic approach to the enantioselective total syntheses of antibacterial callistrilones A, C-E and 13-epi-callistrilone E natural products containing an unprecedented, sterically compact [1]benzofuro-[2,3-a]xanthene 6/6/6/5/6/3-fused hexacyclic skeleton is described. The key features of the synthesis include a highly regio- and diastereoselective double SN2' cascade reaction, Lewis acid catalysed Michael addition and late stage diastereoselective epoxide formation from the sterically hindered β-face of the alkene as the key steps.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Balu D Dherange
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Saikat Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Aparna Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
12
|
Khan F, Tabassum N, Bamunuarachchi NI, Kim YM. Phloroglucinol and Its Derivatives: Antimicrobial Properties toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4817-4838. [PMID: 35418233 DOI: 10.1021/acs.jafc.2c00532] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phloroglucinol (PG) is a natural product isolated from plants, algae, and microorganisms. Aside from that, the number of PG derivatives has expanded due to the discovery of their potential biological roles. Aside from its diverse biological activities, PG and its derivatives have been widely utilized to treat microbial infections caused by bacteria, fungus, and viruses. The rapid emergence of antimicrobial-resistant microbial infections necessitates the chemical synthesis of numerous PG derivatives in order to meet the growing demand for drugs. This review focuses on the use of PG and its derivatives to control microbial infection and the underlying mechanism of action. Furthermore, as future perspectives, some of the various alternative strategies, such as the use of PG and its derivatives in conjugation, nanoformulation, antibiotic combination, and encapsulation, have been thoroughly discussed. This review will enable the researcher to investigate the possible antibacterial properties of PG and its derivatives, either free or in the form of various formulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
13
|
El Gaafary M, Saber FR, Mahrous EA, Ashour RM, Okba MM, Jin L, Lang SJ, Schmiech M, Simmet T, Syrovets T. The phloroglucinol calcitrinone A, a novel mitochondria-targeting agent, induces cell death in breast cancer cells. Food Chem Toxicol 2022; 162:112896. [PMID: 35227860 DOI: 10.1016/j.fct.2022.112896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer-related mortality among females worldwide. From the leaves of Callistemon citrinus, we have isolated a novel phloroglucinol dimer, calcitrinone A, and analyzed its potential anticancer activity using the triple-negative breast cancer cell line MDA-MB-231. Calcitrinone A decreased the total intracellular ATP levels, inhibited proliferation, and induced apoptosis in MDA-MB-231 cells, but was less toxic to peripheral blood mononuclear cells. The antiproliferative and apoptosis-inducing effects of calcitrinone A were confirmed in vivo using breast cancer xenografts grown on chick chorioallantoic membranes. Mechanistic analysis showed mitochondrial membrane-potential dissipation and interference with energy-yielding processes resulting in cell accumulation in the S phase of the cell cycle. Seahorse assay analysis revealed an early inhibition of mitochondrial oxidative phosphorylation (OXPHOS). At the molecular level, calcitrinone A inhibited activity of the succinate-coenzyme Q reductase (SQR) (mitochondrial complex II). In silico docking identified the coenzyme Q binding pocket as a possible high affinity binding site for calcitrinone A in SQR. Inhibition of complex II was accompanied by strong elevation of mitochondrial superoxide and cytoplasmic ROS. Calcitrinone A might be a promising anticancer lead compound acting through the interference with the mitochondrial complex II activity.
Collapse
Affiliation(s)
- Menna El Gaafary
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt; Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany
| | - Fatema R Saber
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Engy A Mahrous
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rehab M Ashour
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Lu Jin
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany
| | - Sophia J Lang
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany
| | - Michael Schmiech
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany.
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
14
|
Chen M, Cao JQ, Ang S, Zeng TN, Li NP, Yang TJ, Liu JS, Wu Y, Ye WC, Wang L. Eugenunilones A–H: rearranged sesquiterpenoids from Eugenia uniflora. Org Chem Front 2022. [DOI: 10.1039/d1qo01629f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Six rearranged sesquiterpenoids (1–6) with four types of new polycyclic caged skeletons were isolated from Eugenia uniflora.
Collapse
Affiliation(s)
- Mu Chen
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jia-Qing Cao
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Song Ang
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ting-Ni Zeng
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ni-Ping Li
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Tang-Jia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yan Wu
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wen-Cai Ye
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Lei Wang
- Centre for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
15
|
Zhou T, Zheng A, Huo L, Li C, Tan H, Wang S, Chen H. Total syntheses of ericifolione and its analogues via a biomimetic inverse-electron-demand Diels-Alder reaction. Chem Commun (Camb) 2021; 58:270-273. [PMID: 34878459 DOI: 10.1039/d1cc06361h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Driven by bioinspiration and appreciation of the structure of ericifolione, a biomimetic tautomerization/intermolecular inverse-electron-demand hetero Diels-Alder reaction cascade sequence promoted by sodium acetate to rapidly construct sterically hindered dihydropyran scaffolds was established, which allowed the first straightforward biomimetic total syntheses of ericifolione and its analogues with high simplicity. Moreover, this methodology set the stage for the preparation of relevant natural products or derivatives.
Collapse
Affiliation(s)
- Tingting Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Anquan Zheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Luqiong Huo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Changgeng Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China.
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Sasa Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Centre for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
| | - Huiyu Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| |
Collapse
|
16
|
Deng LM, Hu LJ, Bai YTZ, Wang J, Qin GQ, Song QY, Su JC, Huang XJ, Jiang RW, Tang W, Li YL, Li CC, Ye WC, Wang Y. Rhodomentosones A and B: Two Pairs of Enantiomeric Phloroglucinol Trimers from Rhodomyrtus tomentosa and Their Asymmetric Biomimetic Synthesis. Org Lett 2021; 23:4499-4504. [PMID: 34032453 DOI: 10.1021/acs.orglett.1c01616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhodomentosones A and B (1 and 2), two pairs of novel enantiomeric phloroglucinol trimers featuring a unique 6/5/5/6/5/5/6-fused ring system were isolated from Rhodomyrtus tomentosa. Their structures with absolute configurations were elucidated by NMR spectroscopy, X-ray crystallography, and ECD calculation. The bioinspired syntheses of 1 and 2 were achieved in six steps featuring an organocatalytic asymmetric dehydroxylation/Michael addition/Kornblum-DeLaMare rearrangement/ketalization cascade reaction. Compounds 1 and 2 exhibited promising antiviral activities against respiratory syncytial virus (RSV).
Collapse
Affiliation(s)
- Lu-Ming Deng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Li-Jun Hu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yang-Ting-Zhi Bai
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jie Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guan-Qiu Qin
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Qiao-Yun Song
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jun-Cheng Su
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Tang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yao-Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chuang-Chuang Li
- Department of Chemistry, Southern University of Science & Technology, Shenzhen 518055, People's Republic of China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
17
|
Xia K, Gu JH, Fu XX, Li NP, Chen M, Huang Q, Wang WJ, Ye WC, Wang L. Dimeric Acylphloroglucinol Derivatives with New Skeletons from Leptospermum scoparium. Chem Biodivers 2021; 18:e2100252. [PMID: 33988294 DOI: 10.1002/cbdv.202100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022]
Abstract
Leptosparones A-F (1-6), six new dimeric acylphloroglucinol derivatives with unprecedented skeletons, were isolated from Leptospermum scoparium. Compounds 1-3 and 5-6 are phenylpropanoyl-phloroglucinol dimers, while 4 is a phenylpropanoylphloroglucinol-isovalerylphloroglucinol hybrid. Structurally, these compounds represent the first examples of dimeric phloroglucinols with unprecedented C(7')-C(8) linkage between the phloroglucinol core and the acyl side chain. Their structures were elucidated by comprehensive analyses of spectroscopic data, single crystal X-ray diffraction and chemical calculations. In addition, all compounds showed inhibitory effects against α-glucosidase with IC50 values ranging from 39.5 to 186.8 μM.
Collapse
Affiliation(s)
- Kai Xia
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Ji-Hong Gu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Xiao-Xue Fu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Ni-Ping Li
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Mu Chen
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Qian Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Jing Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
18
|
|
19
|
Chen M, Cao JQ, Wang WJ, Li NP, Wu Y, Wang L, Ye WC. Four New Phloroglucinol-Terpene Adducts from the Leaves of Myrciaria cauliflora. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:111-118. [PMID: 33280060 PMCID: PMC7933295 DOI: 10.1007/s13659-020-00288-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/13/2020] [Indexed: 05/07/2023]
Abstract
Myrcauones A-D (1-4), four new phloroglucinol-terpene adducts were isolated from the leaves of Myrciaria cauliflora. Their structures with absolute configurations were elucidated by combination of spectroscopic analysis, single crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compound 1 was a rearranged isobutylphloroglucinol-pinene adduct featuring an unusual 2,3,4,4a,10,11-hexahydro-1H-3,11a-methanodibenzo[b,f]oxepin backbone. Compound 4 showed moderate antibacterial activity against Gram-positive bacteria including multiresistant strains.
Collapse
Affiliation(s)
- Ming Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jia-Qing Cao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Wen-Jing Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Ni-Ping Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yan Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
20
|
Gao YQ, Hou Y, Chen J, Zhen Y, Xu D, Zhang H, Wei H, Xie W. Asymmetric synthesis of 9-alkyl tetrahydroxanthenones via tandem asymmetric Michael/cyclization promoted by chiral phosphoric acid. Org Biomol Chem 2021; 19:348-354. [PMID: 33300926 DOI: 10.1039/d0ob02140g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tandem asymmetric Michael-addition/cyclization of cyclic 1,3-dicarbonyl compounds to β,γ-unsaturated α-ketoesters catalyzed by chiral phosphoric acid is presented. This protocol provides a facile approach for the construction of enantioenriched 9-alkyl tetrahydroxanthenones, an ubiquitous framework found in a number of natural products and pharmaceutical molecules, in high yields with good to high enantioselectivities.
Collapse
Affiliation(s)
- Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Junhan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yanxia Zhen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Dongyang Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongli Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongbo Wei
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China. and Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Gu JH, Zhang W, Cai WY, Fu XX, Zhou HL, Li NP, Tian HY, Liu JS, Ye WC, Wang L. Gelserancines A–E, monoterpenoid indole alkaloids with unusual skeletons from Gelsemium elegans. Org Chem Front 2021. [DOI: 10.1039/d0qo01559h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five monoterpenoid indole alkaloids (MIAs) with unusual skeletons, gelserancines A–E (1–5), were isolated from the roots of Gelsemium elegans.
Collapse
|
22
|
Fernandes RA, Kumar P, Choudhary P. Evolution of Strategies in Protecting‐Group‐Free Synthesis of Natural Products: A Recent Update. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| | - Praveen Kumar
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| | - Priyanka Choudhary
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| |
Collapse
|
23
|
Wu Y, Liu JW, Liu C, Huang XJ, Li NP, Ye WC, Wang L. Antibacterial Triketone-Phloroglucinol-Triketone Adducts from Myrtus communis. Chem Biodivers 2020; 17:e2000708. [PMID: 32935916 DOI: 10.1002/cbdv.202000708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 11/07/2022]
Abstract
Myrtucyclitones A-C ((+)- and (-)-1-3), three pairs of new triketone-phloroglucinol-triketone hybrids were isolated from the plant Myrtus communis. Their structures with absolute configurations were established by NMR analysis and chemical calculations. Myrtucyclitones B and C exhibited remarkable antibacterial effect.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Jiao-Wen Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Chao Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Ni-Ping Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
24
|
Tawila AM, Sun S, Kim MJ, Omar AM, Dibwe DF, Ueda JY, Toyooka N, Awale S. Chemical constituents of Callistemon citrinus from Egypt and their antiausterity activity against PANC-1 human pancreatic cancer cell line. Bioorg Med Chem Lett 2020; 30:127352. [PMID: 32631550 DOI: 10.1016/j.bmcl.2020.127352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 01/03/2023]
Abstract
Human pancreatic cancer is resistant to almost all conventional chemotherapeutic agents. It is known to proliferate aggressively within hypovascular tumor microenvironment by exhibiting remarkable tolerance to nutrition starvation, a phenomenon termed as "austerity". Search for the new agents that eliminate the tolerance of cancer cells to nutrition starvation is a promising strategy in anticancer drug discovery. In this study, two new meroterpenoids named callistrilones O and P (1 and 2) together with eight known triterpenes (3-10) were isolated from the active dichloromethane extract of Callistemon citrinus leaves. The structure elucidation of the new compounds was achieved by HRFABMS, 1D, 2D NMR, and ECD quantum calculations. All isolated compounds were tested for their preferential cytotoxicity against PANC-1 human pancreatic cancer cells. Among these, callistrilone O (1) exhibited the most potent preferential cytotoxicity with a PC50 value of 0.3 nM, the strongest activity with over 2000 times potent than the positive control arctigenin. Callistrilone O (1) induced dramatic alterations in PANC-1 cell morphology leading to cell death under nutrient-deprived conditions. Compound 1 also inhibited PANC-1 cell migration and -PANC-1 colony formation under the nutrient-rich condition.
Collapse
Affiliation(s)
- Ahmed M Tawila
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sijia Sun
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Min Jo Kim
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ashraf M Omar
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Dya Fita Dibwe
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Jun-Ya Ueda
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, Department of Bio-functional Molecular Engineering, University of Toyama, Toyama 930-8555, Japan; Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
25
|
Wu Y, Chen M, Wang WJ, Li NP, Ye WC, Wang L. Phloroglucinol Derivatives from Myrtus communis 'Variegata' and Their Antibacterial Activities. Chem Biodivers 2020; 17:e2000292. [PMID: 32539173 DOI: 10.1002/cbdv.202000292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 11/11/2022]
Abstract
Myrtucomvalones D-F, three new triketone-phloroglucinol-triketone adducts, and three known ones (myrtucommulone E, myrtucommulone D and callistenone D) were obtained from Myrtus communis 'Variegata'. Myrtucomvalone D is a pair of enantiomers which was further resolved into (+)-myrtucomvalone D and (-)-myrtucomvalone D by chiral HPLC. Their structures and complete stereochemistry were established from interpretation of NMR and crystallographic data and chemical calculations. Myrtucomvalone F, myrtucommulone D and callistenone D showed significant antibacterial activities.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Ming Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Jing Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Ni-Ping Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
26
|
Luo SL, Hu LJ, Huang XJ, Su JC, Shao XH, Wang L, Xu HH, Li CC, Wang Y, Ye WC. Discovery and Biomimetic Synthesis of a Phloroglucinol-Terpene Adduct Collection from Baeckea frutescens and Its Biogenetic Origin Insight. Chemistry 2020; 26:11104-11108. [PMID: 32315480 DOI: 10.1002/chem.202001111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 01/20/2023]
Abstract
A phloroglucinol-terpene adduct (PTA) collection consisting of twenty-four molecules featuring three skeletons was discovered from Baeckea frutescens. Inspired by its biosynthetic hypothesis, we synthesized this PTA collection by reductive activation of stable phloroglucinol precursors into highly reactive ortho-quinone methide (o-QM) intermediates and subsequently Diels-Alder cycloaddition. We also demonstrated, for the first time, the generation process of the active o-QM by performing dynamic NMR and HPLC-MS monitoring experiments. Moreover, the PTA collection showed significant antifeedant effect toward the Plutella xylostella larvae.
Collapse
Affiliation(s)
- Shi-Lin Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Li-Jun Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Jun-Cheng Su
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Xue-Hua Shao
- Institute of Fruit Tree Research, Guangdong Academy of, Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Han-Hong Xu
- State Key Laboratory for Conservation and Utilization of, Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Chuang-Chuang Li
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, P. R. China
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
27
|
Tawila AM, Sun S, Kim MJ, Omar AM, Dibwe DF, Ueda JY, Toyooka N, Awale S. Highly Potent Antiausterity Agents from Callistemon citrinus and Their Mechanism of Action against the PANC-1 Human Pancreatic Cancer Cell Line. JOURNAL OF NATURAL PRODUCTS 2020; 83:2221-2232. [PMID: 32573227 DOI: 10.1021/acs.jnatprod.0c00330] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Human pancreatic cancer cells display remarkable tolerance to nutrition starvation that help them to survive in a hypovascular tumor microenvironment, a phenomenon known as "austerity". The elucidation of agents countering this tolerance is an established antiausterity strategy in anticancer drug discovery. In this study, a Callistemon citrinus leaf extract inhibited the viability of PANC-1 human pancreatic cancer cells preferentially under nutrient-deprived medium (NDM) with a PC50 value of 7.4 μg/mL. Workup of this extract resulted in the isolation of three new meroterpenoids, callistrilones L-N (1-3), together with 14 known compounds (4-17). The structure elucidation of the new compounds was achieved by HRFABMS and by NMR and ECD spectroscopic analysis. The new compounds showed highly potent preferential cytotoxicity against PANC-1 cells with PC50 values ranging from 10 to 65 nM in NDM. Of these, callistrilone L (1) inhibited PANC-1 cell migration and colony formation in a normal nutrient-rich condition. Callistrilone L (1) also strongly suppressed the migration of PANC-1 cells in real time. Mechanistically, 1 was found to inhibit the Akt/mTOR and autophagy activation pathway. Callistrilone L (1) and related meroterpenoids are promising leads for anticancer drug development based on the antiausterity strategy used in this work.
Collapse
Affiliation(s)
- Ahmed M Tawila
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Sijia Sun
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Min Jo Kim
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ashraf M Omar
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Dya Fita Dibwe
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jun-Ya Ueda
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima, 737-0112, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, Department of Bio-functional Molecular Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
28
|
Gu JH, Wang WJ, Chen JZ, Liu JS, Li NP, Cheng MJ, Hu LJ, Li CC, Ye WC, Wang L. Leptosperols A and B, Two Cinnamoylphloroglucinol-Sesquiterpenoid Hybrids from Leptospermum scoparium: Structural Elucidation and Biomimetic Synthesis. Org Lett 2020; 22:1796-1800. [PMID: 32091219 DOI: 10.1021/acs.orglett.0c00109] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Leptosperols A and B (1 and 2), two cinnamoylphloroglucinol-sesquiterpenoid hybrids featuring unprecedented 1-benzyl-2-(2-phenylethyl) cyclodecane and 2-benzyl-3-phenylethyl decahydronaphthalene backbones, along with their biosynthetic precursor (3), were isolated from Leptospermum scoparium. Compounds 1 and 2 represent the first example of phloroglucinol derivatives biogenetically constructed by a De Mayo reaction. The biomimetic synthesis of leptosperol B (2) was achieved using the proposed biosynthetic pathway. In addition, compounds 1 and 2 showed significant anti-inflammatory effects in zebrafish acute inflammatory models.
Collapse
Affiliation(s)
- Ji-Hong Gu
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wen-Jing Wang
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun-Zi Chen
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun-Shan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ni-Ping Li
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Min-Jing Cheng
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.,Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Li-Jun Hu
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Chuang-Chuang Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
29
|
Ye YS, Wu M, Jiang NN, Lao YZ, Fu WW, Liu X, Yang XW, Zhang J, Xu HX, Xu G. Dearomatized Isoprenylated Acylphloroglucinol Derivatives with Potential Antitumor Activities from Hypericum henryi. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:1-11. [PMID: 32016770 PMCID: PMC7046846 DOI: 10.1007/s13659-019-00229-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 05/05/2023]
Abstract
A series of dearomatized isoprenylated acylphloroglucinols derivatives, hyperhenols A-E (1-5), as well as seven known analogues (6-12), were characterized from Hypericum henryi. Their structures were determined by combination of NMR, ECD spectroscopy, and X-ray diffraction analysis. Compounds 1 and 6-8 were tested to exhibit potential antitumor properties, of which 6 and 7 inhibited cell growth through inducing apoptosis and cell cycle arrest. In addition, these compounds could induce autophagy and PINK1/Parkin-mediated mitophagy in cancer cell lines, as well as suppress lung cancer A549 cells metastasis in vitro.
Collapse
Affiliation(s)
- Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Na-Na Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Zhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xia Liu
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Juan Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
30
|
Zhang X, Wu G, Huo L, Guo X, Qiu S, Liu H, Tan H, Hu Y. The First Racemic Total Syntheses of the Antiplasmodials Watsonianones A and B and Corymbone B. JOURNAL OF NATURAL PRODUCTS 2020; 83:3-7. [PMID: 31721580 DOI: 10.1021/acs.jnatprod.8b01077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first biomimetic total syntheses of three biologically meaningful acylphloroglucinols, watsonianones A and B and corymbone B, with potent antiplasmodial activity, were performed. Their total syntheses were carried out through a diversity-oriented synthetic strategy from congener 2,2,4,4-tetramethyl-6-(3-methylbutylidene)cyclohexane-1,3,5-trione with high step efficiency. The spontaneous enolization/air oxidation of the precursor 2,2,4,4-tetramethyl-6-(3-methylbutylidene)cyclohexane-1,3,5-trione through a singlet O2-induced Diels-Alder reaction pathway to assemble the key biosynthetic peroxide intermediate is also discussed.
Collapse
Affiliation(s)
- Xiao Zhang
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510405 , People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Guiyun Wu
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510405 , People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Luqiong Huo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Xueying Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , People's Republic of China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Yingjie Hu
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510405 , People's Republic of China
| |
Collapse
|
31
|
Liu F, Wu Y, Li NP, Liu JW, Wang L, Ye WC. Chiral Isolation and Absolute Configuration of (+)- and (-)-Xanchryones F and G from Xanthostemon chrysanthus. Chem Biodivers 2019; 17:e1900683. [PMID: 31797569 DOI: 10.1002/cbdv.201900683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 01/24/2023]
Abstract
(+)- and (-)-Xanchryones F and G ((+)- and (-)-1 and 2) were isolated from the plant Xanthostemon chrysanthus by chiral separation. Compounds 1 and 2 featured a new carbon skeleton with cinnamoyltriketone-flavone adducts. Their structures with absolute configurations were elucidated by detailed spectroscopic analyses and chemical calculations. The antibacterial and anti-inflammatory activities of (+)- and (-)-1 and 2 were evaluated.
Collapse
Affiliation(s)
- Fen Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Ni-Ping Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Jiao-Wen Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
32
|
Liu F, Tian HY, Huang XL, Wang WJ, Li NP, He J, Ye WC, Wang L. Xanthchrysones A-C: Rearranged Phenylpropanoyl-Phloroglucinol Dimers with Unusual Skeletons from Xanthostemon chrysanthus. J Org Chem 2019; 84:15355-15361. [PMID: 31697081 DOI: 10.1021/acs.joc.9b02373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three pairs of dimeric phenylpropanoyl-phloroglucinol enantiomers, (+)- and (-)-xanthchrysones A-C [(+)- and (-)-1-3], as well as their postulated biosynthetic precursors, were isolated and identified from the leaves of Xanthostemon chrysanthus. Compound 1 featured an unprecedented bis-phenylpropanoyl-benzo[b]cyclopent[e] oxepine tricyclic backbone. Compounds 2 and 3 represent the first examples of 1-(cyclopentylmethyl)-3-(3-phenylpropanoyl)benzene scaffold. The structures and absolute configurations of 1-3 were determined by spectroscopic and X-ray diffraction analysis as well as electronic circular dichroism (ECD) calculation. Both (+)-2 and (-)-2 showed moderate antibacterial activities including several multidrug-resistant strains.
Collapse
|
33
|
Dethe DH, Nirpal AK. Bio-inspired enantioselective total syntheses of (-)-viminalins A, B, H, I, and N and structural reassignment of (-)-viminalin M. Org Biomol Chem 2019; 17:7507-7516. [PMID: 31365012 DOI: 10.1039/c9ob01426h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bio-inspired enantioselective total syntheses of (-)-viminalins A, B, H, I, and N, isolated from the Myrtaceae family, were accomplished in a convergent fashion in 5, 5, 1, 1, and 3 steps, respectively. A highly regio- and diastereoselective oxidative [3 + 2] cycloaddition reaction of acylphloroglucinols with α-phellandrene, diastereoselective modified Friedel-Crafts reaction of acylphloroglucinols with piperetol, and stereoselective epoxidation of extremely hindered β-face were described as key reactions.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Appasaheb K Nirpal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
34
|
Liu HX, Tan HB, Li SN, Chen YC, Li HH, Qiu SX, Zhang WM. Two new 12-membered macrolides from the endophytic fungal strain Cladosprium colocasiae A801 of Callistemon viminalis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:696-701. [PMID: 29741104 DOI: 10.1080/10286020.2018.1471067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Two new polyketide metabolites, the 12-membered macrolides 4-hydroxy-12-methyloxacyclododecane-2,5,6-trione (1) and 12-methyloxacyclododecane-2,5,6-trione (2), were isolated from the endophytic fungal strain Cladosprium colocasiae A801 of the plant Callistemon viminalis, together with five known derivatives. Their structures were fully characterized by means of detailed spectroscopic analysis for new structures, and in comparison with published data for known compounds. The antibacterial, cytotoxic, and α-glucosidase inhibitory activities of the new compounds 1 and 2 were evaluated.
Collapse
Affiliation(s)
- Hong-Xin Liu
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Hai-Bo Tan
- b Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Sai-Ni Li
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Yu-Chan Chen
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Hao-Hua Li
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Sheng-Xiang Qiu
- b Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Wei-Min Zhang
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| |
Collapse
|
35
|
Qin XJ, Rauwolf TJ, Li PP, Liu H, McNeely J, Hua Y, Liu HY, Porco JA. Isolation and Synthesis of Novel Meroterpenoids from Rhodomyrtus tomentosa: Investigation of a Reactive Enetrione Intermediate. Angew Chem Int Ed Engl 2019; 58:4291-4296. [PMID: 30681258 PMCID: PMC6583783 DOI: 10.1002/anie.201814421] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 01/19/2023]
Abstract
Rhodomyrtusials A-C, the first examples of triketone-sesquiterpene meroterpenoids featuring a unique 6/5/5/9/4 fused pentacyclic ring system were isolated from Rhodomyrtus tomentosa, along with several biogenetically-related dihydropyran isomers. Two bis-furans and one dihydropyran isomer showed acetylcholinesterase (AChE) inhibitory activity. Structures of the isolates were unambiguously established by a combination of spectroscopic data, ECD analysis, and total synthesis. Bioinspired total syntheses of six isolates were achieved in six steps utilizing a reactive enetrione intermediate generated in situ from a readily available hydroxy-endoperoxide precursor.
Collapse
Affiliation(s)
- Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 (P. R. China)
| | - Tyler J. Rauwolf
- Department of Chemistry, Center for Molecular Discovery (BUCMD), Boston University 590 Commonwealth Avenue, Boston, MA 02215 (USA)
| | - Pan-Pan Li
- College of Forestry, Southwest Forestry University Kunming 650224 (P. R. China)
| | - Hui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 (P. R. China)
| | - James McNeely
- Department of Chemistry, Center for Molecular Discovery (BUCMD), Boston University 590 Commonwealth Avenue, Boston, MA 02215 (USA)
| | - Yan Hua
- College of Forestry, Southwest Forestry University Kunming 650224 (P. R. China)
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 (P. R. China)
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BUCMD), Boston University 590 Commonwealth Avenue, Boston, MA 02215 (USA)
| |
Collapse
|
36
|
Qin X, Rauwolf TJ, Li P, Liu H, McNeely J, Hua Y, Liu H, Porco JA. Isolation and Synthesis of Novel Meroterpenoids from
Rhodomyrtus tomentos
a: Investigation of a Reactive Enetrione Intermediate. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xu‐Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 P. R. China
| | - Tyler J. Rauwolf
- Department of Chemistry Center for Molecular Discovery (BU-CMD) Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - Pan‐Pan Li
- College of Forestry Southwest Forestry University Kunming 650224 P. R. China
| | - Hui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 P. R. China
| | - James McNeely
- Department of Chemistry Center for Molecular Discovery (BU-CMD) Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - Yan Hua
- College of Forestry Southwest Forestry University Kunming 650224 P. R. China
| | - Hai‐Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 P. R. China
| | - John A. Porco
- Department of Chemistry Center for Molecular Discovery (BU-CMD) Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| |
Collapse
|
37
|
Khan N, Rasool S, Ali Khan S, Bahadar Khan S. A new antibacterial dibenzofuran-type phloroglucinol from myrtus communis linn. Nat Prod Res 2019; 34:3199-3204. [PMID: 30689408 DOI: 10.1080/14786419.2018.1556657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Our continuation on the bio-assay guided isolation from Myrtus communis Linn. led to the discovery of a new dibezofuran type phloroglucinol 1,1'-(1,3,7,9-tetrahydroxydibenzo[b,d]furan-2,8-diyl)bis(ethan-1-one) 1. The structure was established through detailed spectroscopic studies including one and two dimensional NMR spectroscopy and electrospray ionization high resolution mass spectrometer (ESI-HRMS). The crude acetone extract from M. communis (AMA), dichloromethane fraction (DCM), and the isolated pure compound 1 were tested against pathogenic bacteria. Compound 1 displayed higher antibacterial activity against the Gram-positive and Gram-negative Staphlocococus aureus and Escherichia coli respectively as compared to the crude extract and fractions.
Collapse
Affiliation(s)
- Noureen Khan
- Department of Chemistry, Sardar Bahadur Khan Women's University, Quetta, Pakistan.,King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia, 21589
| | - Shagufta Rasool
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan.,King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia, 21589
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.,Center of Excellence for Advanced Materials Research and Department of Chemistry.,King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia, 21589
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research and Department of Chemistry.,King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia, 21589
| |
Collapse
|
38
|
Structures and Bioactive Properties of Myrtucommulones and Related Acylphloroglucinols from Myrtaceae. Molecules 2018; 23:molecules23123370. [PMID: 30572614 PMCID: PMC6321051 DOI: 10.3390/molecules23123370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Myrtaceae are a group of plants that include a number of renowned species used in ethnomedicine in many areas worldwide. Their valuable therapeutic properties have stimulated a fruitful research activity addressed to the identification of the bioactive components of their extracts yielding a great diversity of terpenes; polyphenols; and other exclusive products. Among the latter, starting with the discovery of myrtucommulone A from myrtle (Myrtus communis), a series of structurally-related acylphloroglucinol compounds have been characterized from several species that represent the basic active principles to be considered in view of possible drug development. Aspects concerning chemical and biological properties of these products are reviewed in the present paper.
Collapse
|
39
|
YANG GX, MA GL, LI H, HUANG T, XIONG J, HU JF. Advanced natural products chemistry research in China between 2015 and 2017. Chin J Nat Med 2018; 16:881-906. [DOI: 10.1016/s1875-5364(18)30131-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 10/27/2022]
|
40
|
Brachyanins A-C, pinene-derived meroterpenoids and phloroglucinol derivative from Leptospermum brachyandrum. Fitoterapia 2018; 130:184-189. [DOI: 10.1016/j.fitote.2018.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 01/24/2023]
|
41
|
Su JC, Wang S, Cheng W, Huang XJ, Li MM, Jiang RW, Li YL, Wang L, Ye WC, Wang Y. Phloroglucinol Derivatives with Unusual Skeletons from Cleistocalyx operculatus and Their in Vitro Antiviral Activity. J Org Chem 2018; 83:8522-8532. [PMID: 29963868 DOI: 10.1021/acs.joc.8b01050] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four novel phloroglucinol derivatives (1-4) featuring a 2,4-dimethyl-cinnamyl-phloroglucinol moiety, along with their putative biosynthetic precursors 5 and 6, were isolated from the leaves of Cleistocalyx operculatus. Compounds 1 and 2 are two pairs of new enantiomeric phloroglucinol dimers possessing an unprecedented polycyclic skeleton with a highly functionalized dihydropyrano[3,2- d]xanthene tetracyclic core. Compounds 3 and 4 are two new phloroglucinol-terpene adducts (PTAs) with a novel carbon skeleton. The structures of 1-4 including their absolute configurations were unambiguously accomplished by combination of extensive spectroscopic analyses, X-ray crystallography, and quantum chemical ECD calculations. A hypothetical biosynthetic pathway for 1-4 was also proposed. Compound 1 exhibited a promising in vitro antiherpes simplex virus type-1 (HSV-1) effect.
Collapse
Affiliation(s)
- Jun-Cheng Su
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Shan Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Wen Cheng
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Man-Mei Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Ren-Wang Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| |
Collapse
|
42
|
Cao JQ, Wu Y, Zhong YL, Li NP, Chen M, Li MM, Ye WC, Wang L. Antiviral Triketone-Phloroglucinol-Monoterpene Adducts from Callistemon rigidus. Chem Biodivers 2018; 15:e1800172. [PMID: 29806969 DOI: 10.1002/cbdv.201800172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 11/07/2022]
Abstract
Callistrilones F - K (1 - 6), six new triketone-phloroglucinol-monoterpene hybrids were isolated from the twigs and leaves of Callistemon rigidus. Their structures with absolute configurations were established by a combination analysis of NMR spectra, X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compounds 3 and 4 exhibited moderate inhibitory activities against herpes simplex virus (HSV-1) with IC50 values of 10.00 ± 2.50 and 12.50 ± 1.30 μm, respectively.
Collapse
Affiliation(s)
- Jia-Qing Cao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Yuan-Lin Zhong
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Ni-Ping Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Mu Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Man-Mei Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
43
|
Yang J, Su JC, Lei XP, Huang XJ, Zhang DM, Ye WC, Wang Y. Acylphloroglucinol derivatives from the leaves of Syzygium samarangense and their cytotoxic activities. Fitoterapia 2018; 129:1-6. [PMID: 29879460 DOI: 10.1016/j.fitote.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 01/29/2023]
Abstract
Samarones A-D (1-4), four new acylphloroglucinol derivatives bearing a C17 alkyl side chain, along with five known analogues (5-9), were isolated from the leaves of Syzygium samarangense. Their structures were characterized on the basis of extensive spectroscopic methods including HR-ESI-MS/MS analysis. The cytotoxic activities of compounds 1-3 and 5-9 against HepG2 and MDA-MB-231 cells were also evaluated.
Collapse
Affiliation(s)
- Jiao Yang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jun-Cheng Su
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xue-Ping Lei
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China..
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China..
| |
Collapse
|
44
|
Liu F, Lu WJ, Li NP, Liu JW, He J, Ye WC, Wang L. Four new cinnamoyl-phloroglucinols from the leaves of Xanthostemon chrysanthus. Fitoterapia 2018; 128:93-96. [PMID: 29778572 DOI: 10.1016/j.fitote.2018.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/03/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023]
Abstract
Four new cinnamoyl-phloroglucinols (1-4) were isolated from the leaves of Xanthostemon chrysanthus. Compounds 1 and 2 represent the first example of natural phloroglucinols with an oxazole unit. Their structures were elucidated on the basis of NMR spectroscopic data and single crystal X-ray diffraction. Compound 3 showed moderate cytotoxic activity against MDA-MB-231 and SGC-7901 cells with IC50 values of 25.26 ± 0.35 μM and 31.2 ± 0.94 μM, respectively.
Collapse
Affiliation(s)
- Fen Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei-Jin Lu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ni-Ping Li
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jiao-Wen Liu
- JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jun He
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Lei Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
45
|
Guo Y, Zhang Y, Xiao M, Xie Z. Biomimetic Syntheses of Callistrilones A–E via an Oxidative [3 + 2] Cycloaddition. Org Lett 2018; 20:2509-2512. [DOI: 10.1021/acs.orglett.8b00238] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yonghong Guo
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuhan Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mingxing Xiao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
46
|
Liu H, Zhu G, Fan Y, Du Y, Lan M, Xu Y, Zhu W. Natural Products Research in China From 2015 to 2016. Front Chem 2018; 6:45. [PMID: 29616210 PMCID: PMC5869933 DOI: 10.3389/fchem.2018.00045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
This review covers the literature published by chemists from China during the 2015-2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.
Collapse
Affiliation(s)
- Haishan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoliang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yaqin Fan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuqi Du
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Lan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yibo Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
47
|
Cheng MJ, Cao JQ, Yang XY, Zhong LP, Hu LJ, Lu X, Hou BL, Hu YJ, Wang Y, You XF, Wang L, Ye WC, Li CC. Catalytic asymmetric total syntheses of myrtucommuacetalone, myrtucommuacetalone B, and callistrilones A, C, D and E. Chem Sci 2018; 9:1488-1495. [PMID: 29629171 PMCID: PMC5875087 DOI: 10.1039/c7sc04672c] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/26/2017] [Indexed: 01/13/2023] Open
Abstract
Herein, we describe a concise catalytic approach to the first asymmetric total syntheses of myrtucommuacetalone, myrtucommuacetalone B, and callistrilones A, C, D and E. The syntheses proceed in only 5-7 steps from the readily available compound 11, without the need for protecting groups. Key features of the syntheses include a unique organocatalytic asymmetric Friedel-Crafts-type Michael addition with high enantioselectivity and a broad substrate scope, a novel Michael-ketalization-annulation cascade reaction, and an oxidative [3 + 2] cycloaddition. Furthermore, the new compound 7 exhibited potent antibacterial activities against several multidrug-resistant strains (MRSA, VISA and VRE), and showed greater potency than vancomycin.
Collapse
Affiliation(s)
- Min-Jing Cheng
- College of Pharmacy , Jinan University , Guangzhou 510632 , China . ;
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| | - Jia-Qing Cao
- College of Pharmacy , Jinan University , Guangzhou 510632 , China . ;
| | - Xin-Yi Yang
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| | - Li-Ping Zhong
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| | - Li-Jun Hu
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| | - Xi Lu
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| | - Bao-Long Hou
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| | - Ya-Jian Hu
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| | - Ying Wang
- College of Pharmacy , Jinan University , Guangzhou 510632 , China . ;
| | - Xue-Fu You
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| | - Lei Wang
- College of Pharmacy , Jinan University , Guangzhou 510632 , China . ;
| | - Wen-Cai Ye
- College of Pharmacy , Jinan University , Guangzhou 510632 , China . ;
| | - Chuang-Chuang Li
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| |
Collapse
|
48
|
Cao JQ, Tian HY, Li MM, Zhang W, Wang Y, Wang L, Ye WC. Rearranged Phloroglucinol-Monoterpenoid Adducts from Callistemon rigidus. JOURNAL OF NATURAL PRODUCTS 2018; 81:57-62. [PMID: 29261312 DOI: 10.1021/acs.jnatprod.7b00606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Callisretones A (1) and B (2), two rearranged phloroglucinol-monoterpenoid adducts featuring an unprecedented isopropylcyclopenta[b]benzofuran backbone, together with their postulated biosynthetic precursors (3-9), were isolated from Callistemon rigidus. The previously assigned absolute configurations of viminalins H (7), L (8), and N (9) were revised and unequivocally established by X-ray diffraction data. A putative biosynthetic pathway toward callisretones A and B involving the rearrangement of the terpenoid motif is proposed. In addition, 1 and 2 showed inhibitory effects on nitric oxide production with IC50 values of 15.3 ± 1.0 and 17.7 ± 1.1 μM, respectively.
Collapse
Affiliation(s)
- Jia-Qing Cao
- Institute of Traditional Chinese Medicine & Natural Products and ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Hai-Yan Tian
- Institute of Traditional Chinese Medicine & Natural Products and ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Man-Mei Li
- Institute of Traditional Chinese Medicine & Natural Products and ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Wei Zhang
- Institute of Traditional Chinese Medicine & Natural Products and ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products and ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products and ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products and ‡Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| |
Collapse
|
49
|
He QF, Wu ZL, Huang XJ, Zhong YL, Li MM, Jiang RW, Li YL, Ye WC, Wang Y. Cajanusflavanols A-C, Three Pairs of Flavonostilbene Enantiomers from Cajanus cajan. Org Lett 2018; 20:876-879. [PMID: 29355328 DOI: 10.1021/acs.orglett.8b00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three pairs of new flavonostilbene enantiomers, cajanusflavanols A-C (1-3), along with their putative biogenetic precursors 4-6, were isolated from Cajanus cajan. Compound 1 possesses an unprecedented carbon skeleton featuring a unique highly functionalized cyclopenta[1,2,3-de]isobenzopyran-1-one tricyclic core. Compounds 2 and 3 are the first examples of methylene-unit-linked flavonostilbenes. Their structures with absolute configurations were elucidated by spectroscopic analyses, X-ray diffraction, and computational calculations. Compounds 1 and 2 exhibited significant in vitro anti-inflammatory activities.
Collapse
Affiliation(s)
- Qi-Fang He
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Zhen-Long Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Yuan-Lin Zhong
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China
| | - Man-Mei Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Ren-Wang Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University , Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University , Guangzhou 510632, People's Republic of China
| |
Collapse
|
50
|
Dethe DH, Dherange BD, Das S. Biomimetic Total Syntheses of Callistrilones A, B, and D. Org Lett 2018; 20:680-683. [DOI: 10.1021/acs.orglett.7b03815] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dattatraya H. Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Balu D. Dherange
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saikat Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|